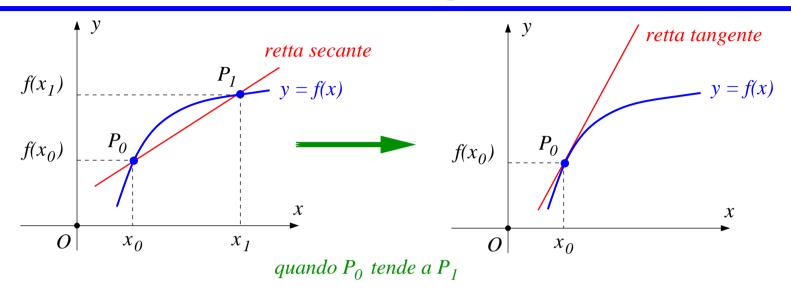
Retta Tangente



Consideriamo una funzione continua f. Siano $P_0 = (x_0, f(x_0))$ e $P_1 = (x_1, f(x_1))$ due punti appartenenti al grafico della funzione.

Al tendere di x_1 a x_0 , il punto P_1 si avvicina al punto P_0 e la retta secante tende ad assumere una posizione limite, che prende il nome di retta tangente al grafico nel punto P_0 .

Retta Tangente

L'equazione della retta secante per i due punti P_0 , P_1 è data da

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) + f(x_0).$$

L'espressione del coefficiente angolare

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{\Delta y}{\Delta x}$$

si chiama *rapporto incrementale* della funzione f nel punto x_0 .

Se esiste finito, il limite del rapporto incrementale:

$$\lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f'(x_0)$$

rappresenta il coefficiente angolare della retta tangente di equazione:

$$y = f'(x_0)(x - x_0) + f(x_0).$$

Il valore $f'(x_0)$ è per definizione *la derivata prima* di f in x_0 .

Derivate – Definizione

Se esiste finito il limite del rapporto incrementale:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

la funzione f si dice derivabile in x_0 .

Il valore del limite è per definizione la derivata di f nel punto x_0 .

La derivata si indica con le seguenti notazioni:

$$f'(x_0)$$
 $\frac{df}{dx}(x_0)$ $Df(x_0)$ $\frac{dy}{dx}(x_0)$.

Nel lucido precedente $h = x_1 - x_0$ e $x_1 = x_0 + h$.

Derivate – Esempi

Esempio 1: f(x) = c funzione costante

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0$$

Esempio 2: f(x) = mx + q

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{m(x+h) + q - mx - q}{h} = \lim_{h \to 0} \frac{mh}{h} = m$$

Esempio 3: $f(x) = x^2$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{h^2 + 2xh}{h} = 2x$$

Esempio 4: $f(x) = e^x$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} e^x \frac{e^h - 1}{h} = e^x$$

Derivate – Operazioni

Siano f, g due funzioni derivabili e $\alpha \in \mathbb{R}$.

- Prodotto per una costante: $(\alpha f)'(x) = \alpha f'(x)$
- Somma: (f+g)'(x) = f'(x) + g'(x)
- Prodotto: $(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
- Quoziente: $\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{(g(x))^2}$

Calcolo di Alcune Derivate

- $f(x)=x^3=x\cdot x^2$, $f'(x)=1\cdot x^2+x\cdot 2x=3x^2$ Iterando il procedimento: $f(x)=x^n$ con $n\in\mathbb{N}$, $f'(x)=n\,x^{n-1}$
- $f(x) = 5x^3 3x^2 + 10x 7$, $f'(x) = 15x^2 6x + 10$
- $f(x) = x^2 + e^x$, $f'(x) = 2x + e^x$
- $f(x) = \frac{1}{x}$, $f'(x) = \frac{0 \cdot x 1}{x^2} = -\frac{1}{x^2}$

Iterando il procedimento: $f(x) = \frac{1}{x^n}$, $f'(x) = -\frac{n}{x^{n+1}}$

•
$$f(x) = \frac{x^5 + 2}{e^x}$$
, $f'(x) = \frac{5x^4e^x - (x^5 + 2)e^x}{e^{2x}}$