nome e cognome: matricola

GALENO ○ IPPOCRATE ○

VECCHI ORDINAMENTI ()

Esercizio 1. (Punti 7) Si considerino le funzioni $f(x) = 2\sqrt{x}$ e $g(x) = 3e^{x-1}$. Determinare

- l'equazione della retta tangente al grafico di f nel punto x=5: $y=\frac{1}{\sqrt{5}}(x-5)+2\sqrt{5}$
- l'espressione della funzione inversa $g^{-1}(y) = \ln y \ln 3 + 1$
- il campo di esistenza della funzione inversa g^{-1} : $(0, +\infty)$
- l'espressione della funzione composta $(f \circ g)(x) = 2\sqrt{3e^{x-1}}$
- il campo di esistenza di $f \circ g$: \mathbb{R}
- l'espressione della funzione composta $(g \circ f)(x) = 3e^{2\sqrt{x}-1}$
- il campo di esistenza di $g \circ f: [0, +\infty)$

Esercizio 2. (Punti 7) Si consideri la funzione

$$f(x) = \begin{cases} e^{x-2+k} & \text{se } -2 \le x \le 2, \\ x^2 + 2 & \text{se } 2 < x \le 3. \end{cases}$$

• Determinare per quale valore di k la funzione f è continua nel punto x=2.

 $k = \ln 6$

• Per tale valore di k la funzione f è derivabile nel punto x=2?

risposta: no

• Per il valore di k per cui la funzione è continua, trovare i punti di massimo e minimo assoluti di f sul suo dominio di definizione, specificandone l'ascissa e l'ordinata.

punti di massimo assoluto: (3,11)punti di minimo assoluto: $(-2,6e^{-4})$

Nota: non approssimare logaritmi ed esponenziali, ma svolgere i calcoli usandone le proprietà.

Esercizio 3. (Punti 4) Sono date due soluzioni dello stesso soluto e dello stesso solvente. La prima ha concentrazione incognita e la seconda ha concentrazione del 35%. Mescolando una quantità della prima con il doppio di quantità della seconda, si ottiene una soluzione con concentrazione del 27%. Calcolare la concentrazione della prima soluzione.

Esercizio 4. (Punti 5) Scegliendo le coordinate logaritmiche opportune (semilogaritmiche o doppiamente logaritmiche), scrivere l'equazione della retta corrispondente alla funzione $y = 2^{-1}3^{4x-1}$.

scala: semilogaritmica, X = x, $Y = \log_{10} y$

equazione retta: $Y = (4 \log_{10} 3)X - \log_{10} 6$

In scala doppiamente logaritmica è data la retta di equazione $Y = \log_{10} 3 - 6X$. Trovare il corrispondente legame funzionale tra x e y, dove $X = \log_{10} x$ e $Y = \log_{10} y$.

equazione:
$$y = \frac{3}{x^6}$$

Esercizio 5. (Punti 5) Si vuole stimare l'età media μ di una popolazione di pazienti affetti da una certa malattia. Su un campione casuale composto da 100 pazienti affetti dalla malattia risulta un'età media $\bar{x}=80.5$ anni e una deviazione standard campionaria s=6 anni. Trovare gli intervalli di confidenza per l'età media μ all'89% e al 99% (scrivere i valori degli estremi degli intervalli di confidenza con due cifre decimali).

intervallo di confidenza all'89%: [79.54, 81.46] intervallo di confidenza al 99%: [78.94, 82.06]

Come cambia la stima se gli stessi dati \bar{x} e s sono ottenuti da un campione di 400 pazienti?

intervallo di confidenza all'89%: [80.02, 80.98] intervallo di confidenza al 99%: [79.72, 81.28]

Area sotto la curva normale standardizzata

	NT - 112: 4 11 -	Fuori dell'intervallo	Nell'intervallo
valori	Nell'intervallo		
$\operatorname{di} u$	$[\mu - u\sigma, \mu + u\sigma]$	$[\mu - u\sigma, \mu + u\sigma]$	$[\mu + u\sigma, +\infty)$
0	0	1	0,5
0, 2	0,1586	0,8414	0,4207
0, 4	0,3108	0,6892	0,3446
0,6	0,4514	0,5486	0,2743
0, 8	0,5762	0,4238	0,2119
1	0,6826	0,3174	0,1587
1,2	0,7698	0,2302	0,1151
1,4	0,8384	0,1616	0,0808
1,6	0,8904	0,1096	0,0548
1,8	0,9282	0,0718	0,0359
2	0,9544	0,0456	0,0228
2,2	0,9722	0,0278	0,0139
2,4	0,9836	0,0164	0,0082
2,6	0,9906	0,0094	0,0047
2, 8	0,9950	0,0050	0,0025
3	0,9974	0,0026	0,0013
3, 2	0,9986	0,0014	0,0007