CCM, Part II

Daniele Boffi

Dipartimento di Matematica, Università di Pavia http://www-dimat.unipv.it/boffi

Complexity and its Interdisciplinary Applications

Elliptic PDE's

Elliptic PDE's

Elliptic PDE's

One dimensional model problem $(\Omega=] a, b[)$

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f(x) \quad \text { in } \Omega \\
u(a)=u(b)=0
\end{array}\right.
$$

Boundary value problem (other boundary conditions possible) Generalization to $\Omega \in \mathbb{R}^{d}$ with boundary $\partial \Omega$

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Theorem: well-posedness (existence, uniqueness, stability)

Finite differences

Summary: easy to design (approximate derivatives with difference quotients), easy to implement, very hard extension to general domains and boundary conditions

Finite differences

Summary: easy to design (approximate derivatives with difference quotients), easy to implement, very hard extension to general domains and boundary conditions

Finite differences

Summary: easy to design (approximate derivatives with difference quotients), easy to implement, very hard extension to general domains and boundary conditions

Finite differences

Summary: easy to design (approximate derivatives with difference quotients), easy to implement, very hard extension to general domains and boundary conditions

Denoting $u_{i}=u\left(x_{i}\right), u_{i}^{\prime}=u^{\prime}\left(x_{i}\right)$, first finite difference is

$$
u_{i}^{\prime} \simeq \frac{u_{i+1}-u_{i-1}}{h_{i}+h_{i+1}} \quad \text { second order accurate in } h \text { (consistent) }
$$

Finite differences (cont'ed)

Approximation of second derivative

$$
u_{i}^{\prime \prime} \simeq \frac{u_{i+1 / 2}^{\prime}-u_{i-1 / 2}^{\prime}}{\frac{h_{i}+h_{i+1}}{2}}
$$

Finite differences (cont'ed)

Approximation of second derivative

$$
u_{i}^{\prime \prime} \simeq \frac{u_{i+1 / 2}^{\prime}-u_{i-1 / 2}^{\prime}}{\frac{h_{i}+h_{i+1}}{2}} \simeq \frac{\frac{u_{i+1}-u_{i}}{h_{i+1}}-\frac{u_{i}-u_{i-1}}{h_{i}}}{\frac{h_{i}+h_{i+1}}{2}}
$$

Finite differences (cont'ed)

Approximation of second derivative

$$
u_{i}^{\prime \prime} \simeq \frac{u_{i+1 / 2}^{\prime}-u_{i-1 / 2}^{\prime}}{\frac{h_{i}+h_{i+1}}{2}} \simeq \frac{\frac{u_{i+1}-u_{i}}{h_{i+1}}-\frac{u_{i}-u_{i-1}}{h_{i}}}{\frac{h_{i}+h_{i+1}}{2}}
$$

If $h_{i}=h$ (constant mesh size), simpler expression

$$
u_{i}^{\prime \prime} \simeq \frac{u_{i-1}-2 u_{i}+u_{i+1}}{h^{2}} \quad \text { second order consistent }
$$

Finite differences (cont'ed)

Approximation of second derivative

$$
u_{i}^{\prime \prime} \simeq \frac{u_{i+1 / 2}^{\prime}-u_{i-1 / 2}^{\prime}}{\frac{h_{i}+h_{i+1}}{2}} \simeq \frac{\frac{u_{i+1}-u_{i}}{h_{i+1}}-\frac{u_{i}-u_{i-1}}{h_{i}}}{\frac{h_{i}+h_{i+1}}{2}}
$$

If $h_{i}=h$ (constant mesh size), simpler expression

$$
u_{i}^{\prime \prime} \simeq \frac{u_{i-1}-2 u_{i}+u_{i+1}}{h^{2}} \quad \text { second order consistent }
$$

Our approximate equation at x_{i} reads

$$
\frac{-u_{i-1}+2 u_{i}-u_{i+1}}{h^{2}}=f_{i}, \quad i=1, \ldots, N-1
$$

Finite differences (cont'ed)

Putting things together we are led to the linear system

$$
\left\{\begin{array}{l}
u_{0}=0 \\
\cdots \\
\frac{-u_{i-1}+2 u_{i}-u_{i+1}}{h^{2}}=f_{i} \\
\cdots \\
u_{N}=0
\end{array}\right.
$$

Finite differences (cont'ed)

Putting things together we are led to the linear system

$$
\left\{\begin{array}{l}
u_{0}=0 \\
\cdots \\
\frac{-u_{i-1}+2 u_{i}-u_{i+1}}{h^{2}}=f_{i} \\
\cdots \\
u_{N}=0
\end{array}\right.
$$

$$
A U=F \quad A=[\operatorname{tridiag}(-1,2,-1)] / h^{2}
$$

CCM, Part II
Daniele Boffi

Weak formulations

Need for more general formulations.

