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Galerkin’s Method

It is necessary to solve differential equations. (Newton)

Ideally, I’d like to be the eternal novice, for then only, the surprises
would be endless. (Keith Jarret)

In Chapters 3 and 5, we discussed the numerical solution of the sim-
ple initial value problem v/(z) = f(z) fora <z <'b and u(a) = uo,
using piecewise polynomial approximation. In this chapter, we intro-
duce Galerkin’s method for solving a general differential equation, which
is based on seeking an (approximate) solution in a (finite-dimensional)
space spanned by a set of basis functions which are easy to differentiate
and integrate, together with an orthogonality condition determining the
coefficients or coordinates in the given basis. With a finite number of
basis functions, Galerkin’s method leads to a system of equations with
finitely many unknowns which may be solved using a computer, and

which produces an approximate solution. Increasing the number of ba- -

sis functions improves the approximation so that in the limit the:exact
solution may be expressed as an infinite series. In this book, we normally
use Galerkin’s method in the computational form with a finite number of
basis functions. The basis functions may be global polynomials, piece-
wise polynomials, trigonometric polynomials or other functions. The
finite element method in basic form is Galerkin’s method with piecewise
polynomial approximation. In this chapter, we apply Galerkin’s method
to two examples with a variety of basis functions. The first example is
an initial value problem that models population growth and we use a
global polynomial approximation. The second example is a boundary
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value problem that models the flow of heat in a wire and we use piecewise
polynomial approximation, more precisely piecewise linear approxima-
tion. This is a classic example of the finite element method. For the
second example, we also discuss the spectral method which is Galerkin’s
method with trigonometric polynomials.

The idea of seeking a solution of a differential equation as a linear
combination of simpler basis functions, is old. Newton and Lagrange
used power series with global polynomials and Fourier and Riemann used
Fourier series based on trigonometric polynomials. These approaches
work for certain differential equations posed on domains with simple ge-
ometry and may give valuable qualitative information; but cannot be
used for most of the problems arising in applications. The finite ele-
ment method based on piecewise polynomials opens the possibility of
solving general differential equations in general geometry using a com-
puter. For some problems, combinations of trigonometric and piecewise
polynomials may be used. -

6.1. Galerkin’s method with global polynomials

6.1.1. A population model

In the simplest model for the growth of a population, like the population
of rabbits in West Virginia, the rate of growth of the population is
proportional to the population itself. In this model we ignore the effects
of predators, overcrowding, and migration, for example, which might be
okay for a short time provided the population of rabbits is relatively
small in the beginning. We assume that the time unit is chosen so
that the model is valid on the time interval [0,1]. We will consider
more realistic models valid for longer intervals later in the book. If u(t)
denotes the population at time ¢ then the differential equation expressing
the simple model is @(t) = Au(t), where A is a positive real constant
and @ = du/dt. This equation is usually posed together with an initial
condition u(0) = ug at time zero, in the form of an initial value problem:

(6.1)

0-

{u(t) =Au{t) for0<t<£1,
w(0) =u
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The solution of (6.1), u(t) = ug exp(At), is a smooth increasing function
when A > 0.

6.1.2. Galerkin’s method

We now show how to compute a polynomial approximation U of u in
the set of polynomials V(%) = P9(0,1) on [0,1] of degree at most ¢ us-
ing Galerkin’s method. We know there are good approximations of the
solution v in this set, for example the Taylor polynomial and interpo-
lating polynomials, but these require knowledge of u or derivatives of
u at certain points in [0,1]. The goal here is to compute a polynomial
approximation of u using only the information that u solves a specified
differential equation and has a specified value at one point. We shall see
that this is precisely what Galerkin’s method achieves. Since we already
know the analytic solution in this model case, we can use this knowledge
to evaluate the accuracy of the approximations.

Because {t'}1_, is a basis for V(D) we can write U(t) = YI_ &t/
where the coefficients £; € R are to be determined. It is natural to
require that U(0) = ug, that is § = uo, s0 we may write

q
U(t) = uo + ijtj,
j=1

where the “unknown part” of U, namely Z§=1 Ejtj, is in the subspace
Vo(q) of V(@ consisting of the functions in V(9 that are zero at ¢ = 0,
ie. in Vo(q) = {v:v e V), v(0)=0}.

Problem 6.1. Prove that V% is a subspace of V(0.

We determine the coefficients by requiring U to satisfy the differential
equation in (6.1) in a suitable “average” sense. Of course U can’t satisfy
the differential equation at every point because the exact solution is
not a polynomial. In Chapter 4, we gave a concrete meaning to the
notion that a function be zero on average by requiring the function to
be orthogonal to a chosen subspace of functions. The Galerkin method
is based on this idea. We define the residual error of a function v for
the equation (6.1) by

R(u(t)) = (t) — Av(t).
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The residual error R(v(t)) is a function of ¢ once v is specified. R(v(t))
measures how well v satisfies the differential equation at time ¢. If the
residual is identically zero, that is R(v(¢)) = 0 for all 0 < ¢ < 1, then the
equation is satisfied and v is the solution. Since the exact solution u is
not a polynomial, the residual error of a function in V(@ that satisfies
the initial condition is never identically zero, though it can be zero at
distinct points.

