nome e cognome:

matricola

GALENO ()

IPPOCRATE ()

VECCHI ORDINAMENTI ()

Scrivere le risposte di ciascun quesito negli appositi spazi.

Nota: non approssimare logaritmi ed esponenziali, ma svolgere i calcoli usandone le proprietà.

Esercizio 1. (Punti 7) Si consideri la funzione

$$f(x) = \begin{cases} x^2 - 7x + 10 & \text{se } x \le 2, \\ \ln(x^2 + 5k) & \text{se } x > 2. \end{cases}$$

• Determinare per quale valore di k la funzione f è continua nel punto x=2.

$$k = -\frac{3}{5}$$

• Per tale valore di k la funzione f è derivabile nel punto x = 2?

risposta: no

• Per il valore di k per cui la funzione è continua, trovare i punti di massimo e minimo assoluti di f nell'intervallo [-4, 4], specificandone l'ascissa e l'ordinata.

punti di massimo assoluto: (-4, 54)

punti di minimo assoluto: (2,0)

Esercizio 2. (Punti 5) Si vuole stimare il valore medio μ del carattere di una popolazione. Su un campione di n=10000 individui risultano una media $\overline{x}=80$ e una deviazione standard campionaria s=120. Trovare l'intervallo di confidenza al 95% e all'89% per la media μ , usando la tabella allegata.

intervallo di confidenza al 95% = [77.6, 82.4]

intervallo di confidenza all'89% = [78.08, 81.92]

Come cambia la stima se gli stessi dati \overline{x} e s sono ottenuti da un campione di 400 individui?

intervallo di confidenza al 95% = [68, 92]

intervallo di confidenza all'89% = [70.4, 89.6]

Esercizio 3. (Punti 3) Sono date due soluzioni dello stesso soluto e dello stesso solvente: S_1 concentrata al 5% e S_2 concentrata al 2.5%. Determinare in quali percentuali occorre mescolare S_1 e S_2 per ottenere una nuova soluzione concentrata al 4.5%.

percentuale di S_1 : 80%

percentuale di S_2 : 20%

Esercizio 4. (Punti 6) Un isotopo radioattivo ha un tempo di dimezzamento di 2500 anni.

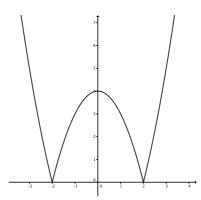
• Dopo quanto tempo si sarà ridotto del 10%?

 $risposta:~2500 \cdot \log_2 \frac{10}{9}$ anni

• Dopo quanto tempo si sarà ridotto al 10%?

 $risposta: \, 2500 \cdot \log_2 10$ anni

Un'altra sostanza radioattiva dopo 2500 anni è ridotta al 10%. Qual è il suo tempo di dimezzamento?


 $risposta: \frac{2500}{\log_2 10}$ anni

Esercizio 5. (Punti 7) Sono date le funzioni $f(x) = \frac{e^{x+1}}{x}$ e $g(x) = x^2 - 4$. Determinare:

- il campo di esistenza di f: $x \neq 0$
- la derivata di f: $f'(x) = \frac{e^{x+1}(x-1)}{x^2}$
- \bullet l'equazione della retta tangente al grafico di fnel punto x=2: $y=\frac{e^3}{4}x$
- l'espressione della funzione composta $(f \circ g)(x) = \frac{e^{x^2-3}}{x^2-4}$
- \bullet il campo di esistenza di $f\circ g\colon\thinspace x\neq 2$ e $x\neq -2$

Disegnare il grafico della funzione |g(x)|.

grafico:

Area sotto la curva normale standardizzata

valori	Nell'intervallo	Fuori dell'intervallo	Nell'intervallo
di u	$[\mu - u\sigma, \mu + u\sigma]$	$[\mu - u\sigma, \mu + u\sigma]$	$[\mu + u\sigma, +\infty)$
0	0	1	0, 5
0, 2	0,1586	0,8414	0,4207
0, 4	0,3108	0,6892	0,3446
0, 6	0,4514	0,5486	0,2743
0,8	0,5762	0,4238	0,2119
1	0,6826	0,3174	0,1587
1, 2	0,7698	0,2302	0,1151
1,4	0,8384	0,1616	0,0808
1,6	0,8904	0,1096	0,0548
1,8	0,9282	0,0718	0,0359
2	0,9544	0,0456	0,0228
2, 2	0,9722	0,0278	0,0139
2, 4	0,9836	0,0164	0,0082
2,6	0,9906	0,0094	0,0047
2,8	0,9950	0,0050	0,0025
3	0,9974	0,0026	0,0013
3, 2	0,9986	0,0014	0,0007