Weak formulations

Weak formulations

Need for more general formulations.
Let's consider space $V=H_{0}^{1}(a, b)$ consisting of continuous functions on $[a, b]$, piecewise differentiable with bounded derivative, and vanishing at endpoints.
Generalization to 2D requires Lebesgue integral and Hilbert spaces

$$
H^{1}(\Omega)=\left\{v \in L^{2}(\Omega) \text { s.t. } \operatorname{grad} v \in L^{2}(\Omega)\right\}
$$

where

$$
L^{2}(\Omega)=\left\{v: \Omega \rightarrow \mathbb{R} \text { integrable s.t. } \int_{\Omega} v^{2}<\infty\right\}
$$

Weak formulations (cont'ed)

Take our model equation, multiply by a generic $v \in V$ (test function), and integrate over (a, b)

$$
-\int_{a}^{b} u^{\prime \prime}(x) v(x) d x=\int_{a}^{b} f(x) v(x) d x
$$

Weak formulations (cont'ed)

Take our model equation, multiply by a generic $v \in V$ (test function), and integrate over (a, b)

$$
-\int_{a}^{b} u^{\prime \prime}(x) v(x) d x=\int_{a}^{b} f(x) v(x) d x
$$

Integrating by parts gives

$$
\int_{a}^{b} u^{\prime}(x) v^{\prime}(x) d x=\int_{a}^{b} f(x) v(x) d x
$$

Weak formulations (cont'ed)

Take our model equation, multiply by a generic $v \in V$ (test function), and integrate over (a, b)

$$
-\int_{a}^{b} u^{\prime \prime}(x) v(x) d x=\int_{a}^{b} f(x) v(x) d x
$$

Integrating by parts gives

$$
\int_{a}^{b} u^{\prime}(x) v^{\prime}(x) d x=\int_{a}^{b} f(x) v(x) d x
$$

$$
a: V \times V \rightarrow \mathbb{R}, F \in V^{*}
$$

$$
a(u, v)=\int_{a}^{b} u^{\prime}(x) v^{\prime}(x) d x, \quad F(v)=\int_{a}^{b} f(x) v(x) d x
$$

Weak formulations (cont'ed)

Find $u \in V$ such that $a(u, v)=F(v) \quad \forall v \in V$

Weak formulations (cont'ed)

Weak formulations (cont'ed)

CCM, Part II
Daniele Boffi

Weak formulations (cont'ed)

In our case hypotheses of LM Lemma OK (Poincaré inequality)

Weak formulations (cont'ed)

In our case hypotheses of LM Lemma OK (Poincaré inequality)
Remark
If f is smooth enough, the unique solution to weak formulation solves the original equation as well (strong solution)

Weak formulations (cont'ed)

Weak formulations (cont'ed)

In our case hypotheses of LM Lemma OK (Poincaré inequality)
Remark
If f is smooth enough, the unique solution to weak formulation solves the original equation as well (strong solution)
More general situation

$$
\begin{gathered}
\begin{cases}-\operatorname{div}(\varepsilon \operatorname{grad} u)+\vec{\beta} \cdot \operatorname{grad} u+\sigma u=f & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega\end{cases} \\
a(u, v)=\int_{\Omega} \varepsilon \operatorname{grad} u \cdot \operatorname{grad} v d \mathbf{x}+\int_{\Omega} v \vec{\beta} \cdot \operatorname{grad} u d \mathbf{x}+\int_{\Omega} \sigma u v d \mathbf{x}
\end{gathered}
$$

Weak formulations (cont'ed)

In general problem in weak form, when a is symmetric, is equivalent to the following variational problem:

Find $u \in V$ such that

$$
J(u)=\min _{v \in V} J(v), \quad J(v)=\frac{1}{2} a(v, v)-F(v)
$$

Weak formulations (cont'ed)

In general problem in weak form, when a is symmetric, is equivalent to the following variational problem:

Find $u \in V$ such that

$$
J(u)=\min _{v \in V} J(v), \quad J(v)=\frac{1}{2} a(v, v)-F(v)
$$

In the one dimensional model problem, we have

$$
J(v)=\frac{1}{2} \int_{a}^{b}\left(v^{\prime}(x)\right)^{2} d x-\int_{a}^{b} f(x) v(x) d x
$$

