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1 Introduction

Given a domain Ω ⊂ R
n, the Stokes problem models the motion of an incompress-

ible fluid occupying Ω and can be written as the following system of variational
equations,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2µ
∫

Ω

ε(u) : ε(v) dx−
∫

Ω

pdiv v dx =
∫

Ω

f · v dx, ∀v ∈ V,

∫

Ω

q div u dx = 0, ∀q ∈ Q,

(1)

where V = (H1
0 (Ω))n and Q is the subspace of L2(Ω) consisting of functions with

zero mean value on Ω. In this formulation u is the velocity of the fluid and p its
pressure. A similar problem arises for the displacement of an incompressible elastic
material.

An elastic material, indeed, can be modeled by the following variational equa-
tion, λ and µ being the Lamé coefficients

2µ
∫

Ω

ε(u) : ε(v) dx + λ

∫

Ω

div u div v dx =
∫

Ω

f · v dx, ∀v ∈ V. (2)

The case where λ is large (or equivalently when ν = λ/2(λ + µ) approaches
1/2) can be considered as an approximation of (1) by a penalty method. The limiting
case is exactly (1) up to the fact that u is a displacement instead of a velocity. Prob-
lems where λ is large are quite common and correspond to almost incompressible
materials.
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It is also worth recalling that, defining Au = div ε(u), that in 2D reads

Au =

⎧
⎪⎪⎨

⎪⎪⎩

∂2u1

∂x2
1

+
1
2

∂

∂x2

(
∂u1

∂x2
+

∂u2

∂x1

)
,

∂2u2

∂x2
2

+
1
2

∂

∂x1

(
∂u1

∂x2
+

∂u2

∂x1

)
,

(3)

we have 2µAu = µ�u + µ grad div u. Problems (1) and (2) are then respectively
equivalent to ⎧

⎪⎨

⎪⎩

− 2µAu + grad p = µ�u + grad p = f,

div u = 0,
u|Γ = 0,

(4)

and
−2µAu− λ grad div u = −µ�u− (λ + µ) grad div u = f. (5)

Remark 1.1. The problems described above are, of course, physically unrealistic, as
they involve body forces and homogeneous Dirichlet boundary conditions. The aim
of doing so is to avoid purely technical difficulties and implies no loss of gener-
ality. The results obtained will be valid, unless otherwise stated, for all acceptable
boundary conditions.

To approximate the Stokes problem, two approaches follow quite naturally from the
preceding considerations. The first one is to use system (1) and to discretize u and p
by standard (or less standard) finite element spaces. The second one is to use formu-
lation (2) with λ large as a penalty approximation to system (1).

It rapidly became clear that both these approaches could yield strange results.
In particular, the first one often led to nonconvergence of the pressure and the sec-
ond one to a locking mechanism, the numerical solution being uniformly zero, or
unnaturally small for big λ.

For velocity–pressure approximations, empirical cures were found by [46], [45]
and others. At about the same time some elements using discontinuous pressure fields
were shown to work properly [31], [35] from the mathematical point of view.

For the penalty method, the cure was found in selective or reduced integration
procedures. This consisted in evaluating terms like

∫
Ω

div u div v dx by quadrature
formulas of low order. This sometimes led to good results.

It was finally stated [50], even if the result was implicit in earlier works [8], that
the analysis underlying the two approaches must be the same. Penalty methods are
often equivalent to some mixed methods. In such cases, the penalty method works if
and only if the associated mixed method works [9].

2 The Stokes Problem as a Mixed Problem

2.1 Mixed Formulation

We shall describe in this section how the Stokes problem (1) can be analyzed in the
general framework of mixed methods. Defining V = (H1

0 (Ω))n, Q̃ = L2(Ω), and
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a(u, v) = 2µ
∫

Ω

ε(u) : ε(v) dx, (6)

b(v, q) = −
∫

Ω

q div v dx, (7)

problem (1) can clearly be written in the form: find u ∈ V and p ∈ Q̃ such that
{

a(u, v) + b(v, p) = (f, v), ∀v ∈ V,

b(u, q) = 0, ∀q ∈ Q̃,
(8)

which is a mixed problem. Indeed, it can be observed that p is the Lagrange multiplier
associated with the incompressibility constraint.

Remark 2.1. It is apparent, from the definition (7) of b(·, ·) and from the boundary
conditions of the functions in V , that p, if exists, is defined up to a constant. There-
fore, we introduce the space

Q = L2(Ω)/R, (9)

where two elements q1, q2 ∈ L2(Ω) are identified if their difference is constant. It
is not difficult to show that Q is isomorphic to the subspace of L2(Ω) consisting of
functions with zero mean value on Ω.

With this choice, our problem reads: find u ∈ V and p ∈ Q such that
{

a(u, v) + b(v, p) = (f, v), ∀v ∈ V,

b(u, q) = 0, ∀q ∈ Q.
(10)

Let us check that our problem is well-posed. With standard procedure, we can
introduce the following operators

B = −div : (H1
0 (Ω))n → L2(Ω)/R (11)

and
Bt = grad : L2(Ω)/R → (H−1(Ω))n. (12)

It can be shown (see, e.g., [64]) that

ImB = Q ∼=
{
q ∈ L2(Ω) :

∫

Ω

q dx = 0
}

, (13)

hence the operator B has a continuous lifting, and the continuous inf–sup condition
is fulfilled. We also notice that, with our definition of the space Q, the kernel kerBt

reduces to zero.
The bilinear form a(·, ·) is coercive on V (see [32, 64]), whence the ellipticity in

the kernel also will follow (i.e., A is invertible on kerB).
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We state the well-posedness of problem (10) in the following theorem.

Theorem 2.1. Let f be given in (H−1(Ω))n. Then there exists a unique (u, p) ∈
V ×Q solution to problem (10) which satisfies

||u||V + ||p||Q ≤ C||f ||H−1 . (14)

Now choosing an approximation Vh ⊂ V and Qh ⊂ Q yields the discrete problem
⎧
⎪⎪⎨

⎪⎪⎩

2µ
∫

Ω

ε(uh) : ε(vh) dx−
∫

Ω

ph div vh dx =
∫

Ω

f · v
h
dx, ∀vh ∈ Vh,

∫

Ω

qh div uh dx = 0, ∀qh ∈ Qh.

(15)

The bilinear form a(·, ·) is coercive on V ; hence, according to the general theory of
mixed approximations, there is no problem for the existence of a solution {uh, ph}
to problem (15), while we might have troubles with the uniqueness of ph. We thus
try to obtain estimates of the errors ||u− uh||V and ||p− ph||Q.

First we observe that, in general, the discrete solution uh needs not be
divergence-free. Indeed, the bilinear form b(·, ·) defines a discrete divergence
operator

Bh = −divh : Vh → Qh. (16)

(It is convenient here to identify Q = L2(Ω)/R and Qh ⊂ Q with their dual spaces).
In fact, we have

(divh uh, qh)Q =
∫

Ω

qh div uh dx, (17)

and, thus, divh uh turns out to be the L2-projection of div uh onto Qh.
The discrete divergence operator coincides with the standard divergence oper-

ator if div Vh ⊂ Qh. Referring to the abstract setting, we see that obtaining error
estimates requires a careful study of the properties of the operator Bh = −divh and
of its transpose that we denote by gradh.

The first question is to characterize the kernel kerBt
h = ker(gradh). It might

happen that kerBt
h contains nontrivial functions In these cases ImBh = Im(divh)

will be strictly smaller than Qh = PQh
(ImB); this may lead to pathologies. In par-

ticular, if we consider a modified problem, like the one that usually originates when
dealing with nonhomogeneous boundary conditions, the strict inclusion ImBh ⊂ Qh

may even imply troubles with the existence of the solution. This situations is made
clearer with the following example.

Example 2.1. Let us consider problem (4) with nonhomogeneous boundary condi-
tions, that is let r be such that

u|Γ = r,

∫

Γ

r · nds = 0, (18)

It is classical to reduce this case to a problem with homogeneous boundary conditions
by first introducing a function ũ ∈ (H1(Ω))n such that ũ|Γ = r. Setting u = u0 + ũ
with u0 ∈ (H1

0 (Ω))n we have to solve
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{

− 2µAu0 + grad p = f + 2µAũ = f̃ ,

div u0 = −div ũ = g, u0|Γ = 0
(19)

with A defined in (3). We thus find a problem with a constraint Bu0 = g where
g �= 0. It may happen that the associated discrete problem fails to have a solution,
because gh = PQh

g does not necessarily belongs to ImBh, whenever kerBt
h �⊂

kerBt. Discretization where ker(gradh) is nontrivial can therefore lead to ill-posed
problems in particular for some nonhomogeneous boundary conditions. Examples of
such conditions can be found in [56, 57]. In general, any method that relies on extra
compatibility conditions is a source of trouble when applied to more complicated
(nonlinear, time-dependent, etc.) problems.

Let us now turn our attention to the study of the error estimates. Since the bilinear
form a(·, ·) is coercive on V , we only have to deal with the inf–sup condition. The
following proposition will be the starting point for the analysis of any finite element
approximation of (10).

Proposition 2.1. Let (u, p) ∈ V ×Q be the solution of (10) and suppose the follow-
ing inf–sup condition holds true (with k0 independent of h)

inf
qh∈Qh

sup
vh∈Vh

∫
Ω
qh div vh dx

||qh||Q||vh||V
≥ kh ≥ k0 > 0. (20)

Then there exists a unique (uh, ph) ∈ Vh × Qh solution to (15) and the following
estimate holds

||u− uh||V + ||p− ph||Q ≤ C inf
vh∈Vh, qh∈Qh

{||u− vh||V + ||p− qh||Q} . (21)

Remark 2.2. Actually, as it has been already observed, the existence of the discrete
solution (uh, ph) (when the right-hand side in the second equation of (10) is zero)
is not a consequence of the inf–sup condition (20). However, we should not forget
about the possible situation presented in Example 2.1.

Remark 2.3. We shall also meet cases in which the constant kh is not bounded below
by k0. We shall then try to know precisely how it depends on h and to see whether
a lower-order convergence can be achieved. When ker(gradh) is nontrivial, we are
interested in a weaker form of (20)

sup
vh∈Vh

∫
Ω
qh div vh dx

||vh||V
≥ kh inf

q∈ker(grad
h
)
||qh − q||L2(Ω), (22)

and in the dependence of kh in terms of h.

Several ways have also been proposed to get a more direct and intuitive evalua-
tion of how a finite element scheme can approximate divergence-free functions. One
of them is the constraint ratio, that we denote by Cr, and which is defined as
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Fig. 1. Uniform meshes

Cr = dimQh/dimVh. (23)

It is, therefore, the ratio between the number of linearly independent constraints
arising from the discrete divergence-free condition and the total number of degrees
of freedom of the discrete velocity.

The value of Cr has no direct interpretation, unless it is larger than 1, which
means that the number of constraints exceeds that of the variables. We then have a
locking phenomenon.

Conversely, a small value of Cr implies a poor approximation of the divergence-
free condition. It must however be emphasized that such a use of the constraint ratio
has only a limited empirical value.

Another heuristic evaluation can be found by looking at the smallest rep-
resentable vortex for a given mesh. This will be closely related to building a
divergence-free basis (cf. Sect. 10). The idea behind this procedure [37] is that a
discrete divergence-free function can be expressed as a sum of small vortices, that
are, indeed, basis functions for kerBh. The size of the smallest vertices can be
thought of as the equivalent of the smallest representable wavelenght in spectral
methods.

In this context, we shall refer to a uniform mesh of n2 rectangles, n3 cubes or
2n2 triangles (Fig. 1). We must also quote the results of [67] who introduced a “patch
test” to analyze similar problems. This patch test is only heuristic and does not yield
a proof of stability. Moreover, such a test may be misleading in several cases.

3 Some Basic Examples

We start this section with some two-dimensional examples of possible choices for
the spaces Vh and Qh, namely the P1 − P1, P1 − P0 elements. These elements in
general do not satisfy the inf–sup condition (20) and are not applicable in practice.

