Classical computational methods, Part II

Daniele Boffi
Dipartimento di Matematica "F. Casorati" Università di Pavia
daniele.boffi@unipv.it
http://www-dimat.unipv.it/boffi/
March 2005

Some examples

A second order ODE

$$
-u^{\prime \prime}(x)=f(x)
$$

Solution can be explicitly determined (closed form solution)

$$
\begin{aligned}
& \qquad u^{\prime}(x)=u^{\prime}\left(x_{0}\right)+\int_{x(0)}^{x} u^{\prime \prime}(t) d t=u^{\prime}\left(x_{0}\right)-\int_{x(0)}^{x} f(t) d t \\
& \quad u(x)=u\left(x_{0}\right)+\int_{x(0)}^{x} u^{\prime}(t) d t \\
& \text { In general }
\end{aligned}
$$

$$
u(x)=\alpha+\beta x-\iint f(t) d t
$$

Some examples (cont'ed)

One dimensional convection equation (PDE)

$$
\frac{\partial u}{\partial t}(x, t)-\frac{\partial u}{\partial x}(x, t)=0
$$

Closed form solution

$$
u(x, t)=w(x+t)
$$

Some examples (cont'ed)

One dimensional wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}(x, t)-c^{2} \frac{\partial^{2} u}{\partial x^{2}}(x, t)=0
$$

Closed form solution

$$
u(x, t)=w_{1}(x+c t)+w_{2}(x-c t)
$$

Proof

Some examples (cont'ed)

One dimensional heat equation

$$
\frac{\partial u}{\partial t}(x, t)-\frac{\partial^{2} u}{\partial x^{2}}(x, t)=0, \quad x \in(0,1), t>0
$$

Closed form solution

$$
u(x, t)=\sum_{j=1}^{\infty} u_{0, j} e^{-(j \pi)^{2} t} \sin (j \pi x)
$$

where $u_{0}(x)=u(x, 0)$ is the initial datum and

$$
u_{0, j}=2 \int_{0}^{1} u_{0}(x) \sin (j \pi x) d x
$$

Some examples (cont'ed)

Convection equation

$$
\frac{\partial u}{\partial t}+\operatorname{div}(\vec{\beta} u)=0
$$

First order linear equation.
N.B.: divergence operator $\operatorname{div} \vec{v}=\sum_{i=1}^{d} \frac{\partial v_{i}}{\partial x_{i}}$

This equation states the mass conservation of a body occupying a region $\Omega \in \mathbb{R}^{d}$, with density u and velocity $\vec{\beta}$

Some examples (cont'ed)

Laplace/Beltrami/Poisson equation

$$
-\Delta u=f
$$

Second order linear equation.
N.B.: Laplace operator $\Delta v=\sum_{i=1}^{d} \frac{\partial^{2} v}{\partial x_{i}^{2}}$

This equation states the diffusion of a homogeneous and isotropic fluid occupying a region $\Omega \in \mathbb{R}^{d}$, as well as the vertical displacement of an elastic membrane. Fundamental equation for several models.

Some examples (cont'ed)

Heat equation

$$
\frac{\partial u}{\partial t}-\Delta u=f
$$

Second order linear equation
Wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-\Delta u=0
$$

Second order linear equation

Some examples (cont'ed)

Burgers equation $(d=1)$

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0
$$

First order quasi-linear equation
Viscous Burgers equation $(d=1)$

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\varepsilon \frac{\partial^{2} u}{\partial x^{2}}, \quad \varepsilon>0
$$

Second order semi-linear equation

Plan of the Course

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
- Finite differences
- Finite elements
- Where the theory is elegant and complete. . .
- From elliptic to hyperbolic PDE's
- Convection-diffusion equation
- Finite differences, upwind
- Integrating along the characteristics
- Stabilization of finite elements
- Parabolic equation
- Heat equation: space semidiscretization and evolution in time
- Stability of θ-method

Examples with Matlab

- Conclusions and comments

Questions and answers

Classification of (linear) PDE's

The case of two variables (can be generalized)

$$
L u \equiv\left(A \frac{\partial^{2} u}{\partial x_{1}^{2}}+B \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}+C \frac{\partial^{2} u}{\partial x_{2}^{2}}\right)+\text { L.O.T. }
$$

Matrix associated to quadratic form

$$
Q F=\left(\begin{array}{cc}
A & \frac{1}{2} B \\
\frac{1}{2} B & C
\end{array}\right)
$$

Note: A, B, and C might be functions themselves.

