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The solution of (6.1), u(t) = ugexp(At), is a smooth increasing function
when A > 0.

6.1.2. Galerkin’s method

We now show how to compute a polynomial approximation U of u in
the set of polynomials V(@) = P7(0,1) on [0, 1] of degree at most ¢ us-
ing Galerkin’s method. We know there are good approximations of the
solution w in this set, for example the Taylor polynomial and interpo-
lating polynomials, but these require knowledge of u or derivatives of
w at certain points in [0,1]. The goal here is to compute a polynomial
approximation of u using only the information that u solves a specified
differential equation and has a specified value at one point. We shall see
that this is precisely what Galerkin’s method achieves. Since we already
know the analytic solution in this model case, we can use this knowledge
to evaluate the accuracy of the approximations.

Because {t/}_, is a basis for V@), we can write U(t) = Y 1o &t!
where the coefficients £; € R are to be determined. It is natural to
require that U(0) = ug, that is §o = uo, so we may write

q
Ut) =uo+ Y &t
j=1

where the “unknown part” of U, namely Z§=1 Ejtj, is in the subspace
VD(Q) of V(@) consisting of the functions in V(9 that are zero at t = 0,
i.e. in Vu(q) = {v:v eV y(0)=0}

Problem 6.1. Prove that V? is a subspace of V(9.

We determine the coefficients by requiring U to satisfy the differential
equation in (6.1) in a suitable “average” sense. Of course U can’t satisfy
the differential equation at every point because the exact solution is
not a polynomial. In Chapter 4, we gave a concrete meaning to the
notion that a function be zero on average by requiring the function to
be orthogonal to a chosen subspace of functions. The Galerkin method
is based on this idea. We define the residual error of a function v for
the equation (6.1) by

R(u(t)) = o(t) — Av(2).
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The residual error R(v(t)) is a function of ¢ once v is specified. R(v(t))
measures how well v satisfies the differential equation at time ¢. If the
residual is identically zero, that is R(v(t)) = 0 for all 0 < ¢ < 1, then the
equation is satisfied and v is the solution. Since the exact solution w is
not a polynomial, the residual error of a function in V(9 that satisfies
the initial condition is never identically zero, though it can be zero at
distinct points.

The Galerkin approximation U is the function in V(@) satisfying
U(0) = uo such that its residual error R(U(t)) is orthogonal to all func-
tions in Vﬂ(q), ie.,

fD.R(U(t))v(t) dtzfo (Ut) = AUt))v(t)dt=0 forall ve vo((q)_ |
6.2

This is the Galerkin orthogonality property of U, or rather of the residual
R(U(t)). Since the coeflicient of U with respect to the basis function 1
for V(9 is already known (€0 = up), we require (6.2) to hold only for
functions v in Vo(q). By way of comparison, note that the true solution
satisfies a stronger orthogonality condition, namely

1
/(; (& — Au)vdt =0 for all functions v. (6.3)

We refer to the set of functions where we seek the Galerkin solution U/
in this case the space V(%) of polynomials w satisfying w(0) = wug a,;
the trial space and the space of the functions used for the orthogona’]jty
condition, which is VO(Q), as the test space. In this case, the trial and
test space are different because of the non-homogeneous initial condition
w(0) = up (assuming wup # 0), satisfied by the trial functions and the
homogeneous boundary condition v(0) = 0 satisfied by the test functions

v E Vo(q). In general, different methods are obtained choosing the trial
and test spaces in different ways.

6.1.3. The discrete system of equations

We now show that (6.2) gives an invertible system of linear algebraic
equations for the coefficients of U. Substituting the expansion for U



