ESERCIZI

- 1. Calcolare il valore della funzione f(x) = 2x 5 nei punti $x_1 = 1$ e $x_2 = -2$
- SOLUZIONE: $f(1) = 2 \cdot 1 5 = -3$ $f(-2) = 2 \cdot (-2) - 5 = -9$
- 2. Calcolare il valore della funzione $f(x) = 2x^2 3x$ nel punto x = 2
- SOLUZIONE: $f(2) = 2 \cdot 2^2 3 \cdot 2 = 8 6 = 2$

ESERCIZI

- 3. Calcolare il valore della funzione $f(x) = 3x \frac{5}{x+1}$ nel punto $x_1 = 4$
- SOLUZIONE: $f(4) = 3 \cdot 4 \frac{5}{4+1} = 11$
- 4. Calcolare il valore della funzione $f(x) = x 3x^2$ nel punto x = 3t
- SOLUZIONE: $f(3t) = 3t 3(3t)^2 = 3t 27t^2$

CAMPO DI ESISTENZA

CAMPO DI ESISTENZA

Il campo di esistenza della funzione y = f(x) è il dominio più grande su cui ha significato la legge

- 1. Determinare il campo di esistenza della funzione f(x) = 9 + 2x
- SOLUZIONE: $\forall x \in \mathbf{R}$
- 2. Determinare il campo di esistenza della funzione $f(x) = \sqrt{x-2} + \sqrt{-x}$
- SOLUZIONE: perchè le due radici abbiano significato, i radicandi devono essere entrambi non negativi: $x-2\geq 0$ e $-x\geq 0$ cioè $x\geq 2$ e x<0 .

Segue che la funzione non è definita per nessun valore di x.

CAMPO DI ESISTENZA

- 3. Determinare il campo di esistenza della funzione $f(x) = \frac{\sqrt{9-x^2}}{x^2-4}$
- SOLUZIONE: Il denominatore deve essere diverso da zero cioè $x \neq 2$ e $x \neq -2$.

L' argomento della radice quadrata deve essere non negativo cioè $9-x^2 \ge 0$ e quindi $-3 \le x \le 3$ Dunque il campo di esistenza è $-3 \le x \le 3$ con $x \ne 2$ e $x \ne -2$.

Con altre notazioni: $[-3, -2) \cup (-2, 2) \cup (2, 3]$

- ullet 4. Determinare il campo di esistenza della funzione $f(x) = \sqrt{e^x 1}$
- SOLUZIONE:

L' argomento della radice quadrata deve essere non negativo cioè $e^x-1\geq 0$ e quindi $x\geq 0$

Con altre notazioni: $[0, +\infty)$

CAMPO DI ESISTENZA

- 5. Determinare il campo di esistenza della funzione $f(x) = \log(x^2 5x + 6)$
- SOLUZIONE:

L' argomento del logaritmo deve essere positivo cioè $x^2-5x+6 \ge 0$ e quindi x < 2 o x > 3

Con altre notazioni: $(-\infty, 2) \cup (3, +\infty)$

- 4. Determinare il campo di esistenza della funzione $f(x) = \sqrt{\log(x^2 5x + 7)}$
- SOLUZIONE: L' argomento del logaritmo deve essere positivo cioè $x^2-5x+7>0$

L' argomento della radice quadrata deve essere non negativo cioè $\log (x^2 - 5x + 7) > 0$.

La seconda condizione contiene anche la prima e quindi $x^2 - 5x + 7 \ge 1$ Cioè $x^2 - 5x + 6 > 1$ e quindi x < 2 o x > 3Con altre notazioni: $(-\infty, 2) \cup (3, +\infty)$