The Galerkin approximation U is the function in V(9 satisfying
U(0) = uo such that its residual error R(U(t)) is orthogonal to all func-
tions in Vo(q), ie.,

1
/D.R(U(t))v(t) dt:/ol(U(t) —AU@®)o(t)dt =0 for all v e V.
(6.2)

This is the Galerkin orthogonality property of U, or rather of the residual
R(U(t)). Since the coeficient of U with respect to the basis function 1
for V(9 is already known (6o = uo), we require (6.2) to hold only for
functions v in Vo(q). By way of comparison, note that the true solution
satisfies a stronger orthogonality condition, namely

1
j; (@ — Au)vdt =0 for all functions v. (6.3)

We refer to the set of functions where we seek the Galerkin solution I/
in this case the space V(@ of polynomials w satisfying w(0) = ug a,s:
the trial space and the space of the functions used for the orthogonz;lity
condition, which is Vo(q), as the fest space. In this case, the trial and
test space are different because of the non-homogeneous initial condition
w(0) = ug (assuming ug # 0), satisfied by the trial functions and the
homogeneous boundary condition v(0) = 0 satisfied by the test functions

vE Vo(q). In general, different methods are obtained choosing the trial
and test spaces in different ways.

6.1.3. The discrete system of equations

We now show that (6.2) gives an invertible system of linear algebraic
equations for the coefficients of U. Substituting the expansion for U
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into (6.2) gives

L f 4 _ " |
/ ngjtj_l _}\UO—AZGjtJ U(t)dt:(} fOI'ﬂ;ﬂ’UEVO(q);
0 \j=1

i=1

It suffices to insure that this equation holds for every basis function for
Vo(q), yielding the set of equations:

9 ) q 1 1 -
ngjf tJ““dt-AZ@,—/ tf“dt:)\uﬂ/ trdt, =1l
i=1 0 j=1 0

0

where we have moved the terms involving the initial data to the right-
hand side. Computing the integrals gives

q . :
J 2 K e P
Z(j—l—i j+i+1)fj_i+luo, =1, 005 0 (6.4)

i=1

This is a ¢ x ¢ system of equations that has a unique solution if the

matrix A = (a,;) with coefficients

__ 3 A
j4+i ji+ 1

ai; b = Ly

is invertible. It is possible to prove that this is the case, though it is
rather tedious and we skip the details. In the specific case ug = A =1
and ¢ = 3, the approximation is

U(t) = 14 1.03448¢ + .38793t* + 3017242,
which we obtain solving a 3 X 3 system.

Problem 6.2. Compute the Galerkin approximation for ¢ = 1,2,3, and
4 assuming that ug = A= 1.

Plotting the solution and the approximation for ¢ = 3 in Fig. 6.1, we
see that the two essentially coincide.

Since we know the exact solution u in this case, it is natural to
compare the accuracy of U to other approximations of win V@, In
Fig. 6.2, we plot the errors of U, the third degree polynomial interpo-
lating v at 0,1/3,2/3, and 1, and the third degree Taylor polynomial
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Figure 6.1: The solution of & = u and the third degree Galerkin ap-
proximation.
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Figure 6.2: The errors of the third degree Galerkin approximation, a
third degree interpolant of the solution, and the third de-
gree Taylor polynomial of the solution.

of u computed at ¢t = 0. The error of U compares favorably with the
error of the interpolant of U and both of these are more accurate than
the Taylor polynomial of u in the region near t = 1 as we would expect.
We emphasize that the Galerkin approximation U attains this accuracy
without any specific knowledge of the solution u except the initial data
at the expense of solving a linear system of equations.

Problem 6.3. Compute the Ly(0, 1) projection into P3(0,1) of the exact
solution u and compare to U.

Problem 6.4. Determine the discrete equations if the test space is
changed to V(1)
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6.1.4. A surprise: ill-conditioning

Stimulated by the accuracy achieved with ¢ = 3, we compute the ap-
proximation with ¢ = 9. We solve the linear algebraic system in two
ways: first exactly using a symbolic manipulation package and then ap-
proximately using Gaussian elimination on a computer that uses roughly
16 digits. In general, the systems that come from the discretization of a
differential equation are too large to be solved exactly and we are forced
to solve them numerically with Gaussian elimination for example.
We obtain the following coefficients &; in the two computations:

exact coefficients approximate coefficients
\14068... 152.72...
48864... —3432.6...
T1125... 32163.2...
86937... —157267.8...
.98878... 441485.8...
1.0827... —737459.5...
1.1588... 723830.3...
1.2219... —385203.7...
1.2751... 85733.4...

We notice the huge difference, which makes the approximately computed
U worthless. We shall now see that the difficulty is related to the fact
that the system of equations (6.4) is ill-condilioned and this problem is
exacerbated by using the standard polynomial basis {t'}?_,.