Finite elements (Galerkin method)

Elliptic PDE's

Finite elements (Galerkin method)

Finite elements (Galerkin method)

Consider a finite dimensional subspace $V_{h} \subset V$ (h refers to a mesh parameter).
Find $u_{h} \in V_{h}$ such that $a\left(u_{h}, v_{h}\right)=F\left(v_{h}\right) \quad \forall v_{h} \in V_{h}$
Problem is solvable by Lax-Milgram

Finite elements (Galerkin method)

Consider a finite dimensional subspace $V_{h} \subset V$ (h refers to a mesh parameter).
Find $u_{h} \in V_{h}$ such that $a\left(u_{h}, v_{h}\right)=F\left(v_{h}\right) \quad \forall v_{h} \in V_{h}$
Problem is solvable by Lax-Milgram
Suppose that $V_{h}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}(h)\right\}$, so $u_{h}=\sum_{j=1}^{N} u_{j} \varphi_{j}$

Finite elements (Galerkin method)

Consider a finite dimensional subspace $V_{h} \subset V$ (h refers to a mesh parameter).
Find $u_{h} \in V_{h}$ such that $a\left(u_{h}, v_{h}\right)=F\left(v_{h}\right) \quad \forall v_{h} \in V_{h}$
Problem is solvable by Lax-Milgram
Suppose that $V_{h}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}(h)\right\}$, so $u_{h}=\sum_{j=1}^{N} u_{j} \varphi_{j}$
Problem can be written: find $\mathbf{u}=\left\{u_{j}\right\}$ s.t. for any i

$$
a\left(\sum_{j=1}^{N} u_{j} \varphi_{j}, \varphi_{i}\right)=F\left(\varphi_{i}\right)
$$

Galerkin method (cont'ed)

Elliptic PDE's
Finite differences
Finite elements

Bilinearity of a gives

$$
\sum_{j=1}^{N} u_{j} a\left(\varphi_{j}, \varphi_{i}\right)=F\left(\varphi_{i}\right), \quad i=1, \ldots, N
$$

Galerkin method (cont'ed)

Galerkin method (cont'ed)

Bilinearity of a gives

$$
\sum_{j=1}^{N} u_{j} a\left(\varphi_{j}, \varphi_{i}\right)=F\left(\varphi_{i}\right), \quad i=1, \ldots, N
$$

Let's denote by A the stiffness matrix $A_{i j}=a\left(\varphi_{j}, \varphi_{i}\right)$ and by b the load vector $b_{i}=F\left(\varphi_{i}\right)$. Then we have the matrix form of discrete problem

$$
A \mathbf{u}=b
$$

a symmetric and coercive implies A symmetric positive definite

Galerkin method (cont'ed)

Elliptic PDE's

Existence and uniqueness (Lax-Milgram)

Galerkin method (cont'ed)

Existence and uniqueness (Lax-Milgram)

Convergence $=$ Consistency + Stability

Galerkin method (cont'ed)

Existence and uniqueness (Lax-Milgram)

Convergence $=$ Consistency + Stability

Stability:

$$
\left\|u_{h}\right\|_{V} \leq \frac{1}{\alpha}\|F\|_{V^{*}}
$$

Galerkin method (cont'ed)

Existence and uniqueness (Lax-Milgram)

Convergence $=$ Consistency + Stability

Stability:

$$
\left\|u_{h}\right\|_{V} \leq \frac{1}{\alpha}\|F\|_{V^{*}}
$$

Strong consistency

$$
a\left(u-u_{h}, v_{h}\right)=0 \quad \forall v_{h} \in V_{h}
$$

Galerkin method (cont'ed)

Error estimate (Céa's Lemma)

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|_{V}^{2} & \leq a\left(u-u_{h}, u-u_{h}\right)=a\left(u-u_{h}, u-v_{h}\right) \\
& \leq M\left\|u-u_{h}\right\| v\left\|u-v_{h}\right\| V
\end{aligned}
$$

Galerkin method (cont'ed)

Error estimate (Céa's Lemma)

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|_{v}^{2} & \leq a\left(u-u_{h}, u-u_{h}\right)=a\left(u-u_{h}, u-v_{h}\right) \\
& \leq M\left\|u-u_{h}\right\| v\left\|u-v_{h}\right\| v
\end{aligned}
$$

$$
\left\|u-u_{h}\right\| v \leq \frac{M}{\alpha} \inf _{v \in V_{h}}\left\|u-v_{h}\right\| v
$$

