Classificazione delle PDE

Daniele Boffi
Dipartimento di Matematica "F. Casorati"
Università di Pavia
daniele.boffi@unipv.it
http://www-dimat.unipv.it/boffi/

November 26, 2005

Classification of (linear) PDE's

The case of two variables (can be generalized)

$$
L u \equiv\left(A \frac{\partial^{2} u}{\partial x_{1}^{2}}+B \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}+C \frac{\partial^{2} u}{\partial x_{2}^{2}}\right)+\text { L.O.T. }
$$

Matrix associated to quadratic form

$$
Q F=\left(\begin{array}{cc}
A & \frac{1}{2} B \\
\frac{1}{2} B & C
\end{array}\right)
$$

Note: A, B, and C might be functions themselves.

Classification of PDE's (cont'ed)

Compute eigenvalues λ_{i} of $Q F$

- Elliptic equation: $\lambda_{1} \lambda_{2}>0$ (i.e., $\left.\operatorname{det}(Q F)>0\right)$
- Parabolic equation: $\lambda_{1} \lambda_{2}=0$ (i.e, $\operatorname{det}(Q F)=0$)
- Hyperbolic equation: $\lambda_{1} \lambda_{2}<0$ (i.e., $\operatorname{det}(Q F)<0$)

With the notation of quadratic forms: definite form, semidefinite form, indefinite form, respectively.

Classification of PDE's (cont'ed)

Consider operator

$$
\mathcal{L} u \equiv A \frac{\partial^{2} u}{\partial x_{1}^{2}}+B \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}+C \frac{\partial^{2} u}{\partial x_{2}^{2}}=0
$$

and look for change of variables

$$
\xi=\alpha x_{2}+\beta x_{1}, \quad \eta=\gamma x_{2}+\delta x_{1}
$$

so that $\mathcal{L} u$ is a multiple of $\frac{\partial^{2} u}{\partial \xi \partial \eta}$ (see wave equation)

$$
\begin{aligned}
\mathcal{L} u & =\left(A \beta^{2}+B \alpha \beta+C \alpha^{2}\right) \frac{\partial^{2} u}{\partial \xi^{2}}+\left(A \delta^{2}+B \gamma \delta+C \gamma^{2}\right) \frac{\partial^{2} u}{\partial \eta^{2}} \\
& +(2 A \beta \delta+B(\alpha \delta+\beta \gamma)+2 C \alpha \gamma) \frac{\partial^{2} u}{\partial \xi \partial \eta}
\end{aligned}
$$

Classification of PDE's (cont'ed)

$$
\begin{aligned}
\mathcal{L} u & =\left(A \beta^{2}+B \alpha \beta+C \alpha^{2}\right) \frac{\partial^{2} u}{\partial \xi^{2}}+\left(A \delta^{2}+B \gamma \delta+C \gamma^{2}\right) \frac{\partial^{2} u}{\partial \eta^{2}} \\
& +(2 A \beta \delta+B(\alpha \delta+\beta \gamma)+2 C \alpha \gamma) \frac{\partial^{2} u}{\partial \xi \partial \eta}
\end{aligned}
$$

If $A=C=0$, trivial. Suppose $A \neq 0$; we want

$$
A \beta^{2}+B \alpha \beta+C \alpha^{2}=0, \quad A \delta^{2}+B \gamma \delta+C \gamma^{2}=0
$$

When $\alpha \gamma \neq 0$, divide first equation by α^{2}, second one by γ^{2} and solve for β / α and δ / γ, resp.

$$
\beta / \alpha=(2 A)^{-1}(-B \pm \sqrt{\Delta}), \quad \delta / \gamma=(2 A)^{-1}(-B \pm \sqrt{\Delta})
$$

$\Delta=B^{2}-4 A C$

Classification of PDE's (cont'ed)

Hyperbolic case

$$
\begin{aligned}
& \xi=\alpha x_{2}+\beta x_{1}, \quad \eta=\gamma x_{2}+\delta x_{1} \\
& \beta / \alpha=(2 A)^{-1}(-B \pm \sqrt{\Delta}), \quad \delta / \gamma=(2 A)^{-1}(-B \pm \sqrt{\Delta})
\end{aligned}
$$

For nonsingular change of variables, Δ must be positive

$$
\begin{aligned}
& \alpha=\gamma=2 A, \quad \beta=-B+\sqrt{\Delta}, \delta=-B-\sqrt{\Delta} \\
& \mathcal{L} u=-4 A\left(B^{2}-4 A C\right) \frac{\partial^{2} u}{\partial \xi \partial \eta}
\end{aligned}
$$

As before, solution has the form $u=p(\xi)+q(\eta)$ and the lines $\xi=$ constant and $\eta=$ constant are called characteristics.

Classification of PDE's (cont'ed)

Actually, when $x_{1}=t$ and $x_{2}=x$, the change of variables

$$
x^{\prime}=x-\frac{B}{2 A} t, \quad t^{\prime}=t
$$

maps our hyperbolic operator $(A \neq 0)$ to a multiple of wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Hence, \mathcal{L} is a wave operator in a frameset moving at speed $-B /(2 A)$.

Classification of PDE's (cont'ed)

Parabolic case

$$
\begin{aligned}
\mathcal{L} u & =\left(A \beta^{2}+B \alpha \beta+C \alpha^{2}\right) \frac{\partial^{2} u}{\partial \xi^{2}}+\left(A \delta^{2}+B \gamma \delta+C \gamma^{2}\right) \frac{\partial^{2} u}{\partial \eta^{2}} \\
& +(2 A \beta \delta+B(\alpha \delta+\beta \gamma)+2 C \alpha \gamma) \frac{\partial^{2} u}{\partial \xi \partial \eta}
\end{aligned}
$$

For $\beta / \alpha=-B /(2 A)$ coefficient of $\frac{\partial^{2} u}{\partial \xi^{2}}$ vanishes
But $B /(2 A)=2 C / B$, so coefficient of $\frac{\partial^{2} u}{\partial \xi \partial \eta}$ is zero as well
Everything can be written as a multiple of $\frac{\partial^{2} u}{\partial \eta^{2}}$

Classification of PDE's (cont'ed)

In conclusion, in the parabolic case, the change of variables

$$
\xi=2 A x_{2}-B x_{1}, \quad \eta=x_{1}
$$

maps the equation to

$$
A \frac{\partial^{2} u}{\partial \eta^{2}}=0
$$

which has the general solution

$$
u=p(\xi)+\eta q(\xi)
$$

One family of characteristics $\xi=$ constant

Classification of PDE's (cont'ed)

Elliptic case

No choice of parameters makes coefficients of $\frac{\partial^{2} u}{\partial \xi^{2}}$ and $\frac{\partial^{2} u}{\partial \eta^{2}}$ vanish In this case change of variables

$$
\xi=\frac{2 A x_{2}-B x_{1}}{\sqrt{4 A C-B^{2}}}, \quad \eta=x_{1}
$$

maps equation to

$$
A\left(\frac{\partial^{2} u}{\partial \xi^{2}}+\frac{\partial^{2} u}{\partial \eta^{2}}\right)=0
$$

No family of characteristics (infinite speed of propagation, no discontinuities allowed)

Classification of PDE's (cont'ed)

Final examples

- Laplace equation: elliptic
- Wave equation: hyperbolic
- Heat equation: parabolic
- Convection-diffusion equation:

$$
\frac{\partial u}{\partial t}-\varepsilon \Delta u+\operatorname{div}(\vec{\beta} u)=0
$$

parabolic, degenerating to hyperbolic as ε tends to zero.

