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Abstract Nowadays, microarray technology is available to generate a huge amount
of information on gene expression. This information must be statistically processed
and analyzed, in particular, to identify those genes which are useful for the diagno-
sis and prognosis of specific diseases. We discuss the possibility of applying game-
theoretical tools, like the Shapley value, to the analysis of gene expression data.

Via a “truncation” technique, we build a coalitional game whose aim is to stress the
relevance (“sufficiency”) of groups of genes for the specific disease we are interested
in. The Shapley value of this game is used to select those genes which deserve further
investigation. To justify the use of the Shapley value in this context, we axiomatically
characterize it using properties with a genetic interpretation.
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1 Introduction

Proteins are the structural constituents of cells and tissues and may act as necessary
enzymes for biochemical reactions in biological systems. Most genes contain the
information for making a specific protein. This information is coded in genes by
means of the deoxyribonucleic acid (DNA). Gene expression occurs when genetic
information contained within DNA is transcripted into messenger ribonucleic acid
(mRNA) molecules and then translated into the proteins.

Nowadays, the microarray technology allows for the quantification of the expres-
sion (i.e., the amount of mRNA) for genes under the same biological condition (for
instance, a tumor). A microarray works by exploiting the ability of a given mRNA
molecule to bind specifically to, or hybridize to, the DNA template from which it
originated. By using an array containing many DNA samples, it can be determined,
in a single experiment, the expression levels of hundreds or thousands of genes within
a cell by measuring the amount of mRNA bound to each site on the array.

There are several different experimental platforms based on microarray technol-
ogy (see, for instance, Parmigiani et al. 2003). However, a common objective of gene
expression microarrays is to consistently generate a matrix of expression data, in
which the rows (possibly thousands) index the genes and the columns (usually in
the order of tens) index the study samples. Numbers in the matrix represent gene
expression values which quantify the level of expression of genes in the samples.

The aim of this work is to address the problem of quantifying the relative relevance
of genes in a complex scenario—such as the pathogenesis of a genetic disease—on
the basis of the information provided by microarray experiments, taking into account
the level of interaction among the genes.

Complex experimental artifacts associated with microarray data collection empha-
size the need for pre-processing analysis of the data (for instance, the design of the
arrays, the quality assessment of the rough data, the normalization procedures), with
the goal to reduce systematic errors arising from several experimental procedures.
Despite the reduction of experimental bias has been the objective of several works
on microarray analysis in the last few years (see, for example, Dudoit et al. 2001;
Smith and Speed 2003; Parmigiani et al. 2003), in practice the problem of completely
removing the experimental variability is still unsolved and a statistical treatment of
the data provided by microarrays is required.

For this reason, in our approach we refer to the observed average level of inter-
action of a group of genes, i.e., the average number of tumor samples in which such
a group of genes can be considered responsible, according to a pre-defined causality
principle, for the onset of the tumor: the higher the number of samples observed, the
lower the probability that chance could affect the inferences provided by the model.

The basic idea of this model comes from the theory of coalitional games. In par-
ticular, we consider the framework of simple games, which have been widely applied
to the analysis of the power of players in interaction situations as Councils, Parlia-
ment, etc. (Shapley and Shubik 1954; Banzhaf 1965; see Owen 1995 for a general
introduction to this topic and a summary of these results). We adopt the same formal
language of coalitional games for modelling the interaction among genes, considered
as players, in connection with a biological condition of interest, e.g., the pathogenesis
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of a genetic disease or tumor. The game we consider origins from the comparison of
two matrices of gene expression data; one from tumor samples and the other one from
normal DNA (referent healthy subjects). We first use a discriminant method on each
sample to split the whole set of genes in two sets, i.e., those genes showing an ex-
pression ratio largely different from normal samples, and those with expression levels
corresponding to normal DNA samples. At this preliminary stage of the model, for
each single gene, as in detail explained in Sect. 2, we use the interval boundaries con-
taining most data in the normal distribution of that gene as cut-offs for discrimination
(Becquet et al. 2002). We then introduce a causality relation (also called sufficiency
principle) which directly determines the characteristic function of the game. An in-
terpretation of the biological meaning of a relevance index, used for measuring the
“power” of each gene in inducing the tumor, is given and it turns out to coincide with
the Shapley value of the game considered.

We start with some preliminary notations in the next section. In Sect. 3 the class
of microarray games is introduced starting from the general notion of the sufficiency
principle, and some basic properties and examples of such games are reported. In
Sect. 4 an axiomatic characterization of the Shapley value is given by means of five
properties suitable to genetic interpretation of this index. Section 5 concludes with
some considerations on related works and future research.

2 Preliminary notations

Let N = {1,2, . . . , n} be a set of n genes, SR = {sR
1 , sR

2 , . . . , sR
r } be a set of r refer-

ence samples, i.e., the set of cells from normal tissues and let SD = {sD
1 , sD

2 , . . . , sD
d }

be the set of cells from tissues with a genetic disease.
The goal of a microarray experiment is to associate to each sample j ∈ SR ∪SD an

expression profile A(j) = (Aij )i∈N , where Aij ∈ R represents the expression value of
the gene i in sample j . Globally, such expression values will be indicated as the data
set of the microarray experiment. In the following we will refer to the data set result-
ing from the pre-processed method usually called normalization (Dudoit et al. 2001;
Smith and Speed 2003), which allows for comparison among expression intensities
of genes from different samples. The data set can be expressed in the form of two
real valued expression matrices ASR = (A

SR

ij )i∈N,j∈SR
and ASD = (A

SD

ij )i∈N,j∈SD
. In

summary, we will denote as a microarray experimental situation (MES) the tuple
E = 〈N,SR,SD,ASR ,ASD 〉.

As the first step of our analysis, we are interested in understanding whether genes
in samples from the set SD are abnormally expressed with respect to the expression
values showed in samples from the set SR according to a certain discriminative cri-
terium. More precisely, we refer to the set of abnormally expressed genes as the union
of the set of over expressed genes (also called as up regulated genes) and the set of
under expressed genes (also called down regulated genes).

We need to introduce some additional notations to deal with abnormally expressed
genes. Note that gene i ∈ N which results abnormally expressed on a sample j ∈ SD

can be represented setting to 1 the value of a boolean variable Bij ∈ {0,1}. We call
boolean expression profile of a sample j ∈ SD the vector Bj = (Bij )i∈N . A discrimi-
nant method can be expressed as a map m assigning to each expression profile from
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tumor samples a corresponding boolean expression profile. Hence, all the informa-
tion on the differences of gene expression of sample in SD from the ones of sample
in SR can be summarized into a boolean expression matrix BE,m ∈ {0,1}N×SD .

Since for our purposes the relevant information is contained in the boolean expres-
sion matrix BE,m, in the sequel we identify the MES E and the discriminant method
m with the matrix BE,m.

