CCM, Part II (2)

Daniele Boffi
Dipartimento di Matematica "F. Casorati" Università di Pavia
daniele.boffi@unipv.it
http://www-dimat.unipv.it/boffi/
March 2005

Elliptic PDE's

One dimensional model problem $(\Omega=] a, b[)$

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f(x) \quad \text { in } \Omega \\
u(a)=u(b)=0
\end{array}\right.
$$

Boundary value problem (other boundary conditions possible)
Generalization to $\Omega \in \mathbb{R}^{d}$ with boundary $\partial \Omega$

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Theorem: well-posedness (existence, uniqueness, stability)

Finite differences

Summary: easy to design (approximate derivatives with difference quotients), easy to implement, very hard extension to general domains and boundary conditions

Here $N=5, x_{0}=a, x_{i}=a+\sum_{j=1}^{i} h_{j}, i=1, \ldots, N$
Denoting $u_{i}=u\left(x_{i}\right), u_{i}^{\prime}=u^{\prime}\left(x_{i}\right)$, first finite difference is

$$
u_{i}^{\prime} \simeq \frac{u_{i+1}-u_{i-1}}{h_{i}+h_{i+1}} \quad \text { second order accurate in } h \text { (consistent) }
$$

Finite differences (cont'ed)

Approximation of second derivative

$$
u_{i}^{\prime \prime} \simeq \frac{u_{i+1 / 2}^{\prime}-u_{i-1 / 2}^{\prime}}{\frac{h_{i}+h_{i+1}}{2}} \simeq \frac{\frac{u_{i+1}-u_{i}}{h_{i+1}}-\frac{u_{i}-u_{i-1}}{h_{i}}}{\frac{h_{i}+h_{i+1}}{2}}
$$

If $h_{i}=h$ (constant mesh size), simpler expression

$$
u_{i}^{\prime \prime} \simeq \frac{u_{i-1}-2 u_{i}+u_{i+1}}{h^{2}} \quad \text { second order consistent }
$$

Our approximate equation at x_{i} reads

$$
\frac{-u_{i-1}+2 u_{i}-u_{i+1}}{h^{2}}=f_{i}, \quad i=1, \ldots, N-1
$$

Finite differences (cont'ed)

Putting things together we are led to the linear system

$$
\begin{aligned}
& \left\{\begin{array}{l}
u_{0}=0 \\
\cdots \\
\frac{-u_{i-1}+2 u_{i}-u_{i+1}}{h^{2}}=f_{i} \\
\cdots \\
u_{N}=0
\end{array}\right. \\
& A U=F \quad A=[\operatorname{tridiag}(-1,2,-1)] / h^{2}
\end{aligned}
$$

Weak formulations

Need for more general formulations.
Let's consider space $V=H_{0}^{1}(a, b)$ consisting of continuous functions on $[a, b]$, piecewise differentiable with bounded derivative, and vanishing at endpoints.

Generalization to 2D requires Lebesgue integral and Hilbert spaces

$$
H^{1}(\Omega)=\left\{v \in L^{2}(\Omega) \text { s.t. } \quad \underset{\operatorname{grad}}{ } v \in L^{2}(\Omega)\right\}
$$

where

$$
L^{2}(\Omega)=\left\{v: \Omega \rightarrow \mathbb{R} \text { integrable s.t. } \int_{\Omega} v^{2}<\infty\right\}
$$

Weak formulations (cont'ed)

Take our model equation, multiply by a generic $v \in V$ (test function), and integrate over (a, b)

$$
-\int_{a}^{b} u^{\prime \prime}(x) v(x) d x=\int_{a}^{b} f(x) v(x) d x
$$

Integrating by parts gives

$$
\begin{aligned}
& \quad \int_{a}^{b} u^{\prime}(x) v^{\prime}(x) d x=\int_{a}^{b} f(x) v(x) d x \\
& a: V \times V \rightarrow \mathbb{R}, F \in V^{*} \\
& \\
& \quad a(u, v)=\int_{a}^{b} u^{\prime}(x) v^{\prime}(x) d x, \quad F(v)=\int_{a}^{b} f(x) v(x) d x
\end{aligned}
$$

Weak formulations (cont'ed)

Lax-Milgram Lemma

Find $u \in V$ such that $a(u, v)=F(v) \quad \forall v \in V$
This problem is well posed (exist., uniq., and stab.) provided

1. V Hilbert space
2. a bilinear, continuous, F linear, continuous
3. a coercive, that is there exists $\alpha>0$ s.t.

$$
\begin{gathered}
a(v, v) \geq \alpha\|v\|_{V}^{2}, \quad \forall v \in V \\
\|u\|_{V} \leq \frac{1}{\alpha}\|F\|_{V^{*}} \quad \text { Stability estimate }
\end{gathered}
$$

Weak formulations (cont'ed)

In our case hypotheses of LM Lemma OK (Poincaré inequality)
Theorem If f is smooth enough, the unique solution to weak formulation solves the original equation as well (strong solution)

