• Scrivere le risposte di ciascun quesito negli apposti spazi

cognome e nome matricola

(**Punti 6**)Date la funzioni $f(x) = e^{x-3}$, $g(x) = 1 - log_e x$, scrivere le espressioni di f(g(x)) e g(f(x)). Calcolare poi la derivata di g(f(x)) nel punto x = 1.

$$f(g(x)) =$$

$$g(f(x)) =$$

$$(g(f(x)))'(1) =$$

(Punti 6) Sono date due soluzioni S_1 e S_2 dello stesso soluto e dello stesso solvente. S_1 ha la concentrazione del 6% e S_2 ha la concentrazione del 16%.

- 1)Se S_1 pesa il quadruplo di S_2 , quale è la concentrazione della soluzione che si ottiene mescolando S_1 e S_2 ?
- 2)In quale rapporto devono essere i pesi di S_1 e S_2 affinché mescolandole si ottenga una soluzione al 10%?
- 1) concentrazione della soluzione ottenuta mescolando S_1 e S_2 =
- 2) rapporto tra il peso di S_1 e il peso di S_2 =

(**Punti 5**) Una popolazione cellulare è formata all'istante t = 0 da 10^4 cellule aventi tempo di raddoppio T = 10 giorni. Dopo quanti giorni la popolazione è pari ad 4000 cellule? Qual è il tempo di raddoppio di una seconda popolazione cellulare che passa da 10^4 a 80000 cellule in 90 giorni?

- Risposta 1:
- Risposta 2:

(Punti 6) In un sacchetto ci sono cinque monete di cui una normale (con una testa e una crooce) e quattro monete che su entrambe le facce hanno una testa.

- 1)Estraiamo a caso una moneta dal sacchetto e la lanciamo. Esce testa. Quale è la probabilità che la moneta sia quella con una testa e una croce?
- 2)Estraiamo a caso una moneta dal sacchetto e la lanciamo due volte. Esce entrambe le volte testa. Quale è la probabilità che la moneta sia quella con una testa e una croce?
- 1) Risposta 1:
- 2) Risposta 2:

(**Punti 5**) Si vuole stimare il valore medio μ del carattere di una popolazione. Su un campione di n=3600 individui risulta una media $\overline{x}=40$ e una deviazione standard campionaria s=6. Trovare l'intervallo di confidenza al 95% e 89% per la media μ .

intervallo di confidenza al 95% =

intervallo di confidenza al 89% =

(svolgere i calcoli e scrivere il risultato finale con almeno due cifre decimali)

Area sotto la curva normale standardizzata

$\begin{array}{c} \text{valori} \\ \text{di } u \end{array}$	Nell'intervallo $[\mu - u\sigma, \mu + u\sigma]$	Fuori dell'intervallo $[\mu - u\sigma, \mu + u\sigma]$	Nell'intervallo $[\mu + u\sigma, +\infty)$
0	0	1	0, 5
0, 2	0,1586	0,8414	0,4207
0, 4	0,3108	0,6892	0,3446
0, 6	0,4514	0,5486	0,2743
0, 8	0,5762	0,4238	0,2119
1	0,6826	0,3174	0,1587
1, 2	0,7698	0,2302	0,1151
1,4	0,8384	0,1616	0,0808
1,6	0,8904	0,1096	0,0548
1,8	0,9282	0,0718	0,0359
2	0,9544	0,0456	0,0228
2, 2	0,9722	0,0278	0,0139
2,4	0,9836	0,0164	0,0082
2,6	0,9906	0,0094	0,0047
2, 8	0,9950	0,0050	0,0025
3	0,9974	0,0026	0,0013
3, 2	0,9986	0,0014	0,0007