Example 1 Consider an MES Ê = 〈N,SD,SR,ASD , ASR 〉 such that ASR is reported
in the following table

Sample 1 Sample 2 Sample 3 Sample 4

Gene 1 0.5 0.2 0.3 0.6
Gene 2 12 10 4 5
Gene 3 8 13 20 9
Gene 4 0.8 0.4 1.4 1.1

and ASD is reported in the following one

Sample 1 Sample 2 Sample 3

Gene 1 0.9 0.4 0.7
Gene 2 4.6 15 18
Gene 3 7 21 12
Gene 4 1 0.6 1.6

Now consider a very naive discriminant method m̂ for the two classes 1 and 0, where
1 labels abnormally expressed genes and 0 labels normally expressed genes and such
that for each i ∈ N and each j ∈ SD

(
m̂

(
ASD ,ASR

))
ij

=

⎧
⎪⎨

⎪⎩

1, if A
SD

ij ≥ maxh∈SR
A

SR

ih

or A
SD

ij ≤ minh∈SR
A

SR

ih ,

0, otherwise.

Then the corresponding boolean expression matrix is the following

BÊ,m̂ =
⎛

⎜
⎝

1 0 1
0 1 1
1 1 0
0 0 1

⎞

⎟
⎠ .

Now, let us introduce some basic game theoretical notations. A coalitional game
or characteristic-form game is a pair (N,v), where N denotes the finite set of players
and v : 2N → R the characteristic function, with v(∅) = 0. If the set N of players is
fixed, we identify a coalitional game (N,v) with the corresponding characteristic
function v. A group of players T ⊆ N is called a coalition and v(T ) is called the
value of this coalition. A coalitional game (N,w) such that w : 2N → [0,1] is called
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a [0,1]-game. We will denote the class of all [0,1]-games as W , with W � G, being
G the class of all coalitional games.1

Let C ⊆ G be a subclass of coalitional games. Given a set of players N , we denote
by CN ⊆ G the class of coalitional games in C with N as set of players.

The unanimity game (N,uR) on R ⊆ N is the game described by uR(T ) = 1 if
R ⊆ T and uR(T ) = 0, otherwise. Every coalitional game (N,v) can be written as a
linear combination of unanimity games in a unique way, i.e., v = ∑

S⊆N,S �=∅ λS(v)uS

(see, for instance, Owen 1995). The coefficients λS(v), for each S ∈ 2N \ {∅}, are
called unanimity coefficients of the game (N,v).

A coalitional game (N,v) is superadditive if for all S,T ⊆ N with S ∩ T = ∅,
we have v(S) + v(T ) ≤ v(S ∪ T ). A coalitional game (N,v) is monotonic if for all
S ⊆ T ⊆ N , we have v(S) ≤ v(T ). For each S ⊆ N , S �= ∅, and i ∈ S, the quantity
mi(v,S) = v(S) − v(S \ {i}) is the marginal contribution of player i to coalition S.
A coalitional game (N,v) is convex if the marginal contribution of any player to any
coalition is not more than his marginal contribution to a larger coalition, i.e., if it
holds that

mi(v,S) ≤ mi(v,T ) (1)

for all S ⊆ T ⊆ N and all i ∈ S. It is easy to check that convexity implies superaddi-
tivity, but not vice versa.

Let |N | be the cardinality of a finite set N . A payoff vector or allocation
(x1, . . . , xn) of a coalitional game (N,v) is an |N |-dimensional vector describing
the payoffs of the players, such that each player i ∈ N receives xi .

A one-point solution (or simply a solution) for a class C of coalitional games is a
function ψ that assigns a payoff vector ψ(v) to every coalitional game in the class,
that is ψ : CN → R

N .
The most famous solution in the theory of coalitional games is the Shapley value,

introduced by Shapley (1953). Such a solution can be described in several ways. In
view of the analysis of gene relevance in the next section, we introduce the Shapley
value φ applied to game (N,v) ∈ GN by the general formula

φi(v) =
∑

S⊆N :i∈S

(s − 1)!(n − s)!
n! mi(v,S) (2)

for each i ∈ N , where s = |S| and n = |N | are the cardinality of coalitions S and N ,
respectively.

An alternative representation of the Shapley value can be given in terms of the
unanimity coefficients (λS(v))S∈2N \{∅} of a game (N,v), that is:

φi(v) =
∑

S⊆N :i∈S

λS(v)

|S| (3)

for each i ∈ N .

1Let T be a set. To denote a subset S of T we use the notation S ⊆ T ; S � T means S ⊆ T and S �= T ;
S � T means that S ⊆ T is not true.
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Another one-point solution for coalitional games is the Banzhaf value, introduced
by Alon et al. (1999). The Banzhaf value βi(v) of a game (N,v) ∈ GN , is defined as
follows

βi(v) =
∑

S⊆N :i∈S

1

2n−1
mi(v,S) (4)

for each i ∈ N . An alternative representation of the Banzhaf value can also be given
in terms of unanimity coefficients (λS(v))S∈2N \{∅} of a game (N,v), that is:

βi(v) =
∑

S⊆N :i∈S

λS(v)

2s−1
(5)

for each i ∈ N .
Finally, a relevant set, possibly empty, of payoff vectors of a coalitional game

(N,v) is the core, which is defined as follows:

core(v) =
{
x ∈ R

N |
∑

i∈S

xi ≥ v(S) ∀S ∈ 2N \ {∅};
∑

i∈N

xi = v(N)

}
.

3 Interaction among genes

Consider an MES E = 〈N,SD,SR,ASD ,ASR 〉 and a discriminant method m. In this
phase of the analysis we assume that the boolean expression profile BE,m(j), for
each sample j ∈ SD , is a sufficient condition for the onset of the disease (sufficiency
principle for groups of genes). Stated differently, a group of genes U ⊆ N which
are abnormally expressed in a sample of SD (according to a discriminant method
m applied to the reference expression matrix ASR ) implies that an individual whose
sample has at least all (possibly many more, due to biological and technical bias
affecting the data set) the genes in U abnormally expressed (again on the basis of m

and ASR ) should have the disease.
The aim of this work is to give an answer to the following questions: how much

relevant for the onset of a tumor are the genes which are abnormally expressed inside
the sample SD? Is it possible to provide a measure of the power of genes in determin-
ing the onset of the tumor in an individual, on the basis of the information collected
via samples SD and SR and the discriminant method m used?

Consider, for instance, an MES Ẽ = 〈N,SD,SR,ASD ,ASR 〉 and a discriminant
method m̃ such that the corresponding boolean expression matrix is

BẼ,m̃ =
⎛

⎜
⎝

1 1 1
0 0 0
1 1 1
0 0 0

⎞

⎟
⎠ . (6)

On matrix (6) it seems very reasonable to affirm that on the basis of the information
collected on the set of samples ASR and the discriminant method used m̃, all the genes
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abnormally expressed have the same relevance in causing the tumor, assuming the
principle of sufficiency for groups of abnormally expressed genes introduced before.

On the other hand, it could be reasonable to expect experimental situations where
there are many boolean expression profiles inside the sample SD , like in the boolean
expression matrix of Examples 1 and 2.

Example 2 Consider again the MES Ê of Example 1 and a more conservative dis-
criminant method m̄ such that for each i ∈ N and each j ∈ SD

(
m̄

(
ASD ,ASR

))
ij

=
{

1, if A
SD

ij ≤ p25%
i or A

SD

ij ≥ p75%
i ,

0, otherwise,

where p25%
i and p75%

i are the 25th and the 75th percentiles of the expression distri-
bution of gene i (i.e., the ith row) in the reference expression matrix ASR , for each
i ∈ N . The resulting boolean expression matrix is the following

BÊ,m̄ =
⎛

⎜
⎝

1 0 1
1 1 1
1 1 0
0 1 1

⎞

⎟
⎠ .

