Di una progressione aritmetica sono noti i termini S(3) = 16 ed S(6) = 31. Trovare la ragione d della progressione ed il termine S(8).

Soluzione:

Poichè S(6) = S(3) + 3d si ha 31 = 16 + 3d e dunque d = 5 e S(8) = 16 + 2d = 26

Una popolazione cellulare è formata all'istante t=0 da 10^4 cellule aventi tempo di raddoppio T=100 giorni. Dopo quanti giorni la popolazione è pari ad 4000000 cellule? Qual è il tempo di raddoppio di una seconda popolazione cellulare che passa da 10^4 a 8000000 cellule in 40 giorni?

Soluzione:

- 1)Dopo n tempi di raddoppio ci sono $2^n \cdot 10^4$ cellule e questo numero deve essere uguale a $4 \cdot 10^6$ quindi n soddisfa l'equazione $2^n \cdot 10^4 = 4 \cdot 10^6$, cioè $2^n = 4 \cdot 10^2$, $n = \log_2 4 \cdot 10^2$ cioè $n = 2 + 2\log_2 10$ e quindi dopo $100 \cdot (2 + 2\log_2 10)$ giorni si hanno 400000 cellule.
- 2)Si ha $2^n \cdot 10^4 = 8 \cdot 10^6$ e quindi $n = 3 + 2 \log_2 10$, ma., indicando con x il tempo di raddoppio $40 = x \cdot (3 + 2 \log_2 10)$ da cui si ricava x

Una popolazione cellulare è formata ad un certo istante da N_0 individui ed è caratterizzata da un tempo di raddoppio pari a 14 giorni. Dopo quanto tempo la polazione risulterà composta da $10N_0$ individui? Qual è il tempo di raddoppio di un secondo campione che passa da N_0 a $10N_0$ individui in 14 giorni?

Soluzione 1) Si deve avere $2^x \cdot N_0 = 10N_0$ e dunque $2^x = 10$ cioè $x = \log_2 10 = \frac{\log_{10} 10}{\log_{10} 2} = \frac{1}{\log_{10} 2}$ Quindi il tempo per avere $10N_0$ individui sarà $14 \cdot \frac{1}{\log_{10} 2}$.

2) Il tempo di raddoppio è $\frac{14}{\log_{10} 2}$

Una popolazione cellulare è formata all'istante t=0 da N_0 cellule aventi tempo di raddoppio T=10 giorni. Dopo quanti giorni la popolazione è pari ad $8N_0$? Qual è il tempo di raddoppio di una seconda popolazione cellulare che passa da N_0 cellule a $3N_0$ cellule in 10 giorni?

Soluzione 1) Si deve avere $2^x \cdot N_0 = 8N_0$ e dunque $2^x = 8$ cioè $x = \log_2 8 = \frac{\log_{10} 8}{\log_{10} 2}$ Quindi il tempo per avere $8N_0$ individui sarà $10 \cdot \frac{\log_{10} 8}{\log_{10} 2}$.

2) Il tempo di