Galerkin method (cont'ed)

Galerkin method (cont'ed)

Elliptic PDE's Finite differences Finite elements

Galerkin method (cont'ed)

Moreover, when a is symmetric, we have the variational property

$$
J\left(u_{h}\right)=\min _{v_{h} \in V_{h}} J\left(v_{h}\right)
$$

Since $V_{h} \subset V$, in particular, we have

$$
J(u) \leq J\left(u_{h}\right)
$$

CCM, Part II
Daniele Boffi

Finite elements

Elliptic PDE's Finite differences
Finite elements

Finite elements

Elliptic PDE's Finite differences Finite elements

One dimensional p/w linear approximation. Shape (or basis) functions: hat functions.

A finite element is defined by:
(1) a domain (interval, triangle, tetrahedron,...),

Finite elements

Elliptic PDE's

A finite element is defined by:
(1) a domain (interval, triangle, tetrahedron,...),
(2) a finite dimensional (polynomial) space,

Finite elements

One dimensional p/w linear approximation. Shape (or basis) functions: hat functions.

A finite element is defined by:
(1) a domain (interval, triangle, tetrahedron,...),
(2) a finite dimensional (polynomial) space,
(3) a set of degrees of freedom.

Finite elements (cont'ed)

Elliptic PDE's Finite differences Finite elements

Finite elements (cont'ed)

Elliptic PDE's Finite differences Finite elements

Finite elements (cont'ed)

One dimensional finite elements
(1) domain: interval
(2) space: \mathcal{P}_{p}
(3) d.o.f.'s: depend on polynomial order

Finite elements (cont'ed)

Finite elements (cont'ed)

One dimensional finite elements
(1) domain: interval
(2) space: \mathcal{P}_{p}
(3) d.o.f.'s: depend on polynomial order
linear element: endpoints (2)
quadratic element: endpoints + midpoint (3)
Set $\left\{a_{j}\right\}_{j=1}^{N}$ of degrees of freedom is unisolvent, that is, given N numbers $\alpha_{1}, \ldots, \alpha_{N}$, there exists a unique polynomial φ in \mathcal{P}_{p} s. t .

$$
\varphi\left(a_{j}\right)=\alpha_{j}, \quad j=1, \ldots, N
$$

CCM, Part II
Daniele Boffi

Finite elements (cont'ed)

Finite elements (cont'ed)

Elliptic PDE's

Finite elements (cont'ed)

Finite elements (cont'ed)

Generalization to more space dimensions Example of unisolvent degrees of freedom

Finite elements (cont'ed)

How to construct stiffness matrix and load vector

Finite elements (cont'ed)

How to construct stiffness matrix and load vector In general one considers reference elements and mappings to actual elements

Finite elements (cont'ed)

How to construct stiffness matrix and load vector In general one considers reference elements and mappings to actual elements

Notation: \hat{K} reference element; K actual element

Finite elements (cont'ed)

How to construct stiffness matrix and load vector In general one considers reference elements and mappings to actual elements

Notation: \hat{K} reference element; K actual element $\hat{\varphi}_{1}, \ldots \hat{\varphi}_{N}$ reference shape functions; $\varphi_{1}, \ldots \varphi_{N}$ actual shape functions

Finite elements (cont'ed)

How to map the shape functions

$$
\begin{aligned}
& F_{K}: \hat{K} \rightarrow K, \quad \vec{x}=F(\hat{\vec{x}}) \\
& \varphi(\vec{x})=\hat{\varphi}\left(F^{-1}(\vec{x})\right)
\end{aligned}
$$

Finite elements (cont'ed)

Finite elements (cont'ed)

How to map the shape functions

$$
\begin{aligned}
& F_{K}: \hat{K} \rightarrow K, \quad \vec{x}=F(\hat{\vec{x}}) \\
& \varphi(\vec{x})=\hat{\varphi}\left(F^{-1}(\vec{x})\right)
\end{aligned}
$$

Example of computation of local stiffness matrix (one dimensional)

$$
\begin{aligned}
& A_{j i}=a\left(\varphi_{i}, \varphi_{j}\right)=\int_{a}^{b} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) d x=\sum_{K} \int_{K} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) d x \\
& \int_{K} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) d x=\int_{\hat{K}} \frac{\hat{\varphi}_{i}^{\prime}(\hat{x}) \hat{\varphi}_{j}^{\prime}(\hat{x})}{F^{\prime}(\hat{x})} \frac{F^{\prime}(\hat{x})}{F^{\prime}(\hat{x}) d \hat{x}=\int_{\hat{K}} \frac{\hat{\varphi}_{i}^{\prime}(\hat{x}) \hat{\varphi}_{j}^{\prime}(\hat{x})}{F^{\prime}(\hat{x})} d \hat{x}}
\end{aligned}
$$

Finite elements (cont'ed)

$$
\int_{\hat{k}} \frac{\hat{\varphi}_{i}^{\prime}(\hat{x}) \hat{\varphi}_{j}^{\prime}(\hat{x})}{F^{\prime}(\hat{x})} d \hat{x}
$$

Finite elements (cont'ed)

$$
\int_{\hat{K}} \frac{\hat{\varphi}_{i}^{\prime}(\hat{x}) \hat{\varphi}_{j}^{\prime}(\hat{x})}{F^{\prime}(\hat{x})} d \hat{x}
$$

In general, $F=\alpha+\beta \hat{x}$ is affine so that $F^{\prime}=\beta$ is constant (and equal to h)

Finite elements (cont'ed)

$$
\int_{\hat{K}} \frac{\hat{\varphi}_{i}^{\prime}(\hat{x}) \hat{\varphi}_{j}^{\prime}(\hat{x})}{F^{\prime}(\hat{x})} d \hat{x}
$$

In general, $F=\alpha+\beta \hat{x}$ is affine so that $F^{\prime}=\beta$ is constant (and equal to h)

$$
\int_{\hat{K}} \frac{\hat{\varphi}_{i}^{\prime}(\hat{x}) \hat{\varphi}_{j}^{\prime}(\hat{x})}{F^{\prime}(\hat{\vec{x}})} d x=\frac{1}{h} \int_{\hat{K}} \hat{\varphi}_{i}^{\prime}(\hat{x}) \hat{\varphi}_{j}^{\prime}(\hat{x}) d x
$$

Finite elements (cont'ed)

$$
\int_{\hat{K}} \frac{\hat{\varphi}_{i}^{\prime}(\hat{x}) \hat{\varphi}_{j}^{\prime}(\hat{x})}{F^{\prime}(\hat{x})} d \hat{x}
$$

In general, $F=\alpha+\beta \hat{x}$ is affine so that $F^{\prime}=\beta$ is constant (and equal to h)

$$
\int_{\hat{K}} \frac{\hat{\varphi}_{i}^{\prime}(\hat{x}) \hat{\varphi}_{j}^{\prime}(\hat{x})}{F^{\prime}(\hat{\vec{x}})} d x=\frac{1}{h} \int_{\hat{K}} \hat{\varphi}_{i}^{\prime}(\hat{x}) \hat{\varphi}_{j}^{\prime}(\hat{x}) d x
$$

In more space dimensions, F is affine for most popular elements.

$$
\int_{K} \operatorname{grad} \varphi_{i}(\vec{x}) \cdot \operatorname{grad} \varphi_{j}(\vec{x}) d \vec{x}=?
$$

Finite elements (cont'ed)

Elliptic PDE's Finite differences Finite elements

Finite elements (cont'ed)

General strategy for assembling stiffness matrix and load vector

- Loop over elements ie $=1, \ldots$, ne
- Compute local stiffness matrix $A_{j i}^{l o c}=a\left(\varphi_{i}, \varphi_{j}\right)$, $i, j=1, \ldots$, ndof and local load vector $F_{i}^{\text {loc }}=F\left(\varphi_{i}\right)$, $i=1, \ldots, n d o f$
- Loop for $i, j=1, \ldots$, ndof and assembly of global matrix

$$
A_{i g l o b, j g l o b}=A_{i g l o b, j g l o b}+A_{i j}^{l o c}
$$

- Account for boundary conditions

Finite elements (cont'ed)

Some remarks on the discrete linear system

- matrix is sparse (sparsity pattern, so called skyline, can be determined a priori)

Finite elements (cont'ed)

Finite elements (cont'ed)

Some remarks on the discrete linear system

- matrix is sparse (sparsity pattern, so called skyline, can be determined a priori)
- matrix is SPD (CG can be succesfully applied)
- conditioning of matrix grows as h goes to zero (need for preconditioning)

Finite elements (cont'ed)

Some remarks on the discrete linear system

- matrix is sparse (sparsity pattern, so called skyline, can be determined a priori)
- matrix is SPD (CG can be succesfully applied)
- conditioning of matrix grows as h goes to zero (need for preconditioning)

End of part II

