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6.1.4. A surprise: ill-conditioning

Stimulated by the accuracy achieved with ¢ = 3, we compute the ap-
proximation with ¢ = 9. We solve the linear algebraic system in two
ways: first exactly using a symbolic manipulation package and then ap-
proximately using Gaussian elimination on a computer that uses roughly
16 digits. In general, the systems that come from the discretization of a
differential equation are too large to be solved exactly and we are forced
to solve them numerically with Gaussian elimination for example.
We obtain the following coefficients &; in the two computations:

exact coefficients approximate coefficients

.14068... 152.72...
48864... —-3432.6...
71125... 32163.2...
.86937... —157267.8...
.98878... 441485.8...
1.0827... —737459.5...
1.1588... 723830.3...
1.2219... —385203.7...
1.2751... \ 85733.4...

We notice the huge difference, which makes the approximately computed
U worthless. We shall now see that the difficulty is related to the fact
that the system of equations (6.4) is #ll-conditioned and this problem is
exacerbated by using the standard polynomial basis {t'}?_,.

Problem 6.5. If access to a symbolic manipulation program and to nu-
merical software for solving linear algebraic systems is handy, then compare
the coefficients of U computed exactly and approximately for ¢ = 1,2, ...
until significant differences are found.

It is not so surprising that solving a system of equations A = b,
which is theoretically equivalent to inverting A, is sensitive to errors in
the coefficients of A and b. The errors result from the fact that the
computer stores only a finite number of digits of real numbers. This
sensitivity is easily demonstrated in the solution of the 1 x 1 “system” of
equations az = 1 corresponding to computing the inverse z = 1/a of a
given real number a # 0. In Fig. 6.3, we plot the inverses of two numbers
a; and ay computed from two approximations @; and @ of the same
accuracy. We see that the corresponding errors in the approximations
i = 1/a; of the exact values z = 1/a; vary greatly in the two cases, since
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Figure 6.3: The sensitivity of the solution of az = 1 to errors in a.

1/a;—1/a; = (4; — a;)/(a:@;). The closer @; is to zero the more sensitive
is the solution 1/a; to errors in @;. This expresses that computing 1/a
is tll-conditioned when a is close to zero.

In general, the solution of Az = b is sensitive to errors in the entries
of A when A is “close” to being non-invertible. Recall that a matrix
is non-invertible if one row (or column) is a linear combination of the
other rows (or columns). In the example of computing the coefficients
of the Galerkin approximation with ¢ = 9 above, we can see that there
might be a problem if we look at the coefficient matrix A:

/ 0.167 0.417 0.550 0.833 0.690 0.732 0.764 0.789 0.809
0.0833 0.300 0.433 0.524 0.589 0.839 0.678 0.709 0.735
0.0500  0.233 0.357 0.446 0.514 0.567 0.609 0.644 0.673
0.0333 0.190 0.304 0.389 0.456 0.509 0.553 0.590 0.621
0.0238 0.161 0.264 0.344 0.409 0.462 0.506 0.544 0.576
0.0179  0.139 0.233 0.309 0.371 0.423 0.467 0.505 0.538
0.0139  0.122 0.209 0.280 0.340 0.390 0.433 0.471 0.504
0.0111 0.109 0.190 0.256 0.313 0.360 0.404 0.441 0.474
0.00909 0.0985 0.173 0.236 0.290 0.338 0.379 0.415 0.447

which is nearly singular since the entries in some rows and columns are
quite close. On reflection, this is not surprising because the last two
rows are given by fol R(U,t)t®dt and fol R(U, t)t° dt, respectively, and
t8 and 9 look very similar on [0,1]. We plot the two basis functions in
Fig. 6.4.



