Media – Varianza – Deviazione Standard

$$ar{x}$$
 media

$$\frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

$$\frac{1}{n} \cdot \sum_{i=1}^{n} x_i \qquad \frac{1}{n} \cdot \sum_{i=1}^{m} f_i x_i$$

$$s^2$$
 varianza

$$\frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$s^2$$
 varianza $\frac{1}{n} \cdot \sum_{i=1}^n (x_i - \bar{x})^2$ $\frac{1}{n} \cdot \sum_{i=1}^m f_i \cdot (x_i - \bar{x})^2$

$$s$$
 dev. standard

$$\sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$s$$
 dev. standard $\sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2}$ $\sqrt{\frac{1}{n} \cdot \sum_{i=1}^{m} f_i \cdot (x_i - \bar{x})^2}$

$$s^2$$
 campionaria

$$\frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$s^2$$
 campionaria $\frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \bar{x})^2$ $\frac{1}{n-1} \cdot \sum_{i=1}^m f_i \cdot (x_i - \bar{x})^2$

$$s^2$$
 campionaria

$$\sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$s^2$$
 campionaria $\sqrt{\frac{1}{n-1}\cdot\sum_{i=1}^n(x_i-\bar{x})^2}$ $\sqrt{\frac{1}{n-1}\cdot\sum_{i=1}^mf_i\cdot(x_i-\bar{x})^2}$

Varianza – Deviazione Standard

Le espressioni della varianza (e della deviazione standard) possono essere riscritte come segue:

$$s^2 = \frac{1}{n} \cdot \left(\sum_{i=1}^n x_i^2 - n\bar{x}^2 \right)$$
 o $s^2 = \frac{1}{n} \cdot \left(\sum_{i=1}^m f_i x_i^2 - n\bar{x}^2 \right)$

Infatti,

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i^2 - 2x_i \bar{x} + \bar{x}^2) = \sum_{i=1}^{n} x_i^2 - 2\bar{x} \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} \bar{x}^2 =$$

$$= \sum_{i=1}^{n} x_i^2 - 2\bar{x}(n\bar{x}) + n\bar{x}^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$$

Esercizio 1. Nel rilevare l'altezza in cm di un gruppo di reclute si è ottenuta la seguente tabella delle frequenze. Calcolare media, mediana e quartili.

Soluzione:

cm	f_{ass}	f_{cum}
166	1	1
168	3	4
169	6	10
170	11	21
171	8	29
172	6	35
173	4	39
174	3	42
175	1	43
178	1	44

$$n=44$$
 dimensione del campione $\bar{x}\simeq 170.9$ media $M_e=\frac{x_{22}+x_{23}}{2}=171$ mediana $q_1=\frac{x_{11}+x_{12}}{2}=170$ primo quartile $q_3=\frac{x_{33}+x_{34}}{2}=172$ terzo quartile $q_3-q_1=2$ distanza interquartile

La distanza interquartile è un altro indice di dispersione, legato alla nozione di mediana. La mediana suddivide l'insieme dei dati ordinati $\{x_i\}$ in due parti ugualmente numerose. I quartili si ottengono suddividendo i dati ordinati in quattro parti ugualmente numerose.

Esercizio 2. Trovare media, mediana, moda, varianza e deviazione standard dei seguenti dati non ordinati e non raggruppati. Tracciare l'istogramma delle frequenze.

7 4 10 9 15 12 7 8 11 4 14 10 5 14 1 10 8 12 6 5

Soluzione: si costruisce la tabella della distribuzione di frequenza

x	1	4	5	6	7	8	9	10	11	12	14	15	
fass	1	2	2	1	2	2	1	3	1	2	2	1	20

$$\bar{x} = \frac{1}{20}(1+8+10+6+14+16+9+30+11+24+28+15) = 8.6$$

$$s^{2} = \frac{1}{20}(57.76 + 42.32 + 25.92 + 6.76 + 5.12 + 0.72 + 0.16 + 5.88 + 5.76 + 23.12 + 58.33 + 40.96) \approx 13.64$$

$$s \simeq 3.69$$

$$moda = 10.0$$

$$mediana = 8.5$$

Un'indagine su un campione di n=100 studenti, che hanno sostenuto la prova scritta di matematica, ha prodotto il seguente risultato. Le votazioni in centesimi sono state raggruppate in quattro *classi*.

classe	f_i	f_i/n
20 - 40	10	0.10
40 - 60	20	0.20
60 - 80	50	0.50
80 - 100	20	0.20
	100	1.00

Le classi sono di uguale ampiezza e contigue.

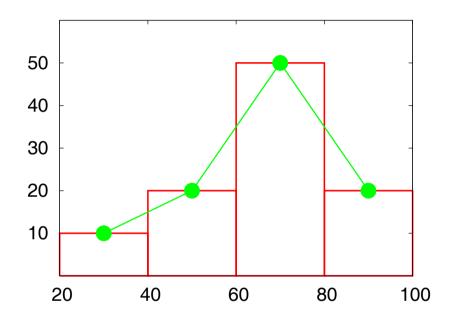
Nell'ipotesi di distribuzione uniforme, è naturale associare a ciascuna classe, come rappresentante, il valore centrale r_i della classe stessa.

classe
$$r_i$$
 f_i F_i $20-40$ 30 10 10 $40-60$ 50 20 30 $60-80$ 70 50 80 $80-100$ 90 20 100

media =
$$\frac{1}{100} \cdot (10 \cdot 30 + 20 \cdot 50 + 50 \cdot 70 + 20 \cdot 90) = 66$$

mediana = 70 (guardando solo i rappresentanti)

