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Figure 6.4: The basis functions t® and ¢°.

In general, linear systems of algebraic equations obtained from the
discretization of a differential equation tend to become ill-conditioned as
the discretization is refined. This is understandable because refining the
discretization and increasing the accuracy of the approximation makes
it more likely that computing the residual error is influenced by the
finite precision of the computer, for example. However, the degree of
ill conditioning is influenced greatly by the differential equation and the
choice of trial and test spaces, and even the choice of basis functions
for these spaces. The standard monomial basis used above leads to
an ill-conditioned system because the different monomials become very
similar as the degree increases. This is related to the fact that the
monomials are not an orthogonal basis. In general, the best results with
respect to reducing the effects of ill-conditioning are obtained by using
an orthogonal bases for the trial and test spaces. As an example, the
Legendre polynomials, {¢;(z)}, with ¢g =1 and
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pi(z) = (-1) (z'(1-2)), 1<i<yq,

form an orthonormal basis for P?(0, 1) with respect to the L, inner prod-
uct. It becomes more complicated to formulate the discrete equations
using this basis, but the effects of finite precision are greatly reduced.

e L

s

6. Galerkin’s Method 113

Another possibility, which we take up in the second section, is to

use piecewise polynomials. In this case, the basis functions are “nearly
orthogonal”.

Problem 6.6. (a) Show that @3 and @4 are orthogonal.

6.2. Galerkin’s method with piecewise polynomials

We start by deriving the basic model of stationary heat conduction and

then formulate a finite element method based on piecewise linear ap-
proximation.

6.2.1. A model for stationary heat conduction

We model heat conduction a thin heat-conducting wire occupying the in-
terval [0, 1] that is heated by a heat source of intensity f(z), see Fig. 6.5.
We are interested in the stationary distribution of the temperature u(z)

u(x)

Figui‘e 6.5: A heat conducting wire with a source f(z).

in the wire. We let g(z) denote the heat flux in the direction of the
positive z-axis in the wire at 0 < < 1. Conservation of energy in a
stationary case requires that the net heat flux through the endpoints of

an arbitrary sub-interval (21, z3) of (0, 1) be equal to the heat produced
in (z1,z2) per unit time:

q(z2) — q(z1) = /wz f(z) ds.