More general situation

$$
\begin{aligned}
& \begin{cases}-\operatorname{div}(\varepsilon \operatorname{grad} u)+\vec{\beta} \cdot \operatorname{grad} u+\sigma u=f & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega\end{cases} \\
& a(u, v)=\int_{\Omega} \varepsilon \overrightarrow{\operatorname{grad}} u \cdot \operatorname{grad} v d \vec{x}+\int_{\Omega} v \vec{\beta} \cdot \operatorname{grad} u d \vec{x}+\int_{\Omega} \sigma u v d \vec{x}
\end{aligned}
$$

Weak formulations (cont'ed)

In general problem in weak form, when a is symmetric, is equivalent to the following variational problem:

Find $u \in V$ such that

$$
J(u)=\min _{v \in V} J(v), \quad J(v)=\frac{1}{2} a(v, v)-F(v)
$$

In the one dimensional model problem, we have

$$
J(v)=\frac{1}{2} \int_{a}^{b}\left(v^{\prime}(x)\right)^{2} d x-\int_{a}^{b} f(x) v(x) d x
$$

Finite elements (Galerkin method)

Consider a finite dimensional subspace $V_{h} \subset V$ (h refers to a mesh parameter).

Find $u_{h} \in V_{h}$ such that $a\left(u_{h}, v_{h}\right)=F\left(v_{h}\right) \quad \forall v_{h} \in V_{h}$
Problem is solvable by Lax-Milgram
Suppose that $V_{h}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}(h)\right\}$, so $u_{h}=\sum_{j=1}^{N} u_{j} \varphi_{j}$
Problem can be written: find $\mathbf{u}=\left\{u_{j}\right\}$ s.t. for any i

$$
a\left(\sum_{j=1}^{N} u_{j} \varphi_{j}, \varphi_{i}\right)=F\left(\varphi_{i}\right)
$$

Galerkin method (cont'ed)

Bilinearity of a gives

$$
\sum_{j=1}^{N} u_{j} a\left(\varphi_{j}, \varphi_{i}\right)=F\left(\varphi_{i}\right), \quad i=1, \ldots, N
$$

Let's denote by A the stiffness matrix $A_{i j}=a\left(\varphi_{j}, \varphi_{i}\right)$ and by b the load vector $b_{i}=F\left(\varphi_{i}\right)$. Then we have the matrix form of discrete problem

$$
A \mathbf{u}=b
$$

a symmetric and coercive implies A symmetric positive definite

Galerkin method (cont'ed)

Existence and uniqueness (Lax-Milgram)
Convergence $=$ Consistency + Stability
Stability:

$$
\left\|u_{h}\right\|_{V} \leq \frac{1}{\alpha}\|F\|_{V^{*}}
$$

Strong consistency

$$
a\left(u-u_{h}, v_{h}\right)=0 \quad \forall v_{h} \in V_{h}
$$

Galerkin method (cont'ed)

Error estimate (Céa's Lemma)

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|_{V}^{2} & \leq a\left(u-u_{h}, u-u_{h}\right)=a\left(u-u_{h}, u-v_{h}\right) \\
& \leq M\left\|u-u_{h}\right\|_{V}\left\|u-v_{h}\right\|_{V} \\
\left\|u-u_{h}\right\|_{V} \leq & \frac{M}{\alpha} \inf _{v \in V_{h}}\left\|u-v_{h}\right\|_{V}
\end{aligned}
$$

Error bounded by best approximation
Need for good choice of V_{h} !

Galerkin method (cont'ed)

Moreover, when a is symmetric, we have the variational property

$$
J\left(u_{h}\right)=\min _{v_{h} \in V_{h}} J\left(v_{h}\right)
$$

Since $V_{h} \subset V$, in particular, we have

$$
J(u) \leq J\left(u_{h}\right)
$$

Finite elements

> One dimensional p/w linear approximation.

Shape (or basis) functions: hat functions.

A finite element is defined by:

1) a domain (interval, triangle, tetrahedron,. . .),
2) a finite dimensional (polynomial) space,
3) a set of degrees of freedom.

Finite elements (cont'ed)

One dimensional finite elements

1) domain: interval
2) space: \mathbb{P}_{p}
3) d.o.f.'s: depend on polynomial order
linear element: endpoints (2)
quadratic element: endpoints + midpoint (3)

Set $\left\{a_{j}\right\}_{j=1}^{N}$ of degrees of freedom is unisolvent, that is, given N numbers $\alpha_{1}, \ldots, \alpha_{N}$, there exists a unique polynomial φ in \mathbb{P}_{p} s. t .

$$
\varphi\left(a_{j}\right)=\alpha_{j}, \quad j=1, \ldots, N
$$

Finite elements (cont'ed)

Approximation properties of one dimensional finite elements

$$
\inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{H^{k}} \leq C h^{p+1-k}|u|_{H^{p+1}} \quad k=0,1
$$

Remark on $h p$ FEM

- Refine in h where solution is singular
- Refine in p where solution is regular

End of Part Two