Classification of PDE's (cont'ed)

Compute eigenvalues λ_{i} of $Q F$

- Elliptic equation: $\lambda_{1} \lambda_{2}>0$
- Parabolic equation: $\lambda_{1} \lambda_{2}=0$
- Hyperbolic equation: $\lambda_{1} \lambda_{2}<0$

With the notation of quadratic forms: definite form, semidefinite form, indefinite form, respectively.

Classification of PDE's (cont'ed)

Consider operator

$$
\mathcal{L} u \equiv A \frac{\partial^{2} u}{\partial x_{1}^{2}}+B \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}+C \frac{\partial^{2} u}{\partial x_{2}^{2}}=0
$$

and look for change of variables

$$
\xi=\alpha x_{2}+\beta x_{1}, \quad \eta=\gamma x_{2}+\delta x_{1}
$$

so that $\mathcal{L} u$ is a multiple of $\frac{\partial^{2} u}{\partial \xi \partial \eta}$ (see wave equation)

$$
\begin{aligned}
\mathcal{L} u & =\left(A \beta^{2}+B \alpha \beta+C \alpha^{2}\right) \frac{\partial^{2} u}{\partial \xi^{2}}+\left(A \delta^{2}+B \gamma \delta+C \gamma^{2}\right) \frac{\partial^{2} u}{\partial \eta^{2}} \\
& +(2 A \beta \delta+B(\alpha \delta+\beta \gamma)+2 C \alpha \gamma) \frac{\partial^{2} u}{\partial \xi \partial \eta}
\end{aligned}
$$

Classification of PDE's (cont'ed)

$$
\begin{aligned}
\mathcal{L} u & =\left(A \beta^{2}+B \alpha \beta+C \alpha^{2}\right) \frac{\partial^{2} u}{\partial \xi^{2}}+\left(A \delta^{2}+B \gamma \delta+C \gamma^{2}\right) \frac{\partial^{2} u}{\partial \eta^{2}} \\
& +(2 A \beta \delta+B(\alpha \delta+\beta \gamma)+2 C \alpha \gamma) \frac{\partial^{2} u}{\partial \xi \partial \eta}
\end{aligned}
$$

If $A=C=0$, trivial. Suppose $A \neq 0$; we want

$$
A \beta^{2}+B \alpha \beta+C \alpha^{2}=0, \quad A \delta^{2}+B \gamma \delta+C \gamma^{2}=0
$$

When $\alpha \gamma \neq 0$, divide first equation by α^{2}, second one by γ^{2} and solve for β / α and δ / γ, resp.

$$
\beta / \alpha=(2 A)^{-1}(-B \pm \sqrt{\Delta}), \quad \delta / \gamma=(2 A)^{-1}(-B \pm \sqrt{\Delta})
$$

$\Delta=B^{2}-4 A C$

Classification of PDE's (cont'ed)

Hyperbolic case

$$
\begin{aligned}
& \xi=\alpha x_{2}+\beta x_{1}, \quad \eta=\gamma x_{2}+\delta x_{1} \\
& \beta / \alpha=(2 A)^{-1}(-B \pm \sqrt{\Delta}), \quad \delta / \gamma=(2 A)^{-1}(-B \pm \sqrt{\Delta})
\end{aligned}
$$

For nonsingular change of variables, Δ must be positive

$$
\begin{aligned}
& \alpha=\gamma=2 A, \quad \beta=-B+\sqrt{\Delta}, \delta=-B-\sqrt{\Delta} \\
& \mathcal{L} u=-4 A\left(B^{2}-4 A C\right) \frac{\partial^{2} u}{\partial \xi \partial \eta}
\end{aligned}
$$

As before, solution has the form $u=p(\xi)+q(\eta)$ and the lines $\xi=$ constant and $\eta=$ constant are called characteristics.

Classification of PDE's (cont'ed)

Actually, when $x_{1}=t$ and $x_{2}=x$, the change of variables

$$
x^{\prime}=x-\frac{B}{2 A} t, \quad t^{\prime}=t
$$

maps our hyperbolic operator $(A \neq 0)$ to a multiple of wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Hence, \mathcal{L} is a wave operator in a frameset moving at speed $-B /(2 A)$.

Classification of PDE's (cont'ed)

Parabolic case

$$
\begin{aligned}
\mathcal{L} u & =\left(A \beta^{2}+B \alpha \beta+C \alpha^{2}\right) \frac{\partial^{2} u}{\partial \xi^{2}}+\left(A \delta^{2}+B \gamma \delta+C \gamma^{2}\right) \frac{\partial^{2} u}{\partial \eta^{2}} \\
& +(2 A \beta \delta+B(\alpha \delta+\beta \gamma)+2 C \alpha \gamma) \frac{\partial^{2} u}{\partial \xi \partial \eta}
\end{aligned}
$$

For $\beta / \alpha=-B /(2 A)$ coefficient of $\frac{\partial^{2} u}{\partial \xi^{2}}$ vanishes
But $B /(2 A)=2 C / B$, so coefficient of $\frac{\partial^{2} u}{\partial \xi \partial \eta}$ is zero as well
Everything can be written as a multiple of $\frac{\partial^{2} u}{\partial \eta^{2}}$

Classification of PDE's (cont'ed)

In conclusion, in the parabolic case, the change of variables

$$
\xi=2 A x_{2}-B x_{1}, \quad \eta=x_{1}
$$

maps the equation to

$$
A \frac{\partial^{2} u}{\partial \eta^{2}}=0
$$

which has the general solution

$$
u=p(\xi)+\eta q(\xi)
$$

One family of characteristics $\xi=$ constant

Classification of PDE's (cont'ed)

Elliptic case

No choice of parameters makes coefficients of $\frac{\partial^{2} u}{\partial \xi^{2}}$ and $\frac{\partial^{2} u}{\partial \eta^{2}}$ vanish In this case change of variables

$$
\xi=\frac{2 A x_{2}-B x_{1}}{\sqrt{4 A C-B^{2}}}, \quad \eta=x_{1}
$$

maps equation to

$$
A\left(\frac{\partial^{2} u}{\partial \xi^{2}}+\frac{\partial^{2} u}{\partial \eta^{2}}\right)=0
$$

No family of characteristics (infinite speed of propagation, no discontinuities allowed)

Classification of PDE's (cont'ed)

Final examples

- Laplace equation: elliptic
- Wave equation: hyperbolic
- Heat equation: parabolic
- Convection-diffusion equation:

$$
\frac{\partial u}{\partial t}-\varepsilon \Delta u+\operatorname{div}(\vec{\beta} u)=0
$$

parabolic, degenerating to hyperbolic as ε tends to zero.

End of Part I

Closed form of 1D wave equation solution

Change of variables

$$
\begin{aligned}
& y=x+c t, \quad z=x-c t, \quad u(x, t)=w(y, z) \\
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} w}{\partial y^{2}}-2 \frac{\partial^{2} w}{\partial y \partial z}+\frac{\partial^{2} w}{\partial z^{2}}\right) \\
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}} \\
& \frac{\partial^{2} w}{\partial y \partial z}=0 \Rightarrow w=w_{1}(y)+w_{2}(z)=w_{1}(x+c t)+w_{2}(x-c t)
\end{aligned}
$$