How to deal with these situations?
Given an MES E = 〈N,SD,SR,ASD ,ASR 〉 and a discriminant method m, first

we determine the average number of individuals with the tumor due to the abnor-
mal expression of a given group of genes. For each group U ⊆ N , we look at the
number of groups of abnormal expressed genes in BE,m that are included in U . We
formalize such a concept via the following definitions (recall that BE,m(j) denotes
the column j , j ∈ SD , of the boolean expression matrix BE,m).

Definition 1 Let W ∈ {0,1}N , n ∈ {1,2, . . .}. We define the support of W , denoted
by sp(W), by the set

sp(W) = {
i ∈ {1, . . . , n} | Wi = 1

}
.

Example 3 Consider the boolean matrix BÊ,m̂ of Example 1.

Then sp(BÊ,m̂(1)) = {1,3}, sp(BÊ,m̂(2)) = {2,3}, and sp(BÊ,m̂(3)) = {1,2,4}.

Definition 2 Let E = 〈N,SD,SR,ASD ,ASR 〉 be an MES and let m be a discrimi-
nant method. We define the corresponding microarray game as the coalitional game
(N,v), where

• The set of genes N is the set of players.
• The characteristic function v assigns to each coalition T ∈ 2N \ {∅} the average

number of samples with tumor determined by T according to the sufficiency prin-
ciple for groups of genes.
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More precisely, we define v(T ), for each T ∈ 2N \ {∅}, as the value

v(T ) = |�(T )|
|SD| , (7)

where |�(T )| is the cardinality of the set

�(T ) = {
k ∈ SD | sp

(
BE,m(k)

) ⊆ T , sp
(
BE,m(k)

) �= ∅}
(8)

and v(∅) = 0.

The class of microarray games will be denoted with the symbol M. Note that the
class of microarray games is a proper subclass of the class of [0,1]-games. More
precisely, if |SD| is fixed, the characteristic function of a microarray game may take
values only in the set { k

|SD | |k = 0, . . . , |SD|}.

Remark 1 Condition sp(BE,m(k)) �= ∅ in relation (8) is due to practical considera-
tions concerning the interpretation of the sufficiency principle for groups of genes
on samples where genes do not show any abnormal expression properties. We are
assuming that such a sample contributes to decrease the level of association between
the abnormal expression of genes and the disease in all coalitions S ⊆ N , S �= ∅. Con-
sider for instance an MES Ė = 〈N,SD,SR,ASD ,ASR 〉 and a discriminant method ṁ

such that the corresponding boolean expression matrix is

BĖ,ṁ =
⎛

⎜
⎝

1 1 0
0 1 0
1 0 0
0 1 0

⎞

⎟
⎠ .

Since the sample represented on the third column of the boolean matrix BĖ,ṁ is a
vector of zeros, it is easy to check in relation (7) that the numerator is always smaller
than |SD| = 3 and, consequently, v(T ) < 1, for each T ⊆ N .

Let E = 〈N,SD,SR,ASD ,ASR 〉 be an MES and let m be a discriminant method. Ac-
cording to equality (7), an equivalent way to calculate the corresponding microarray
game v is as a sum of unanimity games as follows

v = 1

|SD|
∑

j∈SD :sp(BE,m(j)) �=∅
usp(BE,m(j)), (9)

where usp(BE,m(j)) is the unanimity game on sp(BE,m(j)) ⊆ N , for each j ∈ SD .
Alternatively, it is possible to rewrite (9) in terms of the unanimity coefficients of

a microarray game v. In formula

v =
∑

S⊆N :S �=∅
λSuS, (10)
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where λS = λ̄S|SD | and λ̄S = |{k ∈ SD|sp(BE,m(k)) = S}| is the number of occurrences

of the coalition S as support in the boolean expression matrix BE,m.

Example 4 Consider again the boolean matrix BÊ,m̂ of Example 1. By (9) the corre-
sponding microarray game ({1,2,3,4}, v) is such that

v = 1

3
(u{1,3} + u{2,3} + u{1,2,4}).

It follows that v(1) = v(2) = v(3) = v(4) = 0, v(1,2) = v(1,4) = v(2,4) =
v(3,4) = 0, v(1,3) = v(2,3) = v(1,3,4) = v(2,3,4) = v(1,2,4)= 1

3 , v(1,2,3)= 2
3 ,

v(1,2,3,4) = 1.

Proposition 1 introduces some basic properties of microarray games.

Proposition 1 Let 〈N,SD,SR,ASD ,ASR 〉 and m be an MES and a discriminant
method, respectively, and let v be the corresponding microarray game in MN . Then
v is a monotonic and convex coalitional game.

Proof First, note that by (10) microarray games are positive linear combination of
unanimity games. It is a well known fact that unanimity games are monotonic and
convex games. The proof of Proposition 1 immediately follows from the fact that
a linear combination of monotonic and convex games with nonnegative coefficients
preserves monotonicity and convexity, respectively. �

At this point, the main question addressed by our work can be reformulated in the
following terms: is it possible to employ the standard theory of coalitional games to
measure the relevance of each gene in determining the onset of a tumor on the basis
of the microarray experimental situation observed and the discriminant method used?

In the last fifty years, many studies have addressed the goal of evaluating the
power of players (e.g., members of councils, voters in an electoral system, parties
in a parliament, individual components of a complex system, etc.) in simple games,
which are coalitional games whose characteristic function can only assume values
1 (for winning coalitions, e.g., coalitions which are able to force the endorsement
of a motion) or 0 (for loosing coalitions) (see, for instance, Owen 1995 for a gen-
eral introduction to simple games and political applications; Ramamurthy 1990 for
an application in the framework of reliability theory, to investigate the relation-
ship between the operating state of a complex system and the operating state of
its individual components). In such contexts, the idea was to evaluate the amount
of power of players according to the role covered by each of them in supporting
the goal of each possible coalition. In practice, the Shapley value (Shapley 1953;
Shapley and Shubik 1954), as well as other solutions for coalitional games, has been
used as a power index, i.e., a function assigning to each simple game (N,w), where
N is a finite set of players, a vector of |N | real numbers indicating the power of each
player in (N,w) (Shapley and Shubik 1954; Banzhaf 1965).

Taking into consideration such applications, it is not counterintuitive to look at the
Shapley value of a microarray game as a possible measure of the relevance of the
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involved genes. Section 4 is devoted to support this idea by means of an axiomatic
characterization of the Shapley value on the class of microarray games, satisfying
properties which have a sound interpretation in the genomic scenario.

Note that if an MES is given, the computation of the Shapley value φ(v) of the
corresponding microarray game v ∈ MN , in virtue of (3) and (10), is very easy,
independently from the number of genes involved. More precisely, we have that

φi(v) = 1

|SD|
∑

S⊆N :i∈S

λ̄S

|S| (11)

for each i ∈ N . If the original MES is not given, and only a microarray game v ∈MN

is given, formula (11) does not apply and the computation of the Shapley value of v

may be very hard if the number of genes is high. Since we are interested to practical
situations, where the original MES is always given as the output of a microarray
experiment, we do not further investigate the computational aspects related to the
Shapley value calculation when only the characteristic function (and not the original
MES) is known.