Then we present a complete analysis of the P2 − P0 element. Even though it
might not be recommended to use this element because of its “unbalanced” approxi-
mation properties (O(h2) for Vh in the V -norm and only O(h) for Qh in the norm of
Q), so that estimate (21) turns out to be suboptimal, the analysis of this element con-
tains basic issues for getting familiar with the approximation of the Stokes problem.
Moreover, the stability properties of this element will often be used as an intermedi-
ate step for the analysis of other, more efficient, elements.
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Example 3.1. The P1 − P1 element
Let us consider a very simple case, that is, a P1 continuous interpolation for both

velocity and pressure, namely, using the notation of [24],

Vh = (L1
1)

2 ∩ V, Qh = L1
1 ∩Q. (24)

It is easy to check that if the number of triangles is large enough, then there exist
nontrivial functions satisfying the discrete divergence-free condition. Thus no lock-
ing will occur and a solution can be computed. Indeed, this method would not provide
an optimal approximation of the pressures by virtue of the unbalanced approxima-
tion properties of the discrete spaces (while Qh achieves second order in L2, Vh gives
only first order in H1). On the other hand, users of such methods (you can think of
using also, for instance, (P2−P2), (Q1−Q1), etc.), soon became aware that their re-
sults were strongly mesh dependent. In particular, the computed pressures exhibited
a very strange instability. This comes from the fact that for some meshes the kernel
of the discrete gradient operator is nontrivial. This means that the solution obtained
is determined only up to a given number of spurious pressure modes, [56, 57] and
that, at best, some filtering will have to be done before accurate results are available.
We shall come back later on to this phenomenon also named checkerboarding in
Sect. 5. To better understand the nature of spurious pressure modes, the reader may
check the results of Fig. 2 in which different symbols denote points where functions
in ker(gradh) must have equal values for a (P1 −P1) approximation. In this case we
have three spurious pressure modes. This also shows that there exists on this mesh
one nontrivial discrete divergence-free function whereas a direct count would predict
locking.

Fig. 2. Spurious pressure modes
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Example 3.2. P1 − P0 approximation
This is probably the simplest element one can imagine for the approximation of

an incompressible flow: one uses a standard P1 approximation for the velocities and
a piecewise constant approximation for the pressures. With the notation of [24] this
would read

Vh = (L1
1)

2 ∩ V, Qh = L0
0 ∩Q. (25)

As the divergence of a P1 velocity field is piecewise constant, this would lead to a
divergence-free approximation. Moreover, this would give a well-balanced O(h) ap-
proximation in estimate (21).

However, it is easy to see that such an element will not work for a general
mesh. Indeed, consider a triangulation of a (simply connected) domain Ω and let
us denote by

— t the number of triangles,
— vI the number of internal vertices,
— vB the number of boundary vertices.

We shall thus have 2vI degrees of freedom (d.o.f.) for the space Vh (since the ve-
locities vanish on the boundary) and (t− 1) d.o.f. for Qh (because of the zero mean
value of the pressures) leading to (t − 1) independent divergence-free constraints.
By Euler’s relations, we have

t = 2vI + vB − 2 (26)

and thus
t− 1 > 2vI (27)

whenever vB > 3. A function uh ∈ Vh is thus overconstrained and a locking phe-
nomenon is likely to occur: in general the only divergence-free discrete function is
uh ≡ 0. When the mesh is built under certain restrictions, it is, however, possible
that some linear constraints become dependent: this will be the case for the cross-
grid macroelement (Fig. 3) which will be analyzed in Example 5.3.

Fig. 3. The cross-grid element
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Example 3.3. A stable approximation: the P2 − P0 element
Let us now move to the stable P2 − P0 element; namely, we use continuous

piecewise quadratic vectors for the approximation of the velocities and piecewise
constants for the pressures.

The discrete divergence-free condition can then be written as
∫

K

div uh dx =
∫

∂K

uh · nds = 0, ∀K ∈ Th, (28)

that is as a conservation of mass on every element. This is intuitively an approxi-
mation of div uh = 0, directly related to the physical meaning of this condition.
It is clear from error estimate (21) and standard approximation results that such an
approximation will lead to the loss of one order of accuracy due to the poor approxi-
mation of the pressures. However, an augmented Lagrangian technique can be used,
in order to recover a part of the accuracy loss (see Remark 3.2).

We are going to prove the following proposition.

Proposition 3.1. The choice

Vh = (L1
2)

2 ∩ V, Qh = L0
0 ∩Q (29)

fulfills the inf–sup condition (20).

Proof. Before giving the rigorous proof of Proposition 3.1 we are going to sketch the
main argument.

If we try to check the inf–sup condition by building a Fortin operator Πh, then,
given u, we have to build uh = Πhu such that

∫

Ω

div(u− uh)qh dx = 0, ∀qh ∈ Qh. (30)

Since qh is constant on every element K ∈ Th, this is equivalent to
∫

K

div(u− uh) dx =
∫

∂K

(u− uh) · nds = 0. (31)

This last condition would be satisfied if uh could be built in the following way. Let us
denote by Mi and ei, i = 1, 2, 3, the vertices and the sides of the triangular element
K (Fig. 4); the midside nodes are denoted by Mij . We then define

uh(Mi) = u(Mi), i = 1, 2, 3 (32)
∫

ei

uh ds =
∫

ei

u ds. (33)

Condition (33) can be fulfilled by a correct choice of uh(Mij). Moreover this con-
struction can be done at element level as the choice of uh(Mij) is compatible on
adjacent elements (that is, with this definition, uh turns out to be continuous).

Although this is the basic idea, some technicalities must be introduced before a
real construction is obtained. Indeed, for u ∈ (H1

0 (Ω))2, condition (32) has no sense.
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M1 M2

M3

M12

M23M13

e1

e2

e3

Fig. 4. Vertices, edges and midnodes

Let us then give a rigorous proof of Proposition 3.1. We denote by Π1 : V → Vh

the Clément interpolant [30]. We then have
∑

K

h2r−2
K |v −Π1v|2r,K ≤ c||v||21,Ω , r = 0, 1. (34)

Setting r = 1 and using the triangular inequality ||Π1v|| ≤ ||v −Π1v||+ ||v|| gives

||Π1v||V ≤ c1||v||V , ∀v ∈ V. (35)

We now modify Π1 in a suitable way. Let us define Π2 : V → Vh in the follow-
ing way:

Π2v|K(M) = 0, ∀M vertex of K, (36)
∫

e

Π2u ds =
∫

e

u ds, ∀e edge of K. (37)

By construction Π2 satisfies
∫

Ω

div(v −Π2v)qh dx = 0, ∀vh ∈ Vh, qh ∈ Qh (38)

and a scaling argument gives

|Π2v|1,K = |Π̂2v|1,K̂ < c(K, θ0)||v̂||1,K̂ ≤ c(K, θ0)(h−1
K |v|0,K + |v|1,K). (39)

We can now define

Πhu = Π1u + Π2(u−Π1u) (40)
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M1

M12

M2

M23

M3

M13

Fig. 5. Reduced P2 − P0 element

and observe that (39) and (34) imply

||Π2(I −Π1)u||V ≤ c2||u||V , ∀v ∈ V, (41)

since

||Π2(I −Π1)v||21,Ω =
∑

K

||Π2(I −Π1)v||21,K (42)

≤ c
∑

K

{
h−2

K ||(I −Π1)v||20,K + |(I −Π1)v|21,K

}
≤ c||v||21,Ω . (43)

Hence Πh is a Fortin operator and the proof is concluded.

The above proof can easily be extended to more general cases. It applies to the Q2 −
P0 quadrilateral element provided the usual regularity assumptions on quadrilateral
meshes are made. A simple modification will hold for elements in which only the
normal component of velocity is used as a d.o.f. at the midside nodes [37], [33],
[11]. Indeed, if only the normal component of uh is used as a degree of freedom, the
P2 − P0 element becomes the element of Fig. 5 in which, on each side, the normal
component of uh is quadratic, whereas the tangential component is only linear. In
this case we can define Π2v by setting

∫

e

(Π2v · n) ds =
∫

e

v · nds (44)

The above proof applies directly. The same remark is valid for the Q2 − P0 quadri-
lateral element.

Remark 3.1. The philosophical idea behind the P2 − P0 element is that we need
one degree of freedom per each interface (actually, the normal component of the
velocity) in order to control the jump of the pressures. This is basically the meaning
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of the Green’s formula (31). For three-dimensional elements, for instance, we would
need some midface node instead of a midside node in order to control the normal
flux from one element to the other.

In particular, we point out that adding internal degrees of freedom to the veloc-
ity space cannot stabilize elements with piecewise constant pressures which do not
satisfy the inf–sup condition.

Remark 3.2. To reduce the loss of accuracy due to the unbalanced approximation
properties of the spaces Vh and Qh we can employ the augmented Lagrangian tech-
nique of [16]. The discrete scheme reads: find (uh, ph) ∈ Vh ×Qh such that

∫

Ω

ε(uh) : ε(vh) dx + h−1/2

∫

Ω

div uh div vh dx

−
∫

Ω

ph div vh dx =
∫

Ω

f · vh dx ∀vh ∈ Vh,

∫

Ω

qh div uh dx = 0 ∀qh ∈ Qh.

(45)

Following [16] we have the following error estimate

||u− uh||V + ||p− ph||Q ≤ ch3/2 inf
v∈Vh, q∈Qh

(||u− v||V + ||p− q||Q) . (46)

4 Standard Techniques for Checking the Inf–Sup Condition

We consider in this section standard techniques for the proof of the inf–sup stabil-
ity condition (20) that can be applied to a large class of elements. For ease of pre-
sentation, in this section we develop the theory only and postpone the examples to
Sects. 6 and 7, for two- and three-dimensional schemes, respectively. However, after
the description of each technique, we list some schemes for which that technique
applies too.

Of course, the first method consists in the direct estimate of the inf–sup constant.
In order to do that, we need to construct explicitly the operator gradh : Qh → Vh

satisfying
∫

Ω

qh div gradh qh dx = ||qh||2Q, (47)

|| gradh qh||V ≤ ch||qh||Q, (48)

for any qh ∈ Qh. If the constant ch in (48) is bounded above, then the inf–sup
condition (20) will hold true.

4.1 Fortin’s Trick

An efficient way of proving the inf–sup condition (20) consists in using the technique
presented in [36] which consists of building an interpolation operator Πh as follows.
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Proposition 4.1. If there exists a linear operator Πh : V → Vh such that
∫

Ω

div(u−Πhu)qh dx = 0, ∀v ∈ V, qh ∈ Qh, (49)

||Πhu||V ≤ c||u||V . (50)

then the inf–sup condition (20) holds true.

Remark 4.1. Condition (49) is equivalent to ker(gradh) ⊂ ker(grad). An element
with this property will present no spurious pressure modes.

In several cases the operator Πh can be constructed in two steps as it has been done
for the P2–P0 element in Proposition 3.1. In general it will be enough to build two
operators Π1,Π2 ∈ L(V, Vh) such that

||Π1v||V ≤ c1||v||V , ∀v ∈ V, (51)
||Π2(I −Π1)v||V ≤ c2||v||V , ∀v ∈ V, (52)
∫

Ω

div(v −Π2v)qh = 0, ∀v ∈ V, ∀qh ∈ Qh, (53)

where the constants c1 and c2 are independent of h. Then the operator Πh satisfy-
ing (49) and (50) will be found as

Πhu = Π1u + Π2(u−Π1u). (54)

In many cases, Π1 will be the Clément operator of [30] defined in H1(Ω).
On the contrary, the choice of Π2 will vary from one case to the other, according

to the choice of Vh and Qh. However, the common feature of the various choices for
Π2 will be the following one: the operator Π2 is constructed on each element K in
order to satisfy (53). In many cases it will be such that

||Π2v||1,K ≤ c(h−1
K ||v||0,K + |v|1,K). (55)

We can summarize this results in the following proposition.

Proposition 4.2. Let Vh be such that a “Clément’s operator”: Π1 : V → Vh exists
and satisfies (34). If there exists an operator Π2 : V → Vh such that (53) and (55)
hold, then the operator Πh defined by (54) satisfies (49) and (50) and therefore the
discrete inf–sup condition (20) holds.

Example 4.1. The construction of Fortin’s operator has been used, for instance, for
the sability proof of the P2 − P0 element (see Example 3.3).

4.2 Projection onto Constants

Following [19] we now consider a modified inf–sup condition.

inf
qh∈Qh

sup
v

h
∈Vh

∫
Ω
qh div vh dx

||vh||V ||qh − q̄h||Q
≥ k0 > 0, (56)

where q̄h is the L2-projection of qh onto L0
0 (that is, piecewise constant functions).
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Proposition 4.3. Let us suppose that the modified inf–sup condition (56) holds with
k0 independent of h. Assume moreover that Vh is such that, for any qh ∈ L0

0 ∩Q,

sup
v

h
∈Vh

∫
Ω
qh div vh dx

||vh||V
≥ γ0||qh||Q, (57)

with γ0 independent of h. Then the inf–sup condition (20) holds true.

Proof. For any qh ∈ Qh one has

sup
vh∈Vh

b(vh, qh)
||vh||V

= sup
vh∈Vh

{
b(vh, qh − q̄h)

||vh||V
+

b(vh, q̄h)
||vh||V

}

≥ sup
v

h
∈Vh

b(vh, q̄h)
||vh||V

− sup
v

h
∈Vh

b(vh, qh − q̄h)
||vh||V

≥ γ0||q̄h||Q − ||qh − q̄h||0,

(58)

which implies

sup
vh∈Vh

b(vh, qh)
||vh||V

≥ k0γ0

1 + k0
||q̄h||Q. (59)

Putting together (56) and (59) proves the proposition.

Remark 4.2. In the case of continous pressures schemes, hypothesis (57) can be re-
placed with the following approximation assumption: for any v ∈ V there exists
vI ∈ Vh such that

||v − vI ||L2(Ω) ≤ c1h||v||V , ||vI ||V ≤ c2||v||V . (60)

The details of the proof can be found in [19] when the mesh is quasiuniform. The
quasiuniformity assumption is actually not needed, as it can be shown with an ar-
gument similar to the one which will be presented in the next subsection (see, in
particular, Remark 4.3).

Example 4.2. The technique presented in this section will be used, for instance, for
the stability proof of the generalized two-dimensional Hood–Taylor element (see
Sect. 8.2 and Theorem 8.1).

4.3 Verfürth’s Trick

Verfürth’s trick [66] applies to continuous pressures approximations and is essen-
tially based on two steps. The first step is quite general and can be summarized in
the following lemma.

Lemma 4.1. Let Ω be a bounded domain in R
N with Lipschitz continuous boundary.

Let Vh ⊂ (H1
0 (Ω))2 = V and Qh ⊂ H1(Ω) be closed subspaces. Assume that there

exists a linear operator Π0
h from V into Vh and a constant c (independent of h)

such that
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||vh −Π0
hv||r ≤ c

∑

K∈Th

(
h2−2r

K ||v||21,K

)1/2

, ∀v ∈ V, r = 0, 1. (61)

Then there exist two positive constants c1 and c2 such that, for every qh ∈ Qh,

sup
v∈Vh

∫
Ω
qh div vh dx

||vh||V
≥ c1||qh||Q − c2

(
∑

K∈Th

h2
K || grad qh||20,K

)1/2

. (62)

Proof. Given qh ∈ Qh, let v̄ ∈ V be such that
∫

Ω
qh div v̄ dx

||v̄||V ||qh||Q
≥ β > 0, (63)

where β is the continuous inf–sup constant. Then,

sup
vh∈Vh

∫
Ω
qh div vh dx

||vh||V
≥
∫

Ω
qh divΠ0

hv̄ dx

||Π0
hv̄||V

≥ 1
2c

∫
Ω
qh divΠ0

hv̄ dx

||v̄||V

=
1
2c

∫
Ω
qh div v̄ dx

||v̄||V
+

1
2c

∫
Ω
qh div(Π0

hv̄ − v̄) dx
||v̄||V

≥ β

4c
||qh||Q − 1

2c

∫
Ω

grad qh · (Π0
hv̄ − v̄) dx

||v̄||V

≥ β

4c
||qh||Q −

(
1
2

∑

K∈Th

h2
K || grad qh||20,K

)1/2

.

(64)

Remark 4.3. Indeed, via a scaling argument, it can be shown that the last term in the
right-hand side of equation (62) is equivalent to ||qh − q̄h||0, where q̄h denotes, as in
the previous subsection, the L2-projection onto the piecewise constants.

We are now in the position of stating the main result of this subsection. Note that
Verfürth’s trick consists in proving a kind of inf–sup condition where the zero norm
of qh is substituted by h|qh|1.

Proposition 4.4. Suppose the hypotheses of Lemma 4.1 hold true. Assume, moreover,
that there exists a constant c3 such that, for every qh ∈ Qh,

sup
v

h
∈Vh

∫
Ω
qh div vh

||vh||V
≥ c3

(
∑

K∈Th

h2
K |qh|21,K

)1/2

. (65)

Then the standard inf–sup condition (20) holds true.

Proof. Let us multiply (62) by c3 and (65) by c2 and sum up the two equations.
We have

(c3 + c2) sup
vh∈Vh

∫
Ω
qh div vh dx

||vh||V
≥ c1c3||qh||Q, (66)

that is, the inf–sup condition (20).

Example 4.3. The Verfürth’s trick has been designed for the stability analysis of the
Hood–Taylor method. It will be used for this purpose in Sect. 8.2 (see Theorem 8.1).
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4.4 Space and Domain Decomposition Techniques

Sometimes the spaces Vh and Qh decomposes into the sum (direct or not) of sub-
spaces for which it might be easier to prove an inf–sup condition. This is the case,
for instance, when a domain decomposition technique is employed. Some of the re-
sults we are going to present, can be viewed as a particular case of the macroelement
technique which will be introduced in Sect. 4.5.

The next result has been presented and proved in [41].

Proposition 4.5. Suppose that Ω can be decomposed as the union of disjoint subdo-
mains with Lipschitz continuous boundaries

Ω =
R⋃

r=1

Ωr (67)

and that such decomposition is compatible with the mesh in the sense that each
element of the mesh is contained in one subdomain. We make use of the following
notation:

V0,r = {v ∈ Vh : v = 0 in Ω \Ωr},

Q0,r = {q ∈ Qh :
∫

Ωr

q dx = 0},

K = {q ∈ Q : q|Ωr
is constant, r = 1, . . . , R}.

(68)

Suppose, moreover, that the spaces V0,r and Q0,r satisfy the following inf–sup con-
dition

inf
qh∈Q0.r

sup
v

h
∈V0,r

∫
Ωr

qh div vh dx

||qh||Q||vh||V
≥ kr > 0, (69)

with kr independent of h (r = 1, . . . , R) and that the following inf–sup condition
between Vh and K holds true

inf
qh∈K

sup
v

h
∈Vh

∫
Ω
qh div vh dx

||qh||Q||vh||V
≥ kK > 0, (70)

with kK independent of h. Then the spaces Vh and Qh satisfy the inf–sup condi-
tion (20).

Sometimes it is not possible (or it is not the best choice) to partition Ω into disjoint
subdomains. Let us describe the case of two overlapping subdomains. The following
proposition can be checked by a direct computation.

Proposition 4.6. Let Ω be the union of two subdomains Ω1 and Ω2 with Lipschitz
continuous boundaries. With the notation of the previous proposition, suppose that
the spaces V0,r and Q0,r satisfy the inf–sup conditions

inf
qh∈Q0,r

sup
vh∈V0,r

∫
Ωr

qh div vh dx

||qh||Q||vh||V
≥ kr > 0, (71)
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for r = 1, 2. Then the spaces Vh and Qh satisfy the condition

inf
qh∈Qh

sup
vh∈Vh

∫
Ω
qh div vh dx

||qh − qh||Q||vh||V
≥ 1√

2
min(k1, k2), (72)

where, as in Sect. 4.2, we have denoted by qh the L2 projection of qh onto the
space L0

0.

Another useful technique for proving the inf–sup condition can be found in [54].
This result is quite general; in particular, the decomposition of the spaces Vh and Qh

does not rely on a decomposition of the domain Ω. In [54] the following proposition
is stated for a two-subspaces decomposition, but it obviously extends to more general
situations.

Proposition 4.7. Let Q1 and Q2 be subspaces of Qh such that

Qh = Q1 + Q2. (73)

If V1, V2 are subspaces of Vh and α1, α2 positive constants such that

inf
qh∈Qi

sup
vh∈Vi

∫
Ω
qh div vh dx

||qh||Q||vh||V
≥ αi, i = 1, 2 (74)

and β1, β2 are nonnegative constants such that
∣∣∣∣
∫

Ω

q1 div v2 dx

∣∣∣∣ ≤ β1||q1||Q||v2||V , q1 ∈ Q1, ∀v2 ∈ V2,

∣∣∣∣
∫

Ω

q2 div v1 dx

∣∣∣∣ ≤ β2||q2||Q||v1||V , q2 ∈ Q2, ∀v1 ∈ V1,

(75)

with
β1β2 < α1α2, (76)

then the inf–sup condition (20) holds true with k0 depending only on αi, βi, i = 1, 2.

Remark 4.4. Condition (76) is trivially true, for instance, when β1β2 = 0 and
α1α2 > 0.

Example 4.4. Most of the technique presented in this section can be seen as a partic-
ular case of the macroelement technique (see Sect. 4.5) Proposition 4.6 will be used
in Theorem 8.1 for the stability proof of the Hood–Taylor scheme.

4.5 Macroelement Technique

In this section we present a technique introduced by Stenberg (see [59, 60, 62, 61,
63]) which, under suitable hypotheses, reduces the matter of checking the inf–sup
condition (20) to an algebraic problem. We refer also to [18] for related results in a
somewhat different setting.
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The present technique is based on a decomposition of the triangulation Th into
disjoint macroelements, where we refer to a macroelement as an open polygon (resp.,
polyhedron in R

3) which is the union of adjacent elements.
Let us introduce some notation.
A macroelement M is said to be equivalent to a reference macroelement M̂ if

there exists a mapping FM : M̂ → M such that

1. FM is continuous and invertible;
2. FM (M̂) = M ;
3. If M̂ = ∪K̂j , where Kj , j = 1, . . . ,m are the elements defining M̂ , then

Kj = FM (K̂j), j = 1, . . . ,m, are the elements of M ;
4. FM |K̂j

= FKj
◦F−1

K̂j
, j = 1, . . . ,m, where FK denotes the affine mapping from

the reference element to a generic element K.

We denote by EM̂ the equivalence class of M̂ . We now introduce the discrete
spaces associated with Vh and Qh on the generic macroelement M (n is the di-
mension of Ω).

V0,M =
{
v ∈ (H1

0 (M))n : v = w|M with w ∈ Vh

}
,

Q0,M =
{
p ∈ L2(Ω) :

∫

M

p dx = 0, p = q|M with q ∈ Qh

}
.

(77)

We finally introduce a space which corresponds to the kernel of Bt
h on the macroele-

ment M .

KM =
{
p ∈ Q0,M :

∫

M

pdiv v dx = 0, ∀v ∈ V0,m

}
. (78)

The macroelements condition reads

KM = {0}, (79)

that is, the analogous (at a macroelement level) of the necessary condition for the
discrete Stokes problem to be well-posed that the kernel of Bt

h reduces to the zero
function.

Proposition 4.8. Suppose that each triangulation Th can be decomposed into dis-
joint macroelements belonging to a fixed number (independent of h) of equivalence
classes EM̂i

, i = 1, . . . , n. Suppose, moreover, that the pair Vh − L0
0/R is a stable

Stokes element, that is,

inf
qh∈L0

0/R

sup
vh∈Vh

∫
Ω
qh div vh dx

||qh||Q||vh||V
≥ β > 0, (80)

with β independent of h. Then the macroelement condition (79) (for every M ∈ EM̂i
,

i = 1, . . . n) implies the inf–sup condition (20).

Proof. We do not enter the technical details of the proof, for which we refer to [59].
The basic arguments of the proof are sketched in Remark 4.5.
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Remark 4.5. The macroelement condition (79) is strictly related to the patch test
commonly used in the engineering practice (cf., e.g., [67]). However, the count of
the degrees of freedom is clearly insufficient by itself. Hence, let us point out how
the hypotheses of Proposition 4.8 are important.

Hypothesis (79) (the macroelement condition) implies, via a compactness ar-
gument, that a discrete inf–sup condition holds true between the spaces V0,M and
Q0,M . The finite number of equivalent macroelements classes is sufficient to con-
clude that the corresponding inf–sup constants are uniformly bounded below by a
positive number.

Then, we are basically in the situation of the domain decomposition technique
of Sect. 4.4. We now use hypothesis (80) to control the constant functions on each
macroelement and to conclude the proof.

Remark 4.6. Hypothesis (80) is satisfied in the two-dimensional case whenever Vh

contains piecewise quadratic functions (see Sect. 3). In the three-dimensional case
things are not so easy (to control the constants we need extra degrees of freedom
on the faces, as observed in Remark 3.1. For this reason, let us state the following
proposition which can be proved with the technique of Sect. 4.2 (see Remark 4.2)
and which applies to the case of continuous pressures approximations.

Proposition 4.9. Let us make the same assumptions as in Proposition 4.8 with (80)
replaced by the condition of Remark 4.2 (see (60)). Then, provided Qh ⊂ C0(Ω),
the inf–sup condition (20) holds true.

Remark 4.7. The hypothesis that the macroelement partition of Th is disjoint can be
weakened, in the spirit of Proposition 4.6, by requiring that each element K of Th

belongs at most to a finite number N of macroelements with N independent of h.

Example 4.5. The macroelement technique can be used in order to prove the stability
of several schemes. Among those, we recall the Q2 − P1 element (see Sect. 6.4) and
the three-dimensional generalized Hood–Taylor scheme (see Theorem 8.2).

4.6 Making Use of the Internal Degrees of Freedom

This subsection presents a general framework providing a general tool for the analy-
sis of finite element approximations to incompressible materials problems.

The basic idea has been used several times on particular cases, starting from [31]
for discontinuous pressures and from [2] and [3] for continuous pressures. We are
going to present it in its final general form given by [23]. It consists essentially in
stabilizing an element by adding suitable bubble functions to the velocity field.

In order to do that, we first associate to every finite element discretization Qh ⊂
Q the space

B(gradQh) =
{
β ∈ V : β|K = bK grad qh|K for some qh ∈ Qh

}
, (81)

where bK is a bubble function defined in K. In particular, we can take as BK the stan-
dard cubic bubble if K is a triangle, or a biquadratic bubble if K is a square or other
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obvious generalizations in 3D. In other words, the restriction of a β ∈ B(gradQh)
to an element K is the product of the bubble functions bK times the gradient of a
function of Qh|K .

Remark 4.8. Notice that the space B(gradQh) is not defined through a basic space
B̂ on the reference element. This could be easily done in the case of affine elements,
for all the reasonable choices of Qh. However, this is clearly unnecessary: if we
know how to compute qh on K we also know how to compute grad qh and there is
no need for a reference element.

We can now prove our basic results, concerning the two cases of continuous or dis-
continuous pressures.

Proposition 4.10. (Stability of continuous pressure elements). Assume that there
exists an operator Π1 ∈ L(V, Vh) satisfying the property of the Clément inter-
polant (34). If Qh ⊂ C0(Ω) and Vh contains the space B(gradQh) then the pair
(Vh, Qh) is a stable element, in the sense that it satisfies the inf–sup condition (20).

Proof. We shall build a Fortin operator, like in Proposition 4.2. We only need to
construct the operator Π2. We define Π2 : V → B(gradQh), on each element, by
requiring

Π2v|K ∈ B(gradQh)|K = b3,K gradQh|K ,
∫

K

(Π2v − v) · grad qh dx = 0, ∀qh ∈ Qh.
(82)

Problem (82) has obviously a unique solution and Π2 satisfies (53). Finally (55)
follows by a scaling argument. Hence Proposition 4.2 gives the desired result.

Corollary 4.1. Assume that Qh ⊂ Q is a space of continuous piecewise smooth
functions. If Vh contains (L1

1)
2 ⊕ B(gradQh) then the pair (Vh, Qh) satisfies the

inf–sup condition (20).

Proof. Since Vh contains piecewise linear functions, there exists a Clément inter-
polant Π1 satisfying (34). Hence we can apply Proposition (4.10).

We now consider the case of discontinuous pressure elements.

Proposition 4.11. (Stability of discontinuous pressure elements). Assume that there
exists an operator Π̃1 ∈ L(V, Vh) satisfying

||Π̃1v||V ≤ c||v||V , ∀v ∈ V,
∫

K

div(v − Π̃1v) dx = 0, ∀v ∈ V ∀K ∈ Th.
(83)

If Vh contains B(gradQh) then the pair (Vh, Qh) is a stable element, in the sense
that it satisfies the inf–sup condition (20).
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Proof. We are going to use Proposition 4.10. We take Π̃1 as operator Π1. We are not
defining Π2 on the whole V , but only in the subspace

V 0 =
{
v ∈ V :

∫

K

div v dx = 0, ∀K ∈ Th

}
. (84)

This will be enough, since we need to apply Π2 to the difference v − Π̃1v which is
in V 0 by (83).

For every v ∈ V 0 we define Π2v ∈ B(gradQh) by requiring that, in each
element K,

Π2v|K ∈ B(gradQh)|K = b3,K gradQh|K ,
∫

K

div(Π2v − v)qh dx = 0, ∀qh ∈ Qh|K .
(85)

Note that (85) is uniquely solvable, if v ∈ V 0, since the divergence of a bubble func-
tion has always zero mean value (hence the number of nontrivial equations is equal
to dim(Qh|K) − 1, which is equal to the number of unknowns; the nonsingularity
then follows easily). It is obvious that Π2, as given by (85), will satisfy (53) for all
v ∈ V 0. We have to check that

‖Π2v‖1 ≤ c‖v‖V , (86)

which actually follows by a scaling argument making use of the following bound

|Π̂2v|0,K̂ ≤ c(θ0)|v̂|1,K̂ . (87)

Corollary 4.2. (Two-dimensional case). Assume that Qh ⊂ Q is a space of piece-
wise smooth functions. If Vh contains (L1

2)
2 ⊕ B(gradQh) then the pair (Vh, Qh)

satisfies the inf–sup condition (20).

Proof. The stability of the P2 − P0 element (see Sect. 3 implies the existence of Π̃1

as in Proposition 4.11.

Propositions 4.10 and 4.11 are worth a few comments. They show that almost any el-
ement can be stabilized by using bubble functions. For continuous pressure elements
this procedure is mainly useful in the case of triangular elements. For discontinu-
ous pressure elements it is possible to stabilize elements which are already stable for
piecewise constant pressure field. Examples of such a procedure can be found in [34].
Stability with respect to piecewise constant pressure implies that at least one degree
of freedom on each side or face of the element is linked to the normal component of
velocity (see [37] and Remark 3.1).

Example 4.6. The use of internal degrees of freedom can be used in the stability
analysis of several methods. For instance, we use it for the analysis of the MINI
element (see Sects. 6.1 and 7.1) in the case of continuous pressures and of the
Crouzeix–Raviart element (see Remark 6.1 and Sect. 7.2) in the case of discontin-
uous pressures.



66 D. Boffi et al.

5 Spurious Pressure Modes

For a given choice of Vh and Qh, the space Sh of spurious pressure modes is defined
as follows

Sh = kerBt
h =

{
qh ∈ Qh :

∫

Ω

qh div vh dx = 0 ∀vh ∈ Vh

}
. (88)

It is clear that a necessary condition for the validity of the inf–sup condition (20)
is the absence of spurios modes, that is,

Sh = {0}. (89)

In particular, if Sh is nontrivial then the solution ph to the discrete Stokes prob-
lem (15) is not unique, namely ph + sh is still a solution when sh ∈ Sh.

We shall illustrate how this situation may occur with the following example.

Example 5.1. The Q1 − P0 element
Among quadrilateral element, the Q1−P0 element is the first that comes to mind.

It is defined as (see Fig. 6):

Vh = (L1
[1])

2 ∩ V, Qh = L0
0 ∩Q. (90)

This element is strongly related, for rectangular meshes, to some finite difference
methods [38]. Its first appearence in a finite elment context seems to be in [46].

However simple it may look, the Q1 −P0 element is one of the hardest elements
to analyze and many questions are still open about its properties. This element does
not satisfy the inf–sup condition: it strongly depends on the mesh. For a regular mesh
the kernel of the discrete gradients is one-dimensional. More precisely, gradh qh = 0
implies that qh is constant on the red and black cells if the mesh is viewed as a
checkerboard (Fig. 7). This means that one singular value of the operator Bh = divh

is zero. Moreover, it has been checked by computation [49] that a large number of
positive singular values converge to zero when h becomes small. In [48] indeed it
has been proved that the second singular value is O(h) and is not bounded below
(see also [52]). The Q1 − P0 element has been the subject of a vast literature.

We shall now present a few more examples and distinguish between local and global
spurious pressure modes.

Fig. 6. The Q1 − P0 element
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Fig. 7. Checkerboard spurious mode

Example 5.2. The crisscross P1 − P0 element
Let us consider a mesh of quadrilaterals divided into four triangles by their di-

agonals (Fig. 3). We observed in Example 3.2 that the P1 − P0 element, on general
meshes, is affected by locking, that is, the computed velocity vanishes. On the mesh
introduced above, however, it is easy to see that nonzero divergence-free functions
can be obtained. The divergence is constant on each triangle. This means four lin-
ear relations between the values of the partial derivatives. It is easily seen that one
of them can be expressed as a combination of the others, this fact being caused by
equality of tangential derivatives along the diagonals. To make things simpler, we
consider the case where the diagonals are orthogonal (Fig. 8) and we label by A,
B, C, D the four triangles. We then have, by taking locally the coordinates axes
along the diagonals, and denoting by uK the restriction of a function of Vh to the
element K,

∂uK
1

∂x1
+

∂uK
2

∂x2
= 0, K = A,B,C,D. (91)

On the other hand, one has at the point M

∂uA
1

∂x2
=

∂uB
2

∂x2
,

∂uA
1

∂x1
=

∂uC
1

∂x1
,

∂uC
2

∂x2
=

∂uD
2

∂x2
,

∂uB
1

∂x1
=

∂uD
1

∂x1
. (92)

It is easy to check that this makes one of the four conditions (91) redundant. The
reader may check the general case by writing the divergence operator in a nonorthog-
onal coordinate system.

The consequence of the above discussion is that on each composite quadrilateral
one of the four constant pressure values will be undetermined. The dimension of
kerBt

h will be at least as large as the number of quadrilaterals minus one.
Thus, three constraints remain on each composite quadrilateral element. If we

admit that two of them can be controlled, using the methods of Sect. 4.6, by the “in-
ternal” node M , we obtain an element that is very similar to the Q1 − P0 element
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A B

C D

M

Fig. 8. The reference crisscross

with respect to the degrees of freedom. Indeed, it can be checked that on a regular
mesh, an additional checkerboard mode occurs and that the behavior of this approx-
imation is essentially the same as that of the Q1 − P0. These analogies have been
pointed out, for instance, in [17].

The above example clearly shows the existence of two kinds of spurious pressure
modes. Let us consider an element where Sh is nontrivial.

In the case of the crisscross P1 − P0 element presented in the previous example,
dimSh grows as h goes to 0 and there exists a basis of Sh with local support (that is,
the support of each basis function can be restricted to one macroelement). We shall
refer to these modes as local spurious modes. Such pressure modes can be eliminated
by considering a composite mesh (in the previous example a mesh of quadrilaterals
instead of triangles) and using a smaller space for the pressures by deleting some
degrees of freedom from the composite elements.

If we now consider the Q1−P0 example (see Example 5.1), the dimension of Sh

does not grow when h goes to 0 and no basis can be found with a local support. We
then have a global spurious mode which cannot be eliminated as easily as the local
ones. Global modes usually appear on special (regular) meshes and are symptoms
that the behavior of the element at hand is strongly mesh dependent and requires a
special care. Some elements may generate both local and global modes as we have
seen in the crisscross P1 − P0 method (see Example 5.2).

It must be emphasized that local spurious modes are source of troubles only when
one prefers to work directly on the original mesh and not on the composite mesh on
which they could easily be filtered out by a simple projection on each macroelement.
We shall prove this in the next subsection in which a more precise framework will
be given.

Example 5.3. The crisscross P2 − P1 element
Another simple example where a local mode occurs is the straightforward exten-

sion of the previous example to the case of a P2 − P1 approximation (Fig. 9). This
means on each quadrilateral 12 discrete divergence-free constraints, and it is easily
seen by the argument of Example 5.2, written at the point M , that one of them is
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Fig. 9. The crisscross P2 − P1 element

redundant. Thus one spurious mode will appear for each composite quadrilateral.
However, in this case, no global mode will appear. The analysis of this element is
also related to the work of [29] by considering the stream function associated with a
divergence-free function.

The presence of spurious modes can be interpreted as a signal that the pressure space
used is in some sense too rich. We therefore can hope to find a cure by using a strict
subspace Q̂h of Qh as the space of the discrete pressures, in order to obtain a stable
approximation. The question arises whether or not this stability can be used to prove
at least a partial result on the original approximation. One can effectively get some
result in this direction.

6 Two-Dimensional Stable Elements

In this section we shall make use of the techniques presented in Sect. 4 to prove the
stability for some of the most popular two-dimensional Stokes elements. The degrees
of freedom corresponding to some of those are collected in Fig. 10.

We start with triangular elements and then we present schemes based on quadri-
laterals.

The Hood–Taylor element (two- and three-dimensional) and its generalization
will be presented in Sect. 8.

6.1 The MINI Element

This element, which is probably the cheapest one for the approximation of the Stokes
equation, has been introduced in [3]. Given a mesh of triangles, the definition of the
spaces is as follows

Vh = (L1
1 ⊕B3)2 ∩ V, Qh = L1

1 ∩Q, (93)

where by B3 we denotes the space of cubic bubbles.
The proof of the stability for the MINI element is an immediate consequence of

Corollary 4.1



70 D. Boffi et al.

A)

B)

C)

D)

Fig. 10. Some stable two-dimensional Stokes elements: (a) the MINI element, (b) the
Crouzeix–Raviart element, (c) the P NC

1 − P0 element, (d) the Q2 − P1 element

6.2 The Crouzeix–Raviart Element

This element, presented in [31], is an enrichment to the P2 − P0 scheme which
provides now well-balanced approximation properties. Given a mesh of triangles,
the approximating spaces are

Vh = (L1
2 ⊕B3)2 ∩ V, Qh = L0

1 ∩Q. (94)
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The proof of the stability for this element can been carried out again with the help of
Proposition 4.2. We use as operator Π1 the Fortin operator of the P2 − P0 element
(see also Proposition 4.11) and we take advantage of the internal degrees of freedom
in Vh to define Π2 : V → (B3)2. Actually, we shall define Π2v only in the case
when div v has zero mean value in each K. This will be sufficient, since we shall use
in practice Π2(v −Π1v) and Π1v satisfies (83). For all K and for all v with

∫

K

div v dx = 0, (95)

we then set Π2v as the unique solution of

Π2v ∈ (B3(K))2, (96)
∫

K

div(Π2v − v)qh dx = 0, ∀qh ∈ P1(K). (97)

Note that (96), (97) is a linear system of three equations (dimP1(K) = 3) in two
unknowns (dim(B3(K))2 = 2) which is compatible since v is assumed to satisfy
(95) and, on the other hand, for every b ∈ (B3(K))2 we clearly have

∫

K

div b dx = 0. (98)

We have only to prove that

||Π2v||1,K ≤ c||v||1,K (99)

for all v ∈ V satisfying (95). Indeed (97) can be written as
∫

K

(Π2v) · grad qh dx =
∫

K

div v(qh − q̄h) dx (100)

where q̄h is any piecewise constant approximation of qh. A scaling argument yields

|Π̂2v|0,K̂ ≤ c(θ0)|v̂|1,K̂ (101)

that easily implies (99).

Remark 6.1. We could prove the same result also as a consequence of Proposition
4.11. The same proof applies quite directly to the Q2 − P1 rectangular element (see
Sect. 6.4). It can also be used to create nonstandard elements. For instance, in [34],
bubble functions were added to a Q1−P0 element in order to use a P1 pressure field.
This element is not more, but neither less, stable than the standard Q1−P0 and gives
better results in some cases.

6.3 P NC
1 − P0 Approximation

We consider the classical stable nonconforming triangular element introduced
in [31], in which midside nodes are used as degrees of freedom for the veloci-
ties. This generates a piecewise linear nonconforming approximation; pressures are
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taken constant on each element (see Fig. 10). We do not present the stability analysis
for this element, which does not fit within the framework of our general results,
since Vh is not contained in V . However, we remark that this method is attractive for
several reasons. In particular, the restriction to an element K of the solution uh ∈ Vh

is exactly divergence-free, since div Vh ⊂ Qh. Another important feature of this
element is that it can be seen as a “mass conservation” scheme. The present element
has been generalized to second order in [39]. It must also be said that coerciveness
may be a problem for the PNC

1 − P0 element, as it does not satisfy the discrete
version of Korn’s inequality. This issue has been deeply investigated and clearly
illustrated in [5].

Remark 6.2. The generalization of nonconforming finite elements to quadrilaterals
is not straightforward. In particular, approximation properties of the involved spaces
are not obvious. More details can be found in [55].

6.4 Qk − Pk−1 Elements

We now discuss the stability and convergence of a familiy of quadrilateral elements.
The lowest order of this family, the Q2 − P1 element, is one of the most popular
Stokes elements. Given k ≥ 2, the discrete spaces are defined as follows:

Vh = (L1
[k])

2 ∩ V, Qh = L0
[k−1] ∩Q.

If the mesh is built of rectangles, the stability proof is an immediate consequence
of Proposition 4.11, since (83) is satisfied for Vh (indeed, the Q2 − P0 is a stable
Stokes element, see Remark 3.1). In the case of a general quadrilateral mesh things
are not so easy; even the definition of the space Qh is not so obvious and there
have been different opinions, during the years, about two possible natural definitions.
Following [15], we discuss in detail the case k = 2.

The Q2 − P1 Element

This element was apparently discovered around a blackboard at the Banff Confer-
ence on Finite Elements in Flow Problems (1979). Two different proofs of stability
can be found in [41] and [59] for the rectangular case. This element is a relatively
late comer in the field; the reason for this is that using a P1 pressure on a quadri-
lateral is not a standard procedure. It appeared as a cure for the instability of the
Q2 −Q1 element which appears quite naturally in the use of reduced integration
penalty methods (see [9]). This last element is essentially related to the Q1 − P0

element and suffers the same problems altough to a lesser extent. Another cure can
be obtained by adding internal nodes (see [34]).

On a general quadrilateral mesh, the space Qh can be defined in two different
ways: either Qh consists of (discontinuous) piecewise linear functions, or it is built
by considering three linear shape functions on the reference unit square and mapping
them to the general elements like it is usually done for continuous finite elements.
We point out that, since the mapping FK from the reference element K̂ to the general
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element K in this case is bilinear but not affine, the two constructions are not equiv-
alent. We shall refer to the first possibility as unmapped pressure approach and to the
second one as mapped pressure approach.

In order to analyze the stability of either scheme, we use the macroelement tech-
nique presented in section 4.5 with macroelements consisting of one single element.
We start with the case of the unmapped pressure approach; this is the original proof
presented in [59]. Let M be a macroelement and qh = a0 + axx + ayy ∈ Q0,M

an arbitrary function in KM . If b(x, y) denote the biquadratic bubble function on K,
then vh = (axb(x, y), 0) is an element of V0,M and

0 =
∫

M

qh div vh dx dy = −
∫

M

grad qh · vh dx dy = −ax

∫

M

b(x, y) dx dy

implies ax = 0. In a similar way, we get ay = 0 and, since the average of qh on M
vanishes, we have the macroelement condition qh = 0.

We now move to the mapped pressure approach, following the proof presented
in [15]. There, it is recalled that the macroelement condition (79) can be related to
an algebraic problem in which we are led to proof that a 2× 2 matrix is nonsingular.
Actually, it turns out that the determinant of such matrix is a multiple of the Jacobian
determinant of the function mapping the reference square K̂ onto M , evaluated at
the barycenter of K̂. Since this number must be nonzero for any element of a well-
defined mesh, we can deduce that the macroelement condition is satisfied in this case
also, and then conclude that the stability holds thanks to Proposition 4.8.

So far, we have shown that either the unmapped and the mapped pressure ap-
proach gives rise to a stable Q2 − P1 scheme. However, as a consequence of the
results proved in [6], we have that the mapped pressure approach cannot achieve op-
timal approximation order. Namely, the unmapped pressure space provides a second-
order convergence in L2, while the mapped one achieves only O(h) in the same
norm. In [15] several numerical experiments have been reported, showing that on
general quadrilateral meshes (with constant distortion) the unmapped pressure ap-
proach provides a second-order convergence (for both velocity in H1 and pressure
in L2), while the mapped approach is only suboptimally first-order convergent. It
is interesting to remark that in this case also the convergence of the velocities is
suboptimal, according to the error estimate (21).

7 Three-Dimensional Elements

Most elements presented in Sect. 6 have a three-dimensional extension. Some of
them are schematically plotted in Fig. 11.

7.1 The MINI Element

Consider a regular sequence of decompositions of Ω into tetrahedra. The spaces are
defined as follows:

Vh = (L1
1 + B4)3 ∩ V, Qh = L1

1 ∩Q,
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C)

B)

A)

Fig. 11. Some stable three-dimensional Stokes elements: (a) the MINI element, (b) the
Crouzeix–Raviart element, (c) the Q2 − P1 element

where B4 denotes the space of quartic bubbles. Then the stability of this element
follows easily, like in the 2D case, from Corollary 4.1.

7.2 The Crouseix–Raviart Element

The straightforward generalization of the Crouseix–Raviart element is given by

Vh = (L1
1 + B4)3 ∩ V, Qh = L0

1 ∩Q.

The stability is an easy consequence of Proposition 4.11.

7.3 P NC
1 − P0 Approximation

The triangular PNC
1 − P0 easily generalizes to tetrahedra in 3D. Also in this case,

since div Vh ⊂ Qh, the restriction of the discrete solution to every element is truly
divergence free.
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7.4 Qk − Pk−1 Elements

Given a mesh of hexahedrons, we define

Vh = (L1
[k])

3 ∩ V, Qh = L0
[k−1] ∩Q,

for k ≥ 2. We refer to the two-dimensional case (see Sect. 6.4) for the definition of
the pressure space. In particular, we recall that Qh on each element consists of true
polynomials and is not defined via the reference element. With the correct definition
of the pressure space, the proof of stability for this element is a simple generalization
of the corresponding two-dimensional version.

8 Pk − Pk−1 Schemes and Generalized Hood–Taylor Elements

The main result of this section (see Theorems 8.1 and 8.2) consists in showing that
a family of popular Stokes elements satisfies the inf–sup condition (20). The first
element of this family has been introduced in [45] and for this reason the members
of the whole family are usually referred to as generalized Hood–Taylor elements.

This section is organized in two subsections. In the first one we discuss discon-
tinuous pressure approximations for the Pk − Pk−1 element in the two-dimensional
triangular case; it turns out that this choice is not stable in the lower-order cases and
requires suitable conditions on the mesh sequences for the stability of the higher-
order elements.

The last subsection deals with the generalized Hood–Taylor elements, which pro-
vide a continuous pressure approximation in the plane (triangles and quadrilaterals)
and in the three-dimensional space (tetrahedrons and hexahedra).

8.1 Pk − Pk−1 Elements

In this subsection we shall recall the statement of a basic result by Scott and
Vogelius [58] which, roughly speaking, says: under suitable assumptions on the de-
composition Th (in triangles) the pair Vh = (L1

2)
2, Qh = L1

k−1 satisfies the inf–sup
condition for k ≥ 4.

On the other hand, the problem of finding stable lower-order approximations has
been studied by Qin [54], where interesting remarks are made on this scheme and
where the possibility of filtering out the spurious pressure modes is considered.

In order to state in a precise way the restrictions that have to be made on the tri-
angulation for higher-order approximations, we assume that Ω is a polygon, and that
its boundary ∂Ω has no double points. In other words, there exists two continuous
piecewise linear maps x(t), y(t) from [0, 1[ into R such that

{
(x(t1) = x(t2) and y(t1) = y(t2)) implies t1 = t2,

∂Ω = {(x, y) : x = x(t), y = y(t) for some t ∈ [0, 1[ }.
(102)
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Clearly, we will have lim
t→1

x(t) = x(0) and lim
t→1

y(t) = y(0). We remark that we are
considering a less general case than the one treated by [58]. We shall make further
restrictions in what follows, so that we are actually going to present a particular case
of their results.

Let now V be a vertex of a triangulation Th of Ω and let θ1, . . . , θp, be the
angles, at V , of all the triangles meeting at V , ordered, for instance, in the counter-
clockwise sense. If V is an internal vertex we also set θp+1 := θ1. Now we define
S(V ) according to the following rules:

p = 1 ⇒ S(V ) = 0 (103)
p > 1, V ∈ ∂Ω ⇒ S(V ) = max

i=1,p−1
(π − θ1 − θi+1) (104)

V /∈ ∂Ω ⇒ S(V ) = max
i=1,p

(π − θi − θi+1) (105)

It is easy to check that S(V ) = 0 if and only if all the edges of Th meeting at V fall
on two straight lines. In this case V is said to be singular [58]. If S(V ) is positive
but very small, then V will be “almost singular”. Thus S(V ) measures how close V
is to be singular.

We are now able to state the following result.

Proposition 8.1 ([58]). Assume that there exists two positive constants c and δ
such that

ch ≤ hK , ∀K ∈ Th, (106)

and
S(V ) ≥ δ, ∀V vertex of Th. (107)

Then the choice Vh = (L1
1)

2, Qh = L0
k−1, k ≤ 4, satisfies the inf–sup condition

with a constant depending on c and δ but not on h.

Condition (107) is worth a few comments. The trouble is that S(V ) = 0 makes the
linear constraints on uh, arising from the divergence-free condition, linearly depen-
dent (see, also, Examples 5.2 and 5.3). When this linear dependence appears, some
part of the pressure becomes unstable. In the present case, this unstable part could be
filtered out.

Remark 8.1. The Pk−Pk−1 element can obviously be stabilized by adding bubbles to
the velocity space in the spirit of Sect. 4.6 (see Proposition 4.11). For a less expensive
stabilization, consisting in adding bubbles only in few elements, see [13].

8.2 Generalized Hood–Taylor Elements

In this subsection we recall the results proved in [12, 14] concerning the stability of
the generalized Hood–Taylor schemes. On triangles or tetrahedra, velocities are ap-
proximated by a standard Pk element and pressures by a standard continuous Pk−1,
that is vh ∈ (L1

k)n (n = 2, 3), p ∈ L1
k−1. This choice has an analogue on rectangles

or cubes using a Qk element for velocities and a Qk−1 element for pressures. The
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lowest order element (i.e., k = 2) has been introduced by Hood and Taylor [45].
Several papers are devoted to the analysis of this popular element. The degrees of
freedom of some elements belonging to this family are reported in Fig. 12.