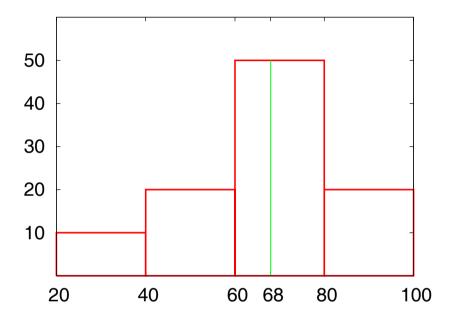
varianza =
$$\frac{1}{100} \cdot (10 \cdot 36^2 + 20 \cdot 16^2 + 50 \cdot 4^2 + 20 \cdot 24^2) = 21.44$$



Poligono delle frequenze

Ogiva di frequenza

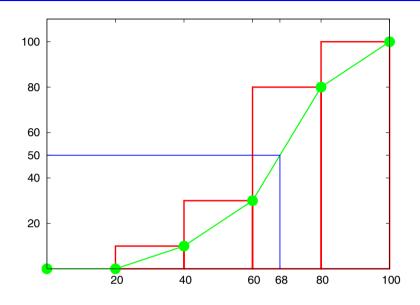
Calcolo della mediana:



area totale = $20 \cdot (10 + 20 + 50 + 20) = 2000$

Cerchiamo il valore $x=M_e$ tale che

$$20 \cdot 10 + 20 \cdot 20 + (x - 60) \cdot 50 = 1000 \Rightarrow x = 68 \Rightarrow M_e = 68$$

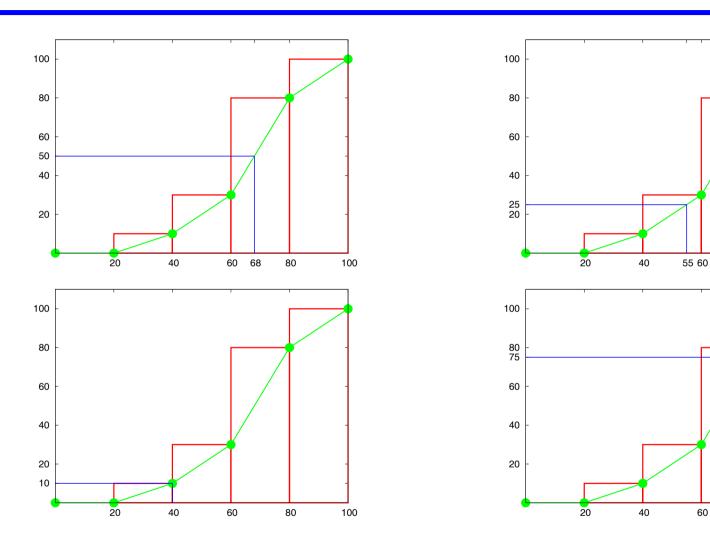


Calcolo della mediana: interpolazione lineare sui punti A = (60,30) e B = (80,80)

$$\begin{cases} y = 50 \\ y - 30 = \frac{5}{2} \cdot (x - 60) \end{cases} \Rightarrow (50 - 30) = \frac{5}{2} \cdot (x - 60) \Rightarrow x = 68 \Rightarrow M_e = 68$$

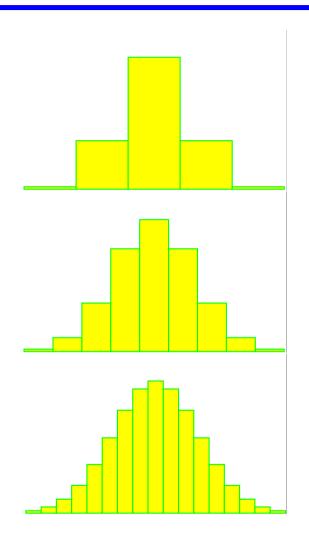
Domande: (a) qual è il voto massimo preso dal 10% degli studenti con i voti peggiori? [40]

(b) Calcolare i quartili dall'ogiva di frequenza. $[q_1 = 55, q_2 = 78]$



Matematica con Elementi di Statistica, Anna Torre – a.a. 2013-2014

Distribuzione Normale

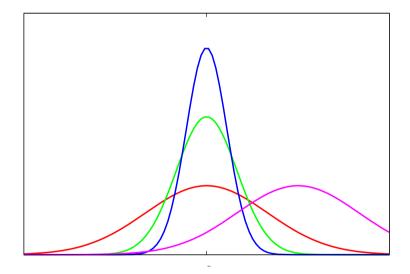


- istogramma delle frequenze di un insieme di misure relative a una grandezza che può variare con *continuità*
- popolazione molto numerosa, costituita da una quantità praticamente illimitata di individui (popolazione infinita)
- area dell'istogramma uguale a 1 (normalizzata)
- aumentando il numero di intervallini $n=5,\,9,\,17,\,\ldots$ l'istogramma tende a stabilizzarsi intorno a una forma limite: la curva di distribuzione delle frequenze
- nel caso in figura: $y = Ae^{-B(x-C)^2}$ distribuzione normale o gaussiana

Distribuzione Normale

CURVE GAUSSIANE

$$y = Ae^{-B(x-C)^2}$$



Se la distribuzione è di tipo gaussiano con

- media aritmetica μ
- deviazione standard σ

si ha

$$A = \frac{1}{\sigma\sqrt{2\pi}} \quad B = \frac{1}{2\sigma^2} \quad C = \mu$$

La corrispondente curva normale sarà

$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Curva normale standardizzata:

$$y = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
 $\mu = 0, \sigma = 1$