We conclude this section introducing some examples of application of the Shapley
value to microarray games. In particular, Example 8 deals with an application on a
microarray game arising from an MES with real microarray data provided by the
literature.

Example 5 The Shapley value of the microarray game in Example 4 is ( 5
18 , 5

18 , 1
3 , 1

9 ).

This means that on the basis of the corresponding MES Ê and the discriminant
method m̂ the Shapley value of the microarray game states that the most important
attribute in determining the tumor onset—on the average—is gene 3, followed by
genes 1 and 2 with the same score and gene 4.

Example 6 The Shapley value of the microarray game corresponding to the boolean
matrix in Example 2 is ( 2

9 , 1
3 , 2

9 , 2
9 ). On the basis of the considerations detailed in

Example 5, we obtain that the most important gene in determining the tumor onset,
on the average, is gene 2, followed by gene 1, 3 and 4 with the same score.

Example 7 Consider again the boolean expression matrix (6). The Shapley value of
the corresponding microarray game is ( 1

2 ,0, 1
2 ,0).

Example 8 We introduce here a preliminary application of our model to a real MES
Ec = 〈N,SD,SR,ASD ,ASR 〉 where ASD and ASR represent the tumor/normal data
set (freely obtainable from the web2) containing expression levels of a set N of 2000
genes measured using Affymatrix oligonucleotide microarrays for a set SD of 40 tu-
mor samples and a set SR of 22 normal samples, in total 62 samples from colon
tissues (Alon et al. 1999). After the preprocessing stage performed by the Biocon-
ductor specific software for microarray analysis (Gentleman et al. 2004), the dis-
criminant method m̂ introduced in Example 1 is applied in order to provide the

2http://microarray.princeton.edu/oncology/affydata/index.html.
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Fig. 1 On the x-axis, top 200
genes are labelled in decreasing
order according to the Shapley
value. For each gene
i ∈ {1, . . . ,200}, the
yi -coordinate on the left y-axis
of each triangle point-down
represents the Shapley value
φi(vc) (values must be divided
by 100); the yi -coordinate on
the left y-axis of each triangle
point-up equals the ratio ωi(vc);
the yi -coordinate on the right
y-axis of the increasing stair
steps line equals the number of
genes with Shapley value not
smaller than φi(vc) that at the
same time have a ratio ω(vc) not
smaller than ωk(vc), where k is
the ith gene when genes are
ranked in decreasing order
according to ω(vc)

boolean expression matrix BEc,m̂, which finally produces the corresponding microar-
ray game (N,vc).

The Shapley value φ(vc) of the microarray game (N,vc) is computed by means
of the procedure suggested by (11), implemented in the programming language R

(R Development Core Team 2004). Also the discriminant methods and other proce-
dures for the management of data sets used in this application is implemented using
the language and environment R. For graphical reasons, only the Shapley value dis-
tribution of the 200 genes with highest Shapley value is depicted in Fig. 1.

For each gene i ∈ N , the ratio of samples such that gene i takes value 1 in the
Boolean matrix BEc,m̂ is also computed. In formula,

ωi(vc) = |{j ∈ SD|BEc,m̂
ij = 1}|

|SD| (12)

for each gene i ∈ N .
In Fig. 1 the ratio ωi(vc) is plotted (triangle point-up) for the 200 genes with

highest Shapley value. The two graphs show that if relevant genes are selected as the
first m genes with highest Shapley value, these genes usually do not coincide with
the first m genes with highest ω(vc) ratio, for each m ∈ {1, . . . ,200}. The number of
genes among the first m with highest Shapley value which are also among the first
m with highest ω(vc) is computed, for each m ∈ {1, . . . ,200}, and plotted as a stair
steps line in Fig. 1. The overlap number is found to vary between 100% and 45%
(median 81%) of the number m of selected genes, with m ∈ {1, . . . ,200}.

In Table 1, the first ten genes with highest Shapley value on the microarray game
(N,vc) are indicated.

Some of the genes selected were previously observed in association with the colon
cancer (Fujarewicz and Wiench 2003): the vasoactive intestinal peptide (VIP) has
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Table 1 Top ten genes ranked according to the Shapley value. In bold we indicate those genes which are
also ranked among the top ten genes according to the Banzhaf value calculated according to relation (5)

Gene number Gene name Shapley ×(10−3)

Z50753 H. sapiens mRNA for GCAP-II/ 3.83

uroguanylin precursor

H17434 NUCLEOLIN (HUMAN) 3.56

H06524 GELSOLIN PRECURSOR, PLASMA (HUMAN) 3.34

H72234 DNA-(APURINIC OR APYRIMIDINIC SITE) 3.33

LYASE (HUMAN)

M36634 Human vasoactive intestinal peptide (VIP) 3.23

mRNA, complete cds.

U06698 Human neuronal kinesin heavy chain mRNA, 3.21

complete cds.

H61410 PLATELET GLYCOPROTEIN IV (H. sapiens) 3.14

R39209 HUMAN IMMUNODEFICIENCY VIRUS TYPE I 3.13

ENHANCER-BINDING PROTEIN 2 (H. sapiens)

M58050 Human membrane cofactor protein (MCP) 3.09

mRNA, complete cds.

H08393 COLLAGEN ALPHA 2(XI) CHAIN (H. sapiens) 3.01

been suggested to promote the growth and proliferation of tumor cells; the mem-
brane cofactor protein (MCP) represents a possible mechanism of the ability of the
tumor to evade destruction by the immune system (tumor escape); gelsolin is a pro-
tein which acts as both a regulator and an effector of apoptosis, i.e., the mechanism
responsible for the physiological deletion of cells. DNA-apurinic or apyrimidinic site
lyase protein plays an important role in DNA repair and in resistance of cancer cells
to radiotherapy (Moler et al. 2000).

4 An axiomatic characterization of the Shapley value with genetic
interpretation

A gene regulatory pathway (GRP) is a collection of genes in a cell which interact
with each other, dynamically orchestrating the level of expression of the genes in the
collection. A simple GRP would consist of one or more input signaling pathways,
regulatory proteins that integrate the input signals, several target genes and the RNA
and proteins produced from those target genes (Bower and Bolouri 2001). Inferring
GRPs from gene expression data is a crucial step to understand the function of genes
in the onset of a genetic disorder. Yet the mechanisms that control gene expression in
many, if not most, GRPs, are only beginning to be elucidated. For example, Thymidy-
late synthase (TS) plays an important role in chemotherapy for colon cancer and is
thought to be one of the target genes that the E2F1 transcription factor binds to and
regulates. However, the GRP governing the expressions of genes TS and E2F1 in
primary colon cancer specimens remains unclear (Kasahara et al. 2000).
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One of the main difficulties to understand the main mechanisms governing gene
regulatory pathways is the high number of genes involved in a microarray study.
A strategy to reduce the complexity related with the high number of genes involved
in GRP is to filter out noisy, irrelevant and redundant genes (Jager 2006). The expres-
sion of noisy genes is strongly affected by noise in the measurements, which stems
from experimental variation but can also reflect sampling effects. Irrelevant genes are
those that are not related to the disease, for instance, genes that are constantly ex-
pressed at the same level in normal and tumor samples. Redundant genes are those
that are highly correlated to other genes and, in fact, are regulated by others which
can be considered the biologically relevant genes, i.e., those genes which are primar-
ily responsible for the onset of the genetic disorder and could be used for a diagnostic
microarray design.

In this section we claim that the Shapley value can be used for the selection of bi-
ologically relevant genes. We support this claim by means of the so-called ‘property
driven’ (or ‘axiomatic’) approach, that is: we shall be able to characterize the Shap-
ley value of a microarray game using basic properties. The aim of these properties
is to state how a relevance index should behave in very simple situations of genes
interaction.

In the direction of characterizing the Shapley value by means of properties with a
genetic interpretation, first we need to embed the notion of GRP into the context of
microarray games using a game theoretical terminology. In this respect, the definition
of partnership of genes plays a key role.

Definition 3 Let v ∈ MN . A coalition S ∈ 2N \ {∅} such that for each T � S and
each R ⊆ N \ S

v(R ∪ T ) = v(R) (13)

is a partnership of genes in the microarray game v.

Note that the concept of partnership in coalitional games has been introduced in
Kalai and Samet (1988) in a general context not involving genes in order to represent
those coalitions in a coalitional game v that behaves like one individual, since all its
sub-coalitions are powerless. There are at least two important reasons supporting the
decision to adopt the definition of partnership of genes as a good representation of a
GRP in the microarray game context.

First, the definition of partnership does not require any a priori information on
the exact regulatory mechanisms among genes inside the GRP. Due to the high com-
plexity of a GRP, this kind of information is not yet available for many genes. For
example, as we already mentioned, it is not yet clarified which genes in the GRP
including TS and E2F1 regulates each other in primary colon cancer cells.

Second, the definition of partnership requires that it is not possible to recognize
a proper subgroup of genes which directly interact with an external gene or group
of genes in provoking the onset of the tumor. This is a necessary condition for a
collection of genes to behave as a GRP, seen as network of genes able to specify
the identity and level of expression of groups of target genes. On the other hand, it is
possible that the joint value of a coalition made by two disjoint partnerships would be
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greater than the mere sum of their single values, keeping into account the possibility
that distinct GRPs may interact inside a cell.

We call relevance index for genes a solution F : MN → R
N on the class of mi-

croarray games with the set of genes N as the set of players. Some interesting prop-
erties for relevance indexes, related to the concept of partnership of genes, are the
following.

Property 1 Let v ∈ MN . The solution F has the Partnership Rationality (PR) prop-
erty, if

∑

i∈S

Fi(v) ≥ v(S)

for each S ∈ 2N \ {∅} such that S is a partnership of genes in the game v.

The PR property determines a lower bound of the power of a partnership, i.e., the
total relevance of a partnership of genes in determining the onset of the tumor in the
individuals should not be lower than the average number of cases of tumor enforced
by the partnership itself.

Property 2 Let v ∈ MN . The solution F has the Partnership Feasibility (PF) prop-
erty, if

∑

i∈S

Fi(v) ≤ v(N)

for each S ∈ 2N \ {∅} such that S is a partnership of genes in the game v.

On the contrary of PR, the PF properties determines an upper bound of the power
of a partnership, i.e., the total relevance of a partnership of genes in determining the
tumor onset in the individuals should not be greater than the average number of cases
of tumor enforced by the grand coalition.

Together, PR and PF identify a nonnegative scale to quantify the relevance of
genes in provoking a disease, assigning value 1 to a partnership of genes that alone,
according to the sufficiency principle, is responsible for the disease in all the tumor
samples.

Basically, the criterium to compare the relevance of different partnerships is their
values in the microarray game, but some extra relevance can be attributed to target
genes in the partnerships according to their role in all possible coalitions.

Property 3 Let v ∈ MN . The solution F has the Partnership Monotonicity (PM)
property, if

Fi(v) ≥ Fj (v)

for each i ∈ S and each j ∈ T , where S,T ∈ 2N \ {∅} are partnerships of genes in v

such that S ∩ T = ∅, v(S) = v(T ), v(S ∪ T ) = v(N), |S| ≤ |T |.
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The PM property is very intuitive: consider two disjoint partnerships of genes enforc-
ing the same average number of cases of tumor in the set of samples. If the genes
outside the union of those two partnerships are irrelevant—that is, they do not con-
tribute in increasing the average number of tumors—then genes in the smaller part-
nership should receive a higher relevance index than genes in the bigger one, where
the likelihood that some genes are redundant is higher.

The next two properties do not involve the concept of partnership of genes.

Property 4 3 Let v1, . . . , vk ∈ MN , k > 1. The solution F has the Equal Splitting
(ES) property, if

F

(∑k
i=1 vi

k

)
=

∑k
i=1 F(vi)

k
.

Remark 2 We want to reassure the reader that
∑k

i=1 vi

k
∈ MN .

First, consider a sequence of k MESs E1, . . . ,Ek , k > 1, with the same set of genes
N and such that the cardinality of the set of samples with the disease in each MES Ei

is the same, for each i ∈ {1, . . . , k}. For each i ∈ {1, . . . , k}, let mi be a discriminant
method that can be applied on the MES Ei . Consequently, the k boolean expression
matrices BE1,m1

1 , . . . ,BEk,mk

k , have the same number of columns and the same num-
ber of rows. Let v1, . . . , vk ∈ MN be the microarray games defined on the boolean

matrices BE1,m1
1 , . . . ,BEk,mk

k , respectively. Then
∑k

i=1 vi

k
coincides with the microar-

ray game corresponding to the boolean expression matrix obtained juxtaposing the
matrices BE1,m1

1 , . . . ,BEk,m
k .

On the other hand, we want to prove that given k microarray games v1, . . . ,

vk ∈ MN , k > 1, we have
∑k

i=1 vi

k
∈ MN , independently from the fact that the

boolean expression matrices corresponding to such games have the same number
of columns. In order to prove this fact for k = 2 a cumbersome notation is needed.
Let B1 ∈ {0,1}N×SD1 and B2 ∈ {0,1}N×SD2 be two boolean expression matrices
with the same set of genes N and where SD1 = {sD1

1 , sD1
2 , . . . , sD1

l } and SD2 =
{sD2

1 , sD2
2 , . . . , sD2

p } are two sets of tumor samples. Let ⊕ : R
N×SD1 × R

N×SD2 →
R

N×{s1,s2,...,sl+p} be a matrix operator such that if C = B1 ⊕ B2 then C(sj ) =
B1(sD1

j ) for each j ∈ {1, . . . , l} and C(sj+l ) = B2(sD2
j ) for each j ∈ {1, . . . , p}. Let

v1, v2 ∈ MN be two microarray games, obtained by Definition 2 on B1 and B2, re-
spectively. It is easy to check that the game v1+v2

2 is the microarray game correspond-

ing to the boolean expression matrix (
⊕p

i=1 B1) ⊕ (
⊕l

i=1 B2). For k > 2 similar ar-
guments hold, too.

The ES property requires that the average relevance index of genes in two or more
different microarray games v1, . . . , vr ∈MN with the same set of genes, even arising

3Assuming the continuity of F , it can be proved, using functional equation theory, that the ES property

is equivalent to the simpler property of requiring that F satisfies F( v+w
2 ) = F(v)+F(w)

2 for each pair

v,w ∈ MN .
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from MES provided by different laboratories, must be equal to the relevance index of

genes in the average game
∑r

i=1 vi

r
. There is no reference in the definition of the ES

property neither to the accuracy of the relevance index in each different microarray
game vi , i ∈ {1, . . . , r}, nor to the accuracy of the relevance index in the average

microarray game
∑r

i=1 vi

r
. For a discussion on how to estimate the accuracy of the

relevance index in a microarray game see Moretti (2006a).
The ES property simply underlies a principle of equivalence of reliability lev-

els for microarray games arising from different MES. If we have reasons to assume
that different microarray games are equally reliable, then the ES property advices to
behave in a natural way to summarize the relevance indexes: making the average.
For example, it could be the case of microarray games arising from the equal split-
ting of the same MES. Let 〈N,SD,SR,ASD ,ASR 〉 be an MES and let SD1, . . . , SDm

form a partition of the set of samples SD such that |SD1 | = |SD2 | = · · · = |SDm |. If
the ES property holds, then the relevance index computed on the microarray game
corresponding to 〈N,SD,SR,ASD ,ASR 〉 equals the average of the relevance indices
computed on the microarray games arising from the microarray experimental situ-
ations 〈N,SD1, SR,ASD1 ,ASR 〉, . . . , 〈N,SDm,SR,ASDm ,ASR 〉, respectively. In fact,
there is no reason to assume that an MES 〈N,SDq , SR,ASDq ,ASR 〉 should be more
reliable than 〈N,SDt , SR,ASDt ,ASR 〉, for some q, t ∈ {1, . . . ,m}; moreover, the rel-
evance index of genes in the MES 〈N,SD,SR,ASD ,ASR 〉 is independent from the
equal splitting partition {SD1, . . . , SDm} chosen.

The fifth and last property involves the definition of null gene of a game (N,v),
that is a player i ∈ N such that v(S ∪ i) = v(S) for each S ⊆ N \ {i}.

Property 5 Let v ∈ MN . The solution F has the Null Gene (NG) property, if for
each null gene i ∈ N

Fi(v) = 0.

The interpretation of the NG property is straightforward: if a player does not con-
tribute anything to each coalition S ∈ 2N then he gets null relevance.

Remark 3 It is well known in literature that the Shapley value satisfies the NG prop-
erty on each class of coalitional games CN ⊆ GN . The ES property directly follows
from Remark 2 together with additivity and homogeneity of the Shapley value φ

on GN , that is φ(αv +βw) = αφ(v)+βφ(w) for each v,w ∈ GN and each α,β ∈ R.

Remark 4 Another fact known in the literature is that the Banzhaf value satisfies
the NG property on each class of coalitional games CN ⊆ GN . From considerations
similar to ones expressed in Remark 3, it follows that the Banzhaf value satisfies the
ES property as well.

The following Lemmas 1, 2 and Proposition 2 play a role in the axiomatic charac-
terization of the Shapley value on the class of microarray games introduced in Theo-
rem 1. First, we need to introduce some notions. Let v ∈MN and let S ∈ 2N \ {∅} be
a partnership in v. Then it is trivial to prove that each T ⊆ S is a partnership itself.
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A maximal partnership S ∈ 2N \ {∅} in v is a maximal subset of N with the property
to be a partnership in v.

Note that, by Definition 3, it immediately follows that all one player coalitions
are partnerships in v. One easily obtains that the collection of maximal partnerships
in v forms a partition of N . For instance, in the microarray game ({1,2,3,4}, v)

of Example 4, the set of all of the maximal partnerships is {{1}, {2}, {3}, {4}} and
coincides with set of all the partnerships in v; whereas in the microarray game of
Example 7, the set of all of the maximal partnerships is {{1,3}, {2,4}}.

Lemma 1 Let v ∈MN and let S ∈ 2N \ {∅} be a partnership in v. Then the Shapley
value attributes the same relevance index to players in S.

Proof Let φ(v) be the Shapley value on the game v. For each U ⊆ N such that i ∈ U

the marginal contribution of player i ∈ S is the following

v(U) − v(U \ {i})
= v([U ∩ S] ∪ [U \ S]) − v([(U ∩ S) \ {i}] ∪ [U \ S])

=
{

v(U \ S) − v(U \ S) if U ∩ S �= S

v(U) − v(U \ S) if U ∩ S = S

=
{

0 if U ∩ S �= S

v(U) − v(U \ S) if U ∩ S = S,
(14)

where the second equality follows by Definition 3 on partnership S.
Then, the marginal contribution of each player i ∈ S to coalition U is different

from zero only if S is a subset of U , which means that by (2) the Shapley value of
each player i ∈ S is

φi(v) =
∑

U⊆N :i∈U

(u − 1)!(n − u)!
n!

(
v(U) − v

(
U \ {i}))

=
∑

U⊆N :S⊆U

(u − 1)!(n − u)!
n!

(
v(U) − v(U \ S)

)
,

proving that the Shapley value is the same for each player i ∈ S. �

Remark 5 Let v ∈ MN and let S ∈ 2N \ {∅} be a partnership in v. Note that by
formula (4) and relation 14, following arguments similar to ones used in proof of
Lemma 1, we have that the Banzhaf value of each player i ∈ S is

βi(v) =
∑

U⊆N :i∈U

1

2n−1

(
v(U) − v

(
U \ {i}))

=
∑

U⊆N :S⊆U

1

2n−1

(
v(U) − v(U \ S)

)
,

proving that also the Banzhaf value is the same for each player i ∈ S.
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Lemma 2 Let v ∈MN and let S ∈ 2N \ {∅} be a partnership in v. Then

v(U) = 0

for each U � S.

Proof Suppose on the contrary v(U) �= 0. Then, by Definition 2, v(R ∪ U) > v(R)

for each R ⊆ N \ U , which yields a contradiction by Definition 3. �

Proposition 2 The Shapley value satisfies the properties PM, PR, PF.

Proof Let v ∈ MN and let φ(v) be the Shapley value on the game v.

(i) Let S and T be two disjoint partnerships such that v(S) = v(T ) and v(S ∪ T ) =
v(N). If v(N) = 0, then φi(v) = 0 for each i ∈ S ∪ T and the PM property is
satisfied.

Consider now the case v(N) > 0. First note that if S and T are subsets of two
different maximal partnerships U and V , respectively, then S = U and T = V .
In fact, suppose on the contrary that S � U or T � V . By condition v(S) = v(T )

and Lemma 2 we have v(S) = v(T ) = 0, and then, by Definition 3, it follows
v(S ∪ T ) = 0 �= v(N), which yields a contradiction. Consequently, we have just
to prove that the PM property holds under the following two cases:
(i.i) S and T are two different maximal partnerships. By condition v(S ∪ T ) =

v(N) and Definition 2, it turns out that v(U) = v(U ∩ (S ∪ T )) for each
U ⊆ N . By Lemma 2 and Definition 3 v(R) = 0 for each R ⊆ S ∪ T , with
S,T � R. Hence, by relation (10) it is possible to write the game v in
terms of unanimity games in the following way

v = λSuS + λT uT + λS∪T uS∪T .

By relation (11), we have that

φi(v) = 1

|SD|
(

λ̄S

|S| + λ̄S∪T

|S| + |T |
)

(15)

for each i ∈ S and

φj (v) = 1

|SD|
(

λ̄T

|T | + λ̄S∪T

|S| + |T |
)

(16)

for each j ∈ T . Moreover, by Lemma 2, we have that λS = λ̄S|SD | = |�(S)|
|SD | =

v(S) and λT = λ̄T|SD | = |�(T )|
|SD | = v(T ). Since v(S) = v(T ), we can rewrite

relations (15) and (16), respectively, in the following way

φi(v) = v(S)

|S| + 1

|SD|
λ̄S∪T

|S| + |T | (17)
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for each i ∈ S and

φj (v) = v(S)

|T | + 1

|SD|
λ̄S∪T

|S| + |T | (18)

for each j ∈ T . By relation (17) and (18) we immediately have that for
each i ∈ S and each j ∈ T

φi(v) ≥ φj (v) ⇔ |S| ≤ |T |,

proving that the PM property holds.
(i.ii) S and T are subsets of the same maximal partnership. Then, by Lemma 1,

the Shapley value is the same for each i ∈ S ∪ T , proving that the PM
property holds. This concludes the proof that the Shapley value satisfies
the PM property.

(ii) The convexity of microarray games by Proposition 1 guarantees that the Shapley
value φ(v) is in the core of the microarray game v. The PR property follows
directly from coalitional rationality of core allocations.

(iii) For each S ∈ 2N \ {∅} such that S is a partnership in v, by monotonicity of
v and the fact that φ(v) is in the core of the microarray game v we have∑

i∈N\S φi(v) ≥ v(N \ S) ≥ 0. On the other hand, by efficiency of the Shap-
ley value,

∑
i∈N φi(v) = v(N) and then

∑
i∈S φi(v) ≤ v(N), which proves that

the Shapley value satisfies the PF property. �

Remark 6 Let a finite set N be given. Note that the PR, PF, PM, ES, and NG proper-
ties previously introduced are defined for relevance indexes, i.e., solutions for games
in MN . This is due to the fact that in this paper we focus on the interpretation of
such properties in the biological context of microarray experiments. However, from
a mathematical point of view, these five properties are meaningful also for solutions
on the class of coalitional games GN . In fact, the definition of partnership has been
introduced in Kalai and Samet (1988) for games in GN .

As we already observed in Remark 3, the Shapley value, as a solution for coali-
tional games in GN , satisfies the NG and ES properties even on the class GN . On the
other hand, we are not allowed to claim the same statement with respect to the other
properties, PR, PF, and PM. Consider, for instance, the coalitional game ({1,2}, v)

such that v({1,2}) = 1, v({1}) = −2 and v({2}) = 0. Obviously, v is not a microarray
game (coalition {1} gets a negative value) and it is easy to check that {1} and {2} are
two partnerships in the game v. But, in this game v, the Shapley value allocates − 1

2
to player 1 and 3

2 to player 2, and, consequently, the PF property is not satisfied by the
Shapley value on partnership {2}. We skip the easy proof that neither the PM prop-
erty nor the PR property is satisfied by the Shapley value on the class of coalitional
games GN .

Remark 7 Let v ∈ MN and let β(v) be the Banzhaf value on the game v. Following
the same line (i) in the proof of Proposition 2 it is possible to prove that the Banzhaf
value satisfies the PM property. Specifically, by formula (5), the use of relations (17)
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and (18) in (i.i) of the proof would be replaced, respectively, by the use of the follow-
ing relations

βi(v) = v(S)

2|S|−1
+ 1

|SD|
λ̄S∪T

2|S|+|T |−1
(19)

for each i ∈ S and

βj (v) = v(S)

2|T |−1
+ 1

|SD|
λ̄S∪T

2|S|+|T |−1
(20)

for each j ∈ T ; the use of Lemma 1 in (i.ii) of the same proof would be replaced by
the use of Remark 5.

The Banzhaf value satisfies also the PF property. In fact, for each S ∈ 2N \ {∅} we
have

∑

i∈S

βi(v) =
∑

i∈S

1

|SD|
∑

S⊆N :i∈S

λ̄S

2|S|−1

≤
∑

i∈S

1

|SD|
∑

S⊆N :i∈S

λ̄S

|S| =
∑

i∈S

φi(v) ≤ 0, (21)

where the first equality follows by relations (5) and (10), the second equality by
relation (11) and the second inequality by Proposition 2 (PF property of the Shapley
value φ).

In conclusion, by Remark 4, it follows that the Banzhaf value satisfies the proper-
ties NG, ES, PM, and PF on the class of microarray games MN .

It is easy to find a microarray game where the Banzhaf value does not satisfy the
PR property. Consider, for example, the unanimity game ({1,2,3,4}, u{1,2,3}). Then,
βi(u{1,2,3}) = 1

23−1 = 1
4 for each i in the partnership {1,2,3} and u{1,2,3}(1,2,3) =

1 > 3
4 = ∑

i∈{1,2,3} βi(u{1,2,3}).
We conclude this remark noticing that the normalized Banzhaf value does not

satisfy ES.

Theorem 1 Let a finite set N be given. The Shapley value on the class MN of mi-
croarray games is the unique relevance index which satisfies the properties PR, PF,
PM, ES, and NG.

Proof We already know by Proposition 2 and Remark 3 that the Shapley value satis-
fies the five properties PR, PF, PM, ES, and NG. To prove the uniqueness consider a
map ψ :MN → R

N satisfying PR, PF, PM, ES, and NG.
Consider the unanimity game (N,uS) ∈ MN , where S ∈ 2N \ {∅}. First note

that players j ∈ N \ S are null genes. Then, by NG property, ψj(uS) = 0 for each
j ∈ N \ S.

Moreover, it is easy to see that S is a maximal partnership in uS . Then, by
Lemma 2, for each pair of nonempty sets U,W ⊆ S such that U ∩ W = ∅ and
U ∪ W = S, uS(U) = uS(W) = 0 and uS(U ∪ W) = uS(S) = uS(N). Since PM
property holds for ψ , then ψi(uS) = ψj(uS) for each i, j ∈ S.
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It follows that
∑

i∈S ψi(uS) = |S|ψk(uS), with k ∈ S. By PR, |S|ψk(uS) ≥ 1 and,
by PF, |S|ψk(uS) ≤ 1. Hence, for each S ∈ 2N \ {∅} and each i ∈ N

ψi(uS) =
{ 1

|S| , if i ∈ S,

0, otherwise.
(22)

Finally, for each i ∈ N we have

ψi(v) = ψ

(∑
S⊆N :S �=∅ λ̄SuS

|SD|
)

= 1

|SD|
∑

S⊆N :S �=∅
λ̄Sψi(uS)

= 1

|SD|
∑

S⊆N :i∈S

λ̄S

|S| , (23)

where the first equality follows by (10), the second equality by the ES property, and
the third equality by relation (22).

According to (11), it has been proved that ψ(v) = φ(v), where φ(v) is precisely
the Shapley value on the microarray game v. �

Let N be a finite set of players. Note that, following the same steps of the proof of
Theorem 1, it is also possible to characterize the Shapley value on the class MN

using the properties NG and ES together with the efficiency4 and symmetry5 axioms
in Shapley (1953). The NG property and the efficiency and symmetry axioms together
yield a value that is uniquely determined on unanimity games. Combined with the
ES property and (23), this yields the uniqueness result on the class of microarray
games MN .

5 Conclusions

In this paper we introduce an application of coalitional games to gene expres-
sion analysis related with disease onset. We also present and discuss an axiomatic
characterization of the Shapley value aimed at identifying a relevance index for
genes.

Many models for data analysis have been presented in the literature for inferring,
from a matrix of gene expression data, the role of genes, their interaction and their be-
havior when changes in condition of the biological system occur (Moler et al. 2000;
Su et al. 2003). So far, mathematical techniques used for extracting information from
gene expression microarrays can be classified into three main groups: statistical meth-
ods used for identifying genes that are regulated by different conditions of interest,
e.g., to find single genes or groups of genes which show a statistically significant

4Let v ∈ CN ⊆ GN . The solution F satisfies the efficiency axiom, if
∑

i∈N Fi(v) = v(N).

5Let v ∈ CN ⊆ GN . Two players i, j ∈ N are symmetric in v if for each S ⊆ N \ {i, j}, v(S ∪ {i}) =
v(S ∪ {j}). The solution F satisfies the symmetry axiom, if for each i, j ∈ N which are symmetric in v we
have Fi(v) = Fj (v).
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difference in the expression levels in tumor samples with respect to normal samples
(Fujarewicz and Wiench 2003; Storey and Tibshirani 2003); unsupervised analysis
techniques, used as a method to identify groups of genes or samples with similar be-
havior (Golub et al. 1999; Alon et al. 1999); class prediction tools, used to classify
samples into known categories of morphology, known biological features, clinical
outcomes, etc., according to gene expression patterns (Dudoit and Fridlyand 2003;
Golub et al. 1999).

The novelty of the approach with respect to the classical methods is essentially
twofold. First, the class of coalitional games used, called the class of microarray
games, provides the effective opportunity to describe the association between the
global expression of each coalition of genes and a genetic disease or another bio-
logical condition of interest and, as a consequence, to incorporate in the successive
analysis all possible genes interaction ties related with the biological condition. For
example, it is possible to describe the association between the over-expression or the
under-expression properties of genes in each coalition and the tumor or the effect of
a treatment in samples.

Even considering all possible subsets of genes, which means increasing a lot the
level of complexity of the analysis, no strong assumptions on the expression proba-
bility distributions have been done. In fact, the characteristic function of a microarray
game relies completely on the observed experimental gene expression matrix. The
very relevant assumption in this context, is the definition of the causality relation
(also called sufficiency principle) which incorporates the criterium used to establish
whether the expression levels of genes in a coalition are associated or not with the
biological condition of interest. All the information on gene associations stored in the
characteristic function of a microarray game can be successively exploited to quan-
titatively resume the role of each gene in each possible coalition by means of the
application of solution concepts for coalitional games.

The second novelty of the approach presented in this paper is based on the idea
of application of solution concepts to microarray games, and on the strong connec-
tion between game theory and the property driven (known also as ‘axiomatic’ in the
game theoretical literature) approach commonly used for studying the properties of
solution concepts. Usually, the interpretation of the results obtained by classical sta-
tistical procedures are strongly dependent from the theoretical model used for the
analysis or from strong assumptions about the reference population from which the
samples are collected. The axiomatic method in the game theoretical approach of-
fers the possibility to overturn this view: only weak assumptions on the population
are needed and what is strongly outlined a priori are the boundaries for a plausible
interpretations of the results. In the game theoretical approach, the result is the out-
come of a solution concept applied to a microarray game built on a gene expression
matrix. Its interpretation is contextualized ex-ante by means of sound basic proper-
ties, that have to be satisfied by a numerical representation of the relevance of each
gene in associating the expressions of coalitions with the genetic disease of interest.
This view is particular valuable in the genomic field, which is still a relatively young
research topic, and the evidences to support strong hypothesis on the reference pop-
ulations or the application of sophisticated mathematical models are still far from to
be clear.
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Recently, coalitional games have been used in gene expression analysis in Moretti
(2006b) where a method based on the framework of minimum cost spanning trees
(mcst) has been introduced to first represent the similarity between pairs of genes
and, second, to implement the notion of association for coalitions of genes by means
of mcst games. A specific solution for mcst games, the P -value (Branzei et al. 2004),
has been used as a relevance index for genes instead of the Shapley value. For such an
approach, a discriminant method to dichotomize the expression matrix is not required
but some arbitrariness is introduced in the model for the selection of an appropriate
notion of similarity between pairs of genes and, successively, for the definition of the
level of similarity for coalitions of genes.

In Fragnelli and Moretti (2007) classification games with genes in the role of
players have been studied to analyze the power of groups of genes to classify samples
into the right classes (for instance, the class of normal tissues or the class of tumor
tissues). Classification games turn out to be closely related to microarray games and,
on some numerical examples, the Shapley value and the Interaction index (Grabisch
and Roubens 1999) have been studied as methods for selection of genes with high
performance in sample classification.

Coalitional games have been previously used in gene analysis also in a work by
Kaufman et al. (2004) as an application of the Multi-perturbation Shapley value
Analysis (MSA) (Keinan et al. 2004). The aim of this work was to identify the
importance in terms of causal responsibility of some genes in performing a cer-
tain function in yeast cells. In their approach, Kaufman et al. (2004) evaluate the
value of each coalition as a measure of the biological system’s performance for a
certain function (e.g., the ability of the system to survive the UV irradiation). In
order to obtain such a value for each coalition, they carried out a series of exper-
iments where genes of each different subset of n genes were perturbed concomi-
tantly; on each experiment the performance score was also measured and the score
assigned to the corresponding subset of perturbed genes, finally obtaining a coali-
tional game. Since 2n experiments were needed to obtain a coalitional game, im-
plying the impossibility to deal with the complete structure of the game both for
practical and computational reasons, the authors suggested two complementary ap-
proaches: (a) the use of mathematical predictors on the available data set to predict the
missing performance scores (Dudoit and Fridlyand 2003; Golub et al. 1999); (b) lim-
iting the focus to one and two dimensional interactions (Grabisch and Roubens 1999;
Keinan et al. 2004). In our application setting, where samples of tumoral individuals
are involved, of course, we cannot imagine to perform such perturbation experiments.
On the other hand, the interpretation of the Shapley value as a measure of the func-
tional causal contribution of genes in a biological system, as provided by Kaufman
et al. (2004) seems to corroborate our interpretation of the Shapley value as indicator
of the relevance of genes in tumor onset.
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