The first proof of convergence was given for the two-dimensional case in [10]
where a weaker form of the inf–sup condition was used. The analysis was subse-
quently improved in [66] who showed that the classical inf–sup condition is indeed
satisfied (see Verfürth’s trick in Sect. 4.3). The macroelement technique can easily
be used for the stability proof of the rectangular and cubic element (of any order) as
well as of the tetrahedral case when k = 2 (see [59]). In [24] an alternative technique
of proof has been presented for the triangular and tetrahedral cases when k = 2. This
proof generalizes to the triangular case when k = 3 (see [21]). Finally, a general
proof of convergence can be found in [12] and [14] for the triangular and tetrahedral
case, respectively.

We now state and prove the theorem concerning the two-dimensional triangular
case (see [12]).

Theorem 8.1. Let Ω be a polygonal domain and Th a regular sequence of triangular
decompositions of it. Then the choice Vh = (L1

k∩H1
0 (Ω))2 and Qh = L1

k−1∩L2
0(Ω)

satisfies the inf–sup condition (20) for any k ≥ 2 if and only if each triangulation
contains at least three triangles.

Proof. Step 1: Necessary part. Let us show first that the hypothesis on the mesh
is necessary. If Th only contains one element, then it is easy to see that the inf–sup
constant is zero (otherwise it should be div Vh ⊂ Qh, which is not the case since the
functions in Qh are not zero at the vertices). We shall show that if Th contains only
two triangles T1 and T2, then there exists one spurious pressure mode. This implies
that also in this case the inf–sup constant vanishes. We choose the coordinate system
(x, y) in such a way that the common edge of T1 and T2 lies on the y-axis. Moreover,
we suppose that T2 is the reference triangle and T1 the symmetric one with respect
to the x-axis, see Fig. 13. The general case can then be handled by means of suitable
affine mappings.

We denote by λi,a and λi,b the barycentric coordinates relative to the vertices a
and b, respectively, belonging to the element Ti, i = 1, 2. It is easy to check that it
holds: λ1,a = 1 + x − y, λ1,b = y, λ2,a = 1 − x − y, and λ2,b = y. We shall also
make use of the function λ2,c = x. Let L(x) be the Legendre polynomial of degree
k− 2 on the unit interval with respect to the weight w(x) = x(1− x)3 and consider
the function p(x) ∈ Qh defined as follows:

p′(x) =

{
−L(−x) for x < 0,
L(x) for x > 0.

(108)

We shall show that grad p is orthogonal to any velocity v ∈ Vh. Since p does not
depend on y, we can consider the first component v1 of v only, which, by virtue of
the continuity at x = 0 and of the boundary conditions, has the following general
form:
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Fig. 12. Some stable elements belonging to the Hood–Taylor family
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T1 T2

b

a

c

Fig. 13. The reference triangle and its symmetric

v1 =

{
λ1,aλ1,b(Ck−2(y) + xAk−3(x, y)) in T1,

λ2,aλ2,b(Ck−2(y) + xBk−3(x, y)) in T2,
(109)

where the subscripts denote the degrees of the polynomials A, B and C. We
then have
∫

T1∪T2

v · grad p dx dy =
∫

T1

v1p
′ dx dy +

∫

T2

v1p
′ dx dy

=
∫

T2

λ2,aλ2,bL(x)x(Bk−3(x, y) −Ak−3(−x, y)) dx dy

=
∫

T2

λ2,aλ2,bλ2,cL(x)q(x, y) dx dy

(110)

where q(x, y) is a polynomial of degree k − 3 and where the term involving C
disappears by virtue of the symmetries. The last integral reads

∫

T2

xy(1 − x− y)L(x)q(x) dx dy =
∫ 1

0

xL(x)Q(x) dx (111)

and an explicit calculation shows that Q(x) is of the form

Q(x) = (1 − x)3pk−3(x), (112)

where pk−3 is a polynomial of degree k − 3. We can now conclude with the final
computation

∫

T1∪T2

v · grad p dx dy =
∫ 1

0

x(1 − x)3L(x)pk−3(x) dx = 0. (113)

Step 2: Sufficient part. The idea of the proof consists in considering, for each h, a
partition of the domain Ω in subdomains containing exactly three adjacent triangles.
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B’ D’

E’

a’
b’

c’

A’

C’

Fig. 14. A generic triplet of triangles

By making use of Proposition 4.6 and the technique presented in Sect. 4.2, it will be
enough to prove the inf–sup condition for a single macroelement, provided we are
able to bound the number of intersections between different subdomains (basically,
everytimes two subdomains intersect each other, a factor 1/

√
2 shows up in front

of the final inf–sup constant). Indeed, it is possible to prove that, given a generic
triangulation of a polygon, it can be presented as the disjoint union of triplets of
triangles and of polygons that can be obtained as unions of triplets with at most three
intersections.

Given a generic macroelement a′ ∪ b′ ∪ c′, consider the (x, y) coordinate system
shown in Fig. 14, so that the vertices are B′ = (0, 0), D′ = (1, 0), E′ = (α, β).
By means of the affine mapping x′ = x + αy, y′ = βy, the Jacobian of which is β,
we can consider the macroelement a ∪ b ∪ c shown in Fig. 15, so that b is the unit
triangle. Since β �= 0, the considered affine mapping is invertible. With an abuse in
the notation, we shall now denote by Ω the triplet a ∪ b ∪ c and by Vh and Qh the
finite element spaces built on it.

We denote by λa
AB the barycentric coordinate of the triangle a vanishing on the

edge AB (analogous notation holds for the other cases). Moreover, we denote by
La

i,x(x) the i-th Legendre polynomial in [xA, 0], with respect to the measure µa,x

defined by
∫ 0

xA

f(x) dµa,x =
∫

a

λa
ABλa

AEf(x) dx dy, ∀f(x) : [xA, 0] → R, (114)

where xA is the x-coordinate of the vertex A. We shall make use of the following
Legendre polynomials, which are defined in a similar way: Lb

i,x (its definition in-
volves λb

ED and λb
BD), Lb

i,y (using λb
BE and λb

BD), and Lc
i,y (using λc

BC and λc
CD).
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B

E

D

C

a
b

c

A

Fig. 15. A macroelement where b is the reference triangle

Standard properties of the Legendre polynomials ensures that we can normalize
them, for instance, by requiring that they assume the same value (say 1) at the origin.
We now prove by induction with respect to the degree k that a modified inf–sup
condition holds true (see Verfürth’s trick in Sect. 4.3). Namely, for any qh ∈ Qh, we
shall construct vh ∈ Vh such that

−
∫

a∪b∪c

vh · grad qh dx dy ≥ c1|| grad qh||20,

||vh||0 ≤ c2|| grad qh||0.
(115)

The case k = 2. This is the original Hood–Taylor method. Given p ∈ Qh, we define
vh = (v1(x, y), v2(x, y)) triangle by triangle as follows:

v1(x, y)|a = −λa
ABλa

AE || grad p||0 · σ, (116)

v2(x, y)|a = −λa
ABλa

AE

∂p

∂y
, (117)

v1(x, y)|b = −λb
EDλb

BD|| grad p||0 · σ − λb
EDλb

EB

∂p

∂x
, (118)

v2(x, y)|b = −λb
EDλb

BD

∂p

∂y
− λb

EDλb
EB|| grad p||0 · τ, (119)

v1(x, y)|c = −λc
BCλc

CD

∂p

∂x
, (120)

v2(x, y)|c = −λc
BCλc

CD|| grad p||0 · τ, (121)
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where the quantities σ and τ are equal to ±1 so that the expressions

H = σ|| grad p||0
(∫

a

λa
ABλa

AE · ∂p
∂x

+
∫

b

λb
EDλb

BD · ∂p
∂x

)
, (122)

K = τ || grad p||0
(∫

b

λb
EBλb

ED · ∂p
∂y

+
∫

c

λc
BCλc

CD · ∂p
∂y

)
(123)

are nonnegative. First of all, we observe that vh is an element of Vh: its degree is at
most two in each triangle, it vanishes on the boundary and it is continuous across the
the internal edges because so is the tangential derivative of p.

It easy to check that ||vh||0 ≤ c1|| grad p||0. In order to prove the first equation
in (115), we shall show that the quantity ||| grad p||| := −

∫
Ω
vh · grad p vanishes

only when grad p is zero. From the equality

0 = ||| grad p||| =
∫

a

λa
ABλa

AE

(
∂p

∂y

)2

+ H

+
∫

b

(
λb

EDλb
EB

(
∂p

∂x

)2

+ λb
EDλb

BD

(
∂p

∂y

)2
)

+ K +
∫

c

λc
BCλc

CD

(
∂p

∂x

)2

(124)

it follows that

∂p

∂y
= 0 in a, (125)

∂p

∂x
=

∂p

∂y
= 0 in b, (126)

∂p

∂x
= 0 in c, (127)

H = K = 0. (128)

These last equations, together with the fact that each component of grad p is constant
if p ∈ Qh, easily imply that

grad p = (0, 0) in Ω. (129)

The case k > 2. Given p in Qh, if p is locally of degree k − 2, then the result
follows from the induction hypothesis. Otherwise, there exists at least one triangle
of Ω in which p is exactly of degree k − 1. Like in the previous case, we define
vh = (v1(x, y), v2(x, y)) as follows:
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v1(x, y)|a = −λa
ABλa

AE || grad p||0La
k−2,x · σ, (130)

v2(x, y)|a = −λa
ABλa

AE

∂p

∂y
, (131)

v1(x, y)|b = −λb
EDλb

BD|| grad p||0Lb
k−2,x · σ − λb

EDλb
EB

∂p

∂x
, (132)

v2(x, y)|b = −λb
EDλb

BD

∂p

∂y
− λb

EDλb
EB|| grad p||0Lb

k−2,y · τ, (133)

v1(x, y)|c = −λc
BCλc

CD

∂p

∂x
, (134)

v2(x, y)|c = −λc
BCλc

CD|| grad p||0Lc
k−2,y · τ, (135)

with the same assumption on σ and τ , so that the terms

H = σ|| grad p||0
(∫

a

λa
ABλa

AELa
k−2,x · ∂p

∂x
+
∫

b

λb
EDλb

BDLb
k−2,x · ∂p

∂x

)
, (136)

K = τ || grad p||0
(∫

b

λb
EBλb

EDLb
k−2,y · ∂p

∂y
+
∫

c

λc
BCλc

CDLc
k−2,y · ∂p

∂y

)
(137)

are nonnegative. The same arguments as for k = 2, together with the described
normalization of the Legendre polynomials, show that vh belongs to Vh.

In order to conclude the proof, we need show that if ||| grad p||| = 0 then the
degree of grad p is strictly less than k − 2. As before, ||| grad p||| = 0 implies

∂p

∂y
= 0 in a, (138)

grad p = 0 in b, (139)
∂p

∂x
= 0 in c, (140)

H = K = 0. (141)

The last equalities imply
∫

a

λa
ABλa

AELa
k−2,x · ∂p

∂x
= 0 (142)

and ∫

c

λc
BCλc

CDLc
k−2,y · ∂p

∂y
= 0 (143)

It follows that the degree of grad p is strictly less than k − 2 in contrast to our
assumption.

Remark 8.2. The proof of the theorem shows that the continuity hypothesis on the
pressure space Qh can be weakened up to require that qh is only continuous on
triplets of elements.
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We conclude this subsection by stating the three-dimensional analogous to the pre-
vious theorem and by recalling the main argument of the proof presented in [14].

Theorem 8.2. Let Ω be a polyhedral domain and Th a regular sequence of decompo-
sitions of it into tetrahedra. Assume that every tetrahedron has at least one internal
vertex. Then the choice Vh = (L1

k ∩ H1
0 (Ω))3 and Qh = L1

k−1 satisfies the inf–sup
condition (20) for any k ≥ 2.

Proof. We shall make use of the macroelement technique presented in Sect. 4.5. In
particular, we shall use Proposition 4.9 and the comments included in Remark 4.7.

We consider an overlapping macroelement partition of Th as follows: for each
internal vertex x0 we define a corresponding macroelement Mx0 by collecting all
elements which touch x0. Thanks to the regularity assumptions on the mesh, we
only have to show that the macroelement condition (79) holds true (see, in particular,
Remark 4.7).

Let us consider an element K ∈ M = Mx0 and an edge e of K which touches
x0. With a suitable choice of the coordinate system, we can suppose that the direction
of e coincides with that of the x axis. With the notation of Sect. 4.5 we shall show
that a function in KM cannot contain functions which depend on x in K. Namely,
given a function p ∈ Q0,M , we can define a function v ∈ V0,M as follows.

v =
(
−λ1,iλ2,i

∂p

∂x
, 0, 0

)
in Ki,

where Ki is a generic element of M sharing the edge e with K and λj,i, j = 1, 2, are
the barycentric coordinates of Ki associated with the two faces of Ki which do not
touch e. On the remaining elements, each component of v is set equal to zero. It is
clear that v is a kth-order polynomial in Ki and, since p is continuous in M , ∂p/∂x
is continuous across the faces which meet at e and the function v is continuous as
well. Hence, v belongs to V0,M .

