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Some examples

A second order ODE

—u"(z) = f(z)

Solution can be explicitly determined (closed form solution)

xr

u'(z) = u'(z9) + / u' (t) dt = u'(xg) — : f(t)dt

x(0) z(0)

T

u(x) = u(xg) + / u'(t) dt

z(0)
In general

u(x):oz+6x—//f(t)dt
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Some examples (cont’ed)

One dimensional convection equation

@ ou

v (x,t) — %(a:,t) =0
i A
Closed form solution (x=T,t+T)
u(x,t) = w(xr +1t) /X
(X,0)

D. Boffi — Complexity



Some examples (cont’ed)

One dimensional wave equation

0%u 0?u
W(x, t) — 62@(33, t) =

Closed form solution
(x—dI,t+T) (x+cT,t+T)
u(xz,t) = wi(x + ct) + wa(x — ct)

(X,1)
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Some examples (cont’ed)

One dimensional heat equation

ou 0u
E(SB,t)—@(ZE,t) —O, T < (0,1), A

Closed form solution

©.@)
u(x,t) = Z uo,je_(jw)% sin(jmx),
j=1

where ug(x) = u(x,0) is the initial datum and

1
Uy = 2/ uo(x) sin(jmx) dz
0
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Some examples (cont’ed)

Convection equation

ou L=
E -+ le(ﬁU) = O

First order linear equation.

c%i
g

d
N.B.: divergence operator divei = ) 5
i=1

This equation states the mass conservation of a body occupying a
region €2 € R?, with density « and velocity (3
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Some examples (cont’ed)

Laplace/Beltrami/Poisson equation

—Au=f
Second order linear equation.
d
. _ H*
N.B.: Laplace operator Av = Z;L aa:?

This equation states the diffusion of a homogeneous and isotropic
fluid occupying a region Q € RY, as well as the vertical displacement
of an elastic membrane. Fundamental equation for several models.
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Some examples (cont’ed)

Heat equation

ou

Second order linear equation

Wave equation

)

Second order linear equation
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Some examples (cont’ed)

Burgers equation (d = 1)

ou i ou 0
- e

ot Ox

First order quasi-linear equation

Viscous Burgers equation (d = 1)

Ot u@x_gﬁxQ’ -

First order semi-linear equation
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Plan of the Course

Classification of Partial Differential Equations (PDE)

Elliptic PDE's

Finite differences

Examples with Matlab

Finite elements

Where the theory is elegant and complete. . .

From elliptic to hyperbolic PDE's

Convection-diffusion equation
Finite differences, upwind
Integrating along the characteristics
Stabilization of finite elements
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Parabolic equation

Heat equation: space semidiscretization and evolution in time
Stability of 8-method

Conclusions and comments

Questions and answers
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Classification of (linear) PDE’s

The case of two variables (can be generalized)

A—+ B
Ox? u 0x10To u C@az%

2 2 2
Luz( o Ca @>+L.O.T.

Matrix associated to quadratic form

(A 3B
or=(1p %)

Note: A, B, and C' might be functions themselves.
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Classification of PDE’s (cont’ed)

Compute eigenvalues \; of QF
Elliptic equation: A1y >0
Parabolic equation: A1Ay =0
Hyperbolic equation: AjAy <0

With the notation of quadratic forms: definite form, semidefinite
form, indefinite form, respectively.
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Classification of PDE’s (cont’ed)
Consider operator

0% 0% 0%
bu= Ay T By o T a2 = ¢

and look for change of variables

§ = axg+ Px1, 1n=yT2+ 071

. . 2 .
so that Lu is a multiple of 8‘15% (see wave equation)

Lu = (AB? + BaB + Coﬂ)@ + (A6% + Bvd + 072)@
0&? on?
0%u

+ (2A86 + B(ad + Bv) + 20&7)85877
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Classification of PDE’s (cont’ed)

2

Lu = (AB° + Baf + Cozz)Q + (A6% + B~d + C~?)

e

o
on?

0%u

+ (2A080 + B(ad + Bv) + 2Caxy)

0Eon

If A= C =0, trivial. Suppose A # 0; we want

AB*+ Baf+Ca’ =0, Aé*+By5+C~+*=0

When avy # 0, divide first equation by «
solve for B/a and 6/, resp.

2

. second one by ~4? and

Bla=(24) (=B VA), o/yv=(24) (-BxVA)

A = B2 —4AC
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Classification of PDE’s (cont’ed)

Hyperbolic case

£ = axg+ Br1, N =72+ 07

Bja=(24) (~B+VA), §/y=(24)"(~B+VA)

For nonsingular change of variables, A must be positive

a=v=24, B=-B+VA,é§=-B—-VA

0*u

0EON

As before, solution has the form u = p(§) 4+ q(n) and the lines
& = constant and n = constant are called characteristics.

Lu = —4A(B? — 4AQ0)
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Classification of PDE’s (cont’ed)

Actually, when x1 =t and x5 = x, the change of variables

B
B ===t & =1

2A

maps our hyperbolic operator (A # 0) to a multiple of wave equation

Hence, £ is a wave operator in a frameset moving at speed —B/(2A4).
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Classification of PDE’s (cont’ed)

Parabolic case

Lu = (AB°+ Baf + Coﬂ)@ + (A% + By + 072)@
0&? on?
0%u

00N

+ (2A080 + B(ad + Bv) + 2Caxy)

For B/ = —B/(2A) coefficient of ?%" vanishes

But B/(2A) = 2C/B, so coefficient of % is zero as well

. . . 82
Everything can be written as a multiple of a—ﬁ%
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Classification of PDE’s (cont’ed)

In conclusion, in the parabolic case, the change of variables
{ =2Axy — By, n=x

maps the equation to

ou

A
on?

=0

which has the general solution

u = p(§) +nq(§)

One family of characteristics & = constant
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Classification of PDE’s (cont’ed)

Elliptic case

No choice of parameters makes coefficients of £ 852 5 and a on? > vanish
In this case change of variables

2145132 — BCBl
V4AC — B?

£ =

N = a1

maps equation to

0%u  0%u
G+ ) =

No family of characteristics (infinite speed of propagation, no
discontinuities allowed)
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Classification of PDE’s (cont’ed)

Final examples
Laplace equation: elliptic
Wave equation: hyperbolic
Heat equation: parabolic

Convection-diffusion equation:

% — eAu + div(fu) = 0

parabolic, degenerating to hyperbolic as € tends to zero.
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End of Part |
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Closed form of 1D wave equation solution

Change of variables

y=x+ct, z=x—ct, u(zx,t) = w(y, 2)

R O?w 02w 02w
g2 __2 o
ot? Oy2  Oydz 022
P _ 0% O

8332 ay 622

82

990 = 0= w=wi(y) +wa(z) = wi(x + ct) + wa(x — ct)
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