Problem 6.5. If access to a symbolic manipulation program and to nu-
merical software for solving linear algebraic systems is handy, then compare
the coefficients of U/ computed exactly and approximately for ¢ = 1,2, ...
until significant differences are found.

It is not so surprising that solving a system of equations A¢ = b,
which is theoretically equivalent to inverting A, is sensitive to errors in
the coefficients of A and b. The errors result from the fact that the
computer stores only a finite number of digits of real numbers. This
sensitivity is easily demonstrated in the solution of the 1 x 1 “system” of
equations az = 1 corresponding to computing the inverse 2 = 1/a of a
given real number a # 0. In Fig. 6.3, we plot the inverses of two numbers
a; and ap; computed from two approximations &; and @ of the same
accuracy. We see that the corresponding errors in the approximations
% = 1/a; of the exact values ¢ = 1/a; vary greatly in the two cases, since
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Figure 6.3: The sensitivity of the solution of az = 1 to errors in a.

1/a;—1/d; = (@; — a;)/(a;a;). The closer a; is to zero the more sensitive
is the solution 1/a; to errors in a;. This expresses that computing 1/a
is ill-conditioned when a is close to zero.

In general, the solution of Az = b is sensitive to errors in the entries
of A when A is “close” to being non-invertible. Recall that a matrix
is non-invertible if one row (or column) is a linear combination of the
other rows (or columns). In the example of computing the coefficients
of the Galerkin approximation with ¢ = 9 above, we can see that there
might be a problem if we look at the coefficient matrix A:

/ 0.167 0.417 0.550 0.633 0.690 0.732 0.764 0.789 0.809
0.0833 0.300 0.433 0.524 0.589 0.639 0.678 0.709 0.735
0.0500  0.233 0.357 0.446 0.514 0.567 0.609 0.644 0.673
0.0333 0.190 0.304 0.389 0.456 0.509 0.553 0.590 0.621
0.0238 0.161 0.264 0.344 0409 0462 0506 0.544 0.576
0.0179  0.139 0.233 0.309 0.371 0.423 0.467 0.505 0.538
0.0139  0.122 0.209 0.280 0.340 0.390 0.433 0471 0.504
0.0111 0.109 0.190 0.2566 0.313 0.360 0.404 0.441 0.474
0.00909 0.0985 0.173 0.236 0.290 0.338 0.379 0.415 0.447

which is nearly singular since the entries in some rows and columns are
quite close. On reflection, this is not surprising because the last two
rows are given by fol R(U,t)t®dt and fol R(U, t)t? dt, respectively, and
t8 and t° look very similar on [0,1]. We plot the two basis functions in
Fig. 6.4.
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Figure 6.4: The basis functions t® and ¢°.

In general, linear systems of algebraic equations obtained from the
discretization of a differential equation tend to become ill-conditioned as
the discretization is refined. This is understandable because refining the
discretization and increasing the accuracy of the approximation makes
it more likely that computing the residual error is influenced by the
finite precision of the computer, for example. However, the degree of
ill conditioning is influenced greatly by the differential equation and the
choice of trial and test spaces, and even the choice of basis functions
for these spaces. The standard monomial basis used above leads to
an ill-conditioned system because the different monomials become very
similar as the degree increases. This is related to the fact that the
monomials are not an orthogonal basis. In general, the best results with
respect to reducing the effects of ill-conditioning are obtained by using
an orthogonal bases for the trial and test spaces. As an example, the
Legendre polynomials, {¢;(z)}, with ¢g =1 and

A2i+1 d

il dat

oil@) = (-1) (ci-2)), 1<i<q,

form an orthonormal basis for P?(0, 1) with respect to the L inner prod-
uct. It becomes more complicated to formulate the discrete equations
using this basis, but the effects of finite precision are greatly reduced.
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Another possibility, which we take up in the second section, is to

use piecewise polynomials. In this case, the basis functions are “nearly
orthogonal”.

Problem 6.6. (a) Show that ¢3 and ¢4 are orthogonal.

6.2. Galerkin’s method with piecewise polynomials

We start by deriving the basic model of stationary heat conduction and

then formulate a finite element method based on piecewise linear ap-
proximation.

6.2.1. A model for stationary heat conduction

We model heat conduction a thin heat-conducting wire occupying the in-
terval [0, 1] that is heated by a heat source of intensity f(z), see Fig. 6.5.
We are interested in the stationary distribution of the temperature u(z)

u(x)

Figure 6.5: A heat conducting wire with a source f(z).

in the wire. We let g(z) denote the heat flux in the direction of the
positive z-axis in the wire at 0 < z < 1. Conservation of energy in a
stationary case requires that the net heat flux through the endpoints of

an arbitrary sub-interval (z1, z3) of (0, 1) be equal to the heat produced
in (21, 3) per unit time:

9(z2) — ¢(z1) = /562 f(z) da.



