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Elliptic PDE's
One dimensional model problem (€2 =|a, b|)

{ —u'(x) = f(x) inQ
u(a) = u(b) =0

Boundary value problem (other boundary conditions possible)

Generalization to 2 € R? with boundary 6%

—Au=f inQ
u=>0 on 0Of)

Theorem: well-posedness (existence, uniqueness, stability)




Finite differences

Summary: easy to design (approximate derivatives with difference
quotients), easy to implement, very hard extension to general domains
and boundary conditions

Here N =5, 20=a,z,=a+ > h;,i=1,...,N
=1

/

Denoting u; = u(x;), u; = u'(x;), first finite difference is

o~ Ui41 — Ui—1
7: —_—
hi + hit1

second order accurate in h (consistent)




Finite differences (cont’ed)

Approximation of second derivative

” o Wip1 =W Ui—Uj—]
U,N N i+1/2 i—1/2 - hit1 h;
v hithiyi - hithit
2 2

If h; = h (constant mesh size), simpler expression

Ui—1 — 2Uj + Uit .
ul ~ 3 + second order consistent

Our approximate equation at x; reads

—Ui—1 + 2U; — Ujp1

= i di=1,....N—1




Finite differences (cont’ed)

Putting things together we are led to the linear system

.
uon

—Uj—1 + 2U; — Uit

< e = f

AU =F A= [tridiag(—1,2, —1)]/h?




Weak formulations

Need for more general formulations.

Let's consider space V = H(a,b) consisting of continuous functions
on |a,b|, piecewise differentiable with bounded derivative, and

vanishing at endpoints.

Generalization to 2D requires Lebesgue integral and Hilbert spaces
HY(Q) = {v e L*(Q) s.t. gradv € L*(Q)}
where

L*(Q) = {v : () — R integrable s.t. / v? < oo}
Q




Weak formulations (cont’ed)

Take our model equation, multiply by a generic v € V' (test function),
and integrate over (a,b)

[ emra s

Integrating by parts gives

/a b o ()0 (z) dx = / : f(x)o(z) dz

a:VxV =R, FeV*

b

a(u,v):/ u () (2)de, F)= | f(x)v(x)dr

a




Weak formulations (cont’ed)

Lax—Milgram Lemma

Find w € V such that a(u,v) = F(v) Yo eV

This problem is well posed (exist., uniq., and stab.) provided

1. V Hilbert space
2. a bilinear, continuous, F' linear, continuous
3. a coercive, that is there exists a > 0 s.t.

a(v,v) > o||v||7, Yv eV

|ul|y < —|[|F||yv+ Stability estimate
o




Weak formulations (cont’ed)

In our case hypotheses of LM Lemma OK (Poincaré inequality)

Theorem If f is smooth enough, the unique solution to weak
formulation solves the original equation as well (strong solution)

More general situation

—div(egradu) + G- gradu+ou=f inQ
u =20 on 0f)

a(u,v):/5gr3du-gr3dvdf+/vﬁ_)-gr_a)dudf—k/quda_:’
Q Q Q




Weak formulations (cont’ed)

In general problem in weak form, when a is symmetric, is equivalent
to the following variational problem:

Find v € V such that
1
J(u) =min J(v), J(v)= 5@(?},1}) — F(v)

veV

In the one dimensional model problem, we have

1

=3 (@) dr - / ' Fe)o(a) do




Finite elements (Galerkin method)

Consider a finite dimensional subspace V;, C V' (h refers to a mesh
parameter).

Find u;, € V3, such that a(uh,vh) — F(Uh) Yup, € Vy,

Problem is solvable by Lax—Milgram

N
Suppose that V}, = span{y1,...,on(h)}, so up = > u;p;
j=1

Problem can be written: find u = {u,} s.t. for any ¢

CL( i Ui Py, %’) = F'(¢:)




Galerkin method (cont’ed)

Bilinearity of a gives

N
j=1

Let's denote by A the stiffness matrix A;; = a(y;, ;) and by b the
load vector b; = F(p;). Then we have the matrix form of discrete

problem
Au=5>

a symmetric and coercive implies A symmetric positive definite

— — 7T 11



Galerkin method (cont’ed)

Existence and uniqueness (Lax—Milgram)

Convergence = Consistency + Stability

Stability:
1
lunllv < —[|F|[v-
o
Strong consistency

a(u —up,vp) =0 Yo, € Vj




Galerkin method (cont’ed)

Error estimate (Céa’'s Lemma)

allu — up|i < alu —up, u — up) = alu — up, u — vp)

< Mlju = unlviu—wnllv

M
_ < 2 50f ey —
|u —up||v < o nf |u — vp||v

Error bounded by best approximation
Need for good choice of V3!
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Galerkin method (cont’ed)

Moreover, when a is symmetric, we have the variational property

J(uh) — min J(?}h)

’UhEVh

Since V}, C V, in particular, we have

J(u) < J(up)
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Finite elements

One dimensional p/w linear
approximation.

Shape (or basis) functions:
hat functions.

A finite element is defined by:

1) a domain (interval, triangle, tetrahedron,. . . ),
2) a finite dimensional (polynomial) space,

3) a set of degrees of freedom.

— — 7T 15



Finite elements (cont’ed)

One dimensional finite elements

1) domain: interval
2) space: P,
3) d.o.f.’s: depend on polynomial order

linear element: endpoints (2)
quadratic element: endpoints + midpoint (3)

Set {aj}é\f:l of degrees of freedom is wnisolvent, that is, given N
numbers aq, ..., ay, there exists a unique polynomial ¢ in PP, s. t.

pla;) =a5, j=1,...,N




Finite elements (cont’ed)

Approximation properties of one dimensional finite elements

inf [Ju—vp|| gr < CRPT 5wl gpn k=0,1
vRLEV

Remark on hp FEM

» Refine in h where solution is singular

» Refine in p where solution is regular
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End of Part Two

18