From the definition of Q0,M it turns out that

0 =
∫

M

pdiv v = −
∫

M

grad p · v =
∑

i

∫

Ki

λ1,iλ2,i

∣∣∣∣
∂p

∂x

∣∣∣∣
2

The last relation implies that p does not depend on x in Ki for any i and, in particular,
in K. On the other hand, we can repeat the same argument using as e the other
two edges of K meeting at x0 and, since the directions of the three used edges are
independent, we obtain that p is constant in K.

Remark 8.3. From the previous proof we can deduce that the hypotheses on the trian-
gulation can be weakened, by assuming that each tetrahedron has at least three edges
which do not lie on the boundary of Ω and which are not in the same plane. On
the other hand, given a generic mesh of tetrahedra, it is not difficult to add suitable
elements in order to meet the requirements of the previous theorem.

Remark 8.4. The main argument in the proof of the previous theorem is the
straightforward generalization of the two-dimensional case. Indeed, the proof of
Theorem 8.1 could be carried out using the macroelement technique as well.
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9 Nearly Incompressible Elasticity, Reduced Integration Methods
and Relation with Penalty Methods

9.1 Variational Formulations and Admissible Discretizations

Let us now turn our attention on problems associated with approximations of nearly
incompressible materials. Considering, to make things simpler, a problem with
homogeneous Dirichlet conditions and the standard variational principle

inf
v∈(H1

0 (Ω))2
µ

∫

Ω

|ε(v)|2 dx +
λ

2

∫

Ω

|div v|2 dx−
∫

Ω

f · v dx, (144)

it can be noticed that this problem is closely related to a penalty method to solve the
Stokes problem.

It was soon recognized in practice that a brute force use of (144) could lead, for
large values of λ, to bad results, the limiting case being the locking phenomenon
that is an identically zero solution. A cure was found in using a reduced (that is
inexact) numerical quadrature when evaluating the term λ

∫
Ω
|div v|2 dx associated

with compressibility effects. We refer the reader to the papers of [50] and [9] for a
discussion of the long history of this idea. We shall rather develop in details on this
example the relations of reduced integrations and mixed methods and try to make
clear to what extent they may be claimed to be equivalent. For this we first recall
that problem (144) can be transformed by a straightforward application of duality
techniques into a saddle point problem

inf
v

sup
q

µ

∫

Ω

|ε(v)|2 dx− 2
2λ

∫

Ω

|q|2 dx +
∫

Ω

q div v dx−
∫

Ω

f · v dx (145)

for which optimality conditions are, denoting (u, p) the saddle point,

µ

∫

Ω

ε(u) : ε(v) dx +
∫

Ω

p div v dx =
∫

Ω

f · v dx,∀v ∈ (H1
0 (Ω))2 (146)

∫

Ω

div u q dx =
1
λ

∫

Ω

pq dx,∀q ∈ L2(Ω). (147)

This is obviously very close to a Stokes problem and is also an example of a problem
of the following nature

a(u, v) + b(v, p) = (f, v),∀v ∈ V, u ∈ V, (148)

b(u, q) − c(p, q) = (g, q),∀q ∈ Q, p ∈ Q. (149)

We can then derive that an approximation of (146) and (147) (that is a choice
of an approximation for both u and p) which leads to error estimates independent
of λ must be a good approximation for Stokes problem. The preceding sections of
this chapter therefore give us a good idea of what should (or should not) be used as
an approximation. What we shall now see is that reduced integration methods cor-
respond to an implicit choice of a mixed approximation. The success of the reduced
integration method will thus rely on the qualities of this underlying mixed method.
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9.2 Reduced Integration Methods

Let us consider a (more or less) standard approximation of the original prob-
lem (144). An exact evaluation of the “penalty term” λ

∫
Ω
|div v|2dx means that

for λ large one tries to get an approximation of u which is exactly divergence-free.
But as we have already seen few finite elements can stand such a condition that will in
most cases lead to locking phenomenon due to overconstraining. In a mixed formu-
lation one relaxes the incompressibility condition by the choice of the approximation
for p. Let us now see how this will be translated as a reduced integration method at
least in some cases. Let us then consider Vh ⊂ V = (H1

0 (Ω))2, Qh ⊂ Q = L2(Ω),
these approximation spaces being built from finite elements defined on a partition of
Ω. On each element K, let there be given a set of k points xi and weights ωi defining
a numerical quadrature formula

∫

K

f(x) dx =
k∑

i=1

ωi f(xi). (150)

Remark 9.1. It will be convenient to define the numerical quadrature on a reference
element K and to evaluate integrals by a change of variables.

∫

K

f(x) dx =
∫

K̂

f(x̂) J(x̂) dx̂ =
k∑

i=1

ω1 f(x̂i) J(x̂i). (151)

The presence of the Jacobian J(x) should be taken into account when discussing the
precision of the quadrature rule on K.

Let us now make the hypothesis that for vh ∈ Vh and ph, qh ∈ Qh, one has
exactly ∫

K

qh div vh dx =
k∑

i=1

ωi q̂h(x̂i)d̂iv vh(x̂i) J(x̂i) (152)

and ∫

K

ph qh dx =
k∑

k=1

ωi p̂h(x̂i) q̂h(x̂i) J(x̂i). (153)

Let us now consider the discrete form of (147)
∫

Ω

div uh qh dx =
1
λ

∫

Ω

ph qh dx, ∀qh ∈ Qh. (154)

When the space Qh is built from discontinuous functions, this can be read element
by element ∫

K

qh div uh dx =
1
λ

∫

K

ph qh dx, ∀qh ∈ Qh, (155)

so that using (152) and (153) one gets

p̂h(x̂i) = λd̂iv uh(x̂i) or ph(xi) = λ div uh(xi). (156)
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Formula (151) can in turn be used in the discrete form of (146) which now gives
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2µ
∫

Ω

ε(uh) : ε(vh) dx+λ
∑

K

( k∑

i=1

ωi J(x̂i)(d̂iv uh(x̂i)(d̂iv vh(x̂i))
)

=
∫

Ω

f · v
h
dx.

(157)

In general the term
∑
K

( k∑
i=1

ωi J(x̂i)(d̂iv uh(x̂i)(d̂iv vh(x̂i))
)

is not an exact eval-

uation of
∫

Ω
div uh div vh dx and reduced integration is effectively introduced.

In the case where (152) and (153) hold there is a perfect equivalence between the
mixed method and the use of reduced integration. Whatever will come from one
can be reduced to the other one. It will however not be in general possible to get
equalities (152) and (153) so that a further analysis will be needed. But we shall first
consider some examples of this complete equivalence case.

Example 9.1. Let us consider the Q1 − P0 approximation on a rectangle and a one-
point quadrature rule. It is clear that div uh ∈ P1(K) and is integrated exactly. In
the same way a one-point rule is exact for

∫
Ω
ph qh dx whenever ph, qh ∈ P0(K).

There is thus a perfect equivalence between reduced integration and the exact penalty
method defined by (154).

Example 9.2. We now consider again the same Q1 − P0 element on a general
quadrilateral. To show that we still have equivalence requires a somewhat
more delicate analysis. Indeed at first sight the quadrature rule is not exact for∫

K̂
d̂iv uh JK(x̂) dx̂. Let us however consider in detail the term d̂iv uh =

∂̂u1
∂x1

+ ∂̂u2
∂x2

. Let B = DF be the Jacobian matrix of the transformation F from
K̂ into K. Writing explicitly

F =

{
a0 + a1x̂ + a2ŷ + a3x̂ŷ

b0 + b1x̂ + b2ŷ + b3x̂ŷ
(158)

one has

B =
(
a1 + a3ŷ a2 + a3x̂
b1 + b3ŷ b2 + b3x̂

)
(159)

so that we get

B−1 =
1

J(x̂)

(
b2 + b3x̂ −a2 − a3x̂
−b1 − b3ŷ a1 + a3ŷ

)
. (160)

But

∂̂u1

∂x1
=
(∂û1

∂x̂1
(b2 + b3x̂) − ∂û1

∂x̂2
(b1 + b3ŷ)

) 1
J(x̂)

, (161)

∂̂u2

∂x2
=
(∂û2

∂x̂1
(−a2 − a3x̂) +

∂û2

∂x̂2
(a1 + a3ŷ)

) 1
J(x̂)

. (162)
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When computing
∫

K̂
d̂iv uh J(x̂) dx̂, Jacobians cancel and one is left with the

integral of a function which is linear in each variable and which can be computed
exactly by a one-point formula.

Example 9.3. Using a four-point integration formula on a straight-sided quadrilateral
can be seen as in the previous example to be exactly equivalent to a Q2−Q1 approx-
imation [8, 9].

The above equivalence is however not the general rule. Consider the following
examples.

Example 9.4. We want to use a reduced integration procedure to emulate the
Crouzeix–Raviart P2 − P1 element. To define a P1 pressure, we need three in-
tegration points which can generate a formula that will be exact for second degree
polynomials (but not more). The bubble function included in velocity however makes
div uh ∈ P2(K) and

∫
K

div uh qhdx will not be evaluated exactly.

Example 9.5. A full isoparametric Q2−Q1 element is not equivalent to its four-point
reduced integration analogue.

Example 9.6. A Q2 − P0 approximation is not, even on rectangles, equivalent to a
one-point reduced integration method for div uh contains second-order term which
are not taken into account by a one-point quadrature.

9.3 Effects of Inexact Integration

If we now consider into more details the cases where a perfect equivalence does
not hold between the mixed method and some reduced integration procedure we
find ourselves in the setting of nonconforming approximation. In particular b(vh, qh)
is replaced by an approximate bilinear form bh(vh, qh). We shall suppose to sim-
plify that the scalar product on Qh is exactly evaluated. Two questions must then be
answered.

— Does bh(., .) satisfy the inf–sup condition?
— Do error estimates still hold without loss of accuracy?

Example 9.7. We in fact come back to Example 9.6 and study on a rectangular mesh,
the Q2 − P0 approximation (see Sect. 6.4) with a one-point quadrature rule. This is
not, as we have said, equivalent to the standard Q2 − P0 approximation. We now
want to check, using Proposition 4.1, that it satisfies the inf–sup condition. We thus
have to build a continuous operator (in H1(Ω)-norm) such that

∫

Ω

div uh qh dx =
∑

K

[(div Πhuh)(M0,K)qK ] area(K) (163)

where M0,K is the barycenter of K and qK the restriction of qh to K. We can re-
strict our analysis to one element as qh is discontinuous and we study both sides of
equality (163). We have of course, taking qK = 1,
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1 2

48

hx

hy

567

3

Fig. 16. A rectangle

∫

K

div uh dx =
∫

∂K

uh · n dσ. (164)

Using the numbering of Fig. 16 and denoting by ui, vi the horizontal and vertical
components of velocity at node i, we can write (164) by Simpson’s quadrature rule
in the form

⎧
⎪⎪⎨

⎪⎪⎩

∫

K

div uh dx =
hy

6
[u5 + 4u4 + u3] −

hy

6
[u1 + 4u8 + u7]

+
hx

6
[v7 + 4v6 + v5] −

hx

6
[v1 + 4v2 + v3].

(165)

If we write

u4 =
u5 + u3

2
+ û4, u8 =

u1 + u7

2
+ û8 (166)

v6 =
v5 + v7

2
+ v̂6, v2 =

v1 + v3

2
+ v̂2 (167)

where û4, û6, v̂6 and v̂2 are corrections with respect to a bilinear interpolation we
may rewrite (165) as

⎧
⎪⎪⎨

⎪⎪⎩

∫

K

div uh dx =
hy

2
[u5 + u3 +

4
3
û4] −

hy

2
[u1 + u7 +

4
3
û8]

+
hy

2
[v7 + v5 +

4
3
v̂6] −

hx

2
[v1 + v3 +

4
3
v̂2].

(168)

On the other hand area (K) div uh(M0,K) can be seen to be equal to
⎧
⎪⎨

⎪⎩

hy

2
[u5 + u3 + 2û4] −

hy

2
[u1 + u7 + 2û8]

−hx

2
[u7 + v5 + 2v̂6] −

hx

2
[v1 + v3 + 2û2].

(169)

If we thus split uh into a bilinear part u0
h and a mid-point correction part ûh, one can

define Πhuh by setting
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⎧
⎨

⎩

(Πhuh)0 = u0
h,

(Π̂huh) =
2
3
ûh.

(170)

Equality (164) will then hold and (170) is clearly continuous with a continuity con-
stant independent of h.

Example 9.8. We come back to Example 9.4 that is a three-point quadrature rule used
in conjunction with the Crouzeix–Raviart element. We shall not give the analysis in
details but only sketch the ideas. The problem is again to check that the inf–sup
condition holds through Proposition 4.1. As the quadrature rule is exact when qh is
piecewise constant, the obvious idea is to build Πhuh by keeping the trace of uh on
∂K and only modifying the coefficients of the bubble functions. This can clearly be
done. Continuity is now to be checked and the proof is essentially the same as the
standard proof of the inf–sup condition (Sect. 7.2).

Example 9.9 (A modified Q1 − P0 element). We now present a puzzling example
of an element which is stable but for which convergence is tricky due to a consis-
tency error term. We have here a case where using a one-point quadrature rule will
change the situation with respect to the inf–sup condition. In fact it will make a sta-
ble element from an unstable one but will also introduce an essential change in the
problem. The departure point is thus the standard Q1 − P0 element which, as we
know, does not satisfy the inf–sup condition. We now make it richer by adding to ve-
locity uh|K = {u1, u2} what we shall call wave functions. On the reference element
K̂ =] − 1, 1[×] − 1, 1[, those functions are defined by

{
w1 = x̂ b2(x̂, ŷ),
w2 = ŷ b2(x̂, ŷ),

(171)

where b2(x̂, ŷ) = (1 − x̂2)(1 − ŷ2) is the Q2 bubble function. If we now consider

ûh|K = {u1 + αKw1, u2 + αKw2} = uh|K + αKwK , (172)

we obtain a new element with an internal degree of freedom. The wave functions
that we added vanish on the boundary and nothing is changed for the stability of
the mixed method with exact integration. If we rather use a one-point quadrature
rule, things become different. We shall indeed check that the modified bilinear form
bh(v̂h, qh) satisfies the inf–sup condition. We thus have to show that

sup
û

h

∑
K

div ûh(M0,K)pK h2
K

‖ûh‖1
≥ k0 |ph|0. (173)

This is easily checked by posing on K (we suppose a rectangular mesh to simplify)

ûh|K = hK pKwK . (174)

We then have div ûh = ph and
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‖ûh‖1,K = h pK ‖wK‖1,K , (175)

which implies
‖ûh‖1 ≤ c |ph|0, (176)

and (173) follows. A remarkable point is that even the hydrostatic mode has disap-
peared. This is an indication that something incorrect has been introduced in the ap-
proximation. An analysis of consistency error indeed shows that usual error estimates
fail and that we are actually approximating a continous problem in which the incom-
pressibility condition has been replaced by div u+kp = 0 where k = 1575/416. We
then see that if in general for Stokes problem, making the space of velocities richer
improves (at least does not reduce) the quality of the method, this fact can become
false when numerical integration is used.

Let us now turn our attention to the problem of error estimation. From [24] all we
have to do is to estimate the consistency terms

sup
vh

|bh(vh, p) − bh(vh, p)|
‖vh‖V

(177)

and

sup
qh

|b(u, qh) − bh(u, qh)|
‖qh‖0

. (178)

We thus have to estimate quadrature errors. It would be out of purpose to enter into
details and we refer the reader to [27, 28] where examples of such analysis are pre-
sented exhaustively. The first step is to transform (177) into a form which is some-
times more tractable. We may indeed write

{
b(vh, p) − bh(vh, p) = (b(vh, p− qh) − bh(vh, p− qh))

+ (b(vh, qh) − bh(vh, qh))
(179)

and {
b(u, qh) − bh(u, qh) = (b(u− vh, qh) − bh(u− vh, qh))

+ (b(vh, qh) − bh(vh, qh)).
(180)

The first parenthesis in the right-hand side of (179) and (180) can be reduced to an
approximation error. The second parenthesis implies only polynomials.

Let us therefore consider (180) for the three approximations introduced above.
(Coming back to the notations of the present section). For the Crouzeix–Raviart tri-
angle taking vh the standard interpolate of u makes the second parenthesis vanish
while the first yields an O(h) estimate. For the two other approximations taking vh

to be a standard bilinear approximation of u makes the second parenthesis vanish
while the first yields on O(h) estimate, which is the best that we can hope any-
way. The real trouble is therefore with (177) with or without (179). In the case of
the Crouzeix–Raviart triangle, we can use directly (177) and the following result
of [27, 28], (Theorem IV.1.5).
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Proposition 9.1. Let f ∈ Wk,q(Ω), pk ∈ Pk(K) and denote Ek(fpk) the quadra-
ture error on element K when numerical integration is applied to fpk. Let us suppose
that EK(φ̂) = 0, ∀φ̂ ∈ P2k−2(K) then one has

|EK(fpk)| ≤ chk
K (meas(K))

1
2− 1

q |f |k,q,K |pk|1. (181)

Taking k = 2, q = ∞ and using the inverse inequality to go from |pk|1 to |pk|0 one
gets an O(h2) estimate for (177).

The two other approximations cannot be reduced to Proposition 9.1 and must be
studied through (179). We must study a term like

sup
vh

|b(vh, qh) − bh(vh, qh)|
‖vh‖1

. (182)

This can at best be bounded. For instance in the case of the Q2 − P0 approximation
we can check by hand that the quadrature error on K reduces to h3

K |div vh|2,K pk.

10 Divergence-Free Basis, Discrete Stream Functions

We have dealt in this note with the mixed formulation of the Stokes problem and
we have built finite element approximations in which discrete divergence-free func-
tions approximate the continuous ones. It is sometimes useful to consider directly
the constrained minimization problem

inf
v0∈V0

1
2

∫

Ω

|ε(v0)|2 dx−
∫

Ω

f · v
0
dx, (183)

where V0 is the subspace of divergence-free functions. In this subspace we have a
standard minimization problem and the discrete form would lead to a positive definite
linear system. Indeed the solution of problem (183) satisfies the variational equation,

∫

Ω

ε(u0) : ε(v0) dx =
∫

Ω

f · v
0
dx, ∀v0 ∈ V0, u0 ∈ V0. (184)

In the discrete problem, if one knows a basis {w0, . . . , wm} of V0h the solution is
reduced to the solution of the linear system

A0 U0 = F0, (185)

where
a0

ij =
∫

Ω

ε(wi) : ε(wj) dx, f0
i =

∫

Ω

f · w
i
dx, (186)

and
A0 = {a0

ij}, F0 = {f0
i }. (187)

Building a basis for the divergence-free subspace could therefore lead to a neat re-
duction of computational costs: pressure is eliminated, along with a certain amount
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of velocity degrees of freedom. System (185) is smaller than the original one. It must
however be noted that with respect to the condition number, (185) is behaving like
a fourth-order problem, which makes its practical usefulness often dubious. As to
pressure, it can be recovered a posteriori (see [25, 26]).

The construction of such a basis is not however a very popular method and is
considered as a hard task although it has been numerically implemented (see [43, 65,
44]).

As we shall see the two-dimensional case is quite readily handled in many cases.
The degrees of freedom can be associated with those of a discrete stream function.
The three-dimensional problem is harder to handle: a generating system can often
easily be found but the construction of a basis requires the elimination of some de-
grees of freedom in a not so obvious way.

We shall also consider rapidly a numerical procedure, related to static condensa-
tion that will require a partly divergence-free basis.

Finally we want to emphasize that the construction which we describe will make
sense only if the finite element approximation is good so that the previous analysis
is still necessary even if it might seem to be bypassed.

We first consider a simple example of a divergence-free basis.

Example 10.1 (The nonconforming P1−P0 element). We consider the classical non-
conforming element introduced in [31] (cf. Sect. 6.3) in which mid-side nodes are
used as degrees of freedom for velocity. This generates a piecewise linear noncon-
forming approximation; pressure is taken constant on each element (Fig. 17). The
restriction to an element K of uh ∈ Vh is then exactly divergence-free and is there-
fore locally the curl of a quadratic polynomial. This discrete stream function cannot
be continuous on interfaces but must have continuous derivatives at mid-side points:
it can be built from Morley’s triangle. The degrees of freedom of the divergence-
free basis can be associated to the degrees of freedom of this nonconforming stream
function (Fig. 18). This assigns a basis function to each vertex and to each mid-side
node. They are depicted schematically in Fig. 19. One observes a general pattern:
divergence-free functions are made from small vortices.

Remark 10.1. The kind of basis obtained in the previous example is typical of a do-
main without holes with homogeneous Dirichlet boundary conditions. Whenever a
hole is present, an extra basis function must be added in order to ensure circulation
around the hole (Fig. 20). This function is not local.

Fig. 17. Nonconforming element
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Fig. 18. Nonconforming stream function

Fig. 19. Basis functions for a divergence free P1–P0 nonconforming element

Fig. 20. Divergence free function around a hole

Γ0 Γ1

Fig. 21. Divergence free function with different boundary conditions

In the same way when the flow is entering on a part Γ0 of ∂Ω and outgoing on
a part Γ1, a basis function must be provided to link those parts and to thus take into
account the potential part of the flow (Fig. 21).

We now consider a conforming approximation, namely the popular Q2−P1 element
(see Sect. 6.4).
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Fig. 22. A 2 × 2 macroelement

Fig. 23. Divergence-free functions

Example 10.2 (The conforming Q2 − P1 element). We shall sketch in this example
the construction of a divergence-free basis for the Q2 − P1 element. To make things
simple we shall assume that the mesh is formed of 2 × 2 macroelements. The gen-
eral case can easily be deduced. Let us first look for divergence-free (in the discrete
sense of course) functions with their support on a macroelement. We have 18 de-
grees of freedom for velocity (Fig. 22) linked by (12 − 1) = 11 linear constraints.
This leaves seven linearly independent functions which can be described by the dia-
grams of Fig. 23.

Three of them are associated with each vertex and one to each mid-side node. It
must be noted that internal nodes are no longer degrees of freedom.

Remark 10.2. The “divergence-free” functions described above cannot be taken as
the curl of a stream-function as they are not exactly divergence-free. However a
discrete stream-function can nevertheless be built. Its trace on ∂K can be totally
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Fig. 24. Adini’s element

determined by integrating uh · n along the boundary. As the flow is conserved at
element level this defines ψh|∂K which is a piecewise third degree polynomial such
that ∂ψh

∂τ = uh · n. This stream-function could be built from the element of Fig. 24
(Adini’s element) but uh must be deduced by taking a discrete curl operation.

Other methods which have been studied for elasticity problems can be extended
to Stokes problem. For instance, the Hellan–Hermann–Johnson mixed method for
plate bending has been extended to the ψ − ω formulation for Stokes by [22].

11 Other Mixed and Hybrid Methods for Incompressible Flows

We have considered in this chapter only the most standard applications to the Stokes
problem using primitive variables. This is not by far the only possibility; the ψ − ω
decomposition of the biharmonic problem, for instance, can be applied to a Stokes
problem. Indeed any divergence-free functions u ∈ (H1

0 (H))2 can be written in
the form

u = curlψ, ψ ∈ H2
0 (Ω). (188)

From (188) we get
curlu = ω = −�ψ. (189)

On the other hand, taking the curl of equation (1) gives

−�ω = curl f = f1. (190)

This procedure can be extended to the Navier–Stokes equation (indeed in many
ways) including, if wanted, some upwinding procedure for the nonlinear terms
(see [40, 47]). The reader will find a fairly complete study of such procedures in
[42], [53]. It must be noted that the simplest case of such a procedure, using for ψh

a bilinear approximation yields as an approximation of u the famous MAC cells
(Fig. 25).

Indeed this is nothing but the space RT[0] for which the subspace of
divergence-free functions can be obtained from a bilinear stream-function. The
Hellan–Hermann–Johnson mixed method for elasticity can also be applied to the
Stokes problem with uh chosen in some approximation of H(div, Ω). A direct
approach precludes to use a symmetric tensor and forces to use gradu instead of
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Fig. 25. MAC cell

ε(u) as dual variable [4]. This difficulty has been circumvented by [51] by enriching
the spaces by the trick of [1] or [2] or [20].

Finally it must be said that dual hybrid methods have been applied by [7] to the
Stokes problem. This generates elements which are defined only by the traces at the
boundaries and for which internal values can be chosen arbitrarily. This can be seen
as the ultimate case of enrichment by bubble functions: enriching by a (potentially
infinite dimensional) space enables to use exactly divergence-free function, provided
the inf–sup condition is satisfied for piecewise constant pressure.
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29. J.F. Ciavaldini and J.C. Nédélec. Sur l’élément de Fraeijs de Veubeke et Sander.
R.A.I.R.O. Anal. Numer., 8:29–45, 1974.

30. P. Clément. Approximation by finite element functions using local regularization.
R.A.I.R.O. Anal. Numer., 9:77–84, 1975.

31. M. Crouzeix and P.A. Raviart. Conforming and nonconforming finite element methods
for solving the stationary Stokes equations. R.A.I.R.O. Anal. Numer., 7:33–76, 1973.

32. G. Duvaut and J.L. Lions. Les inéquations en mécanique et en physique. Dunod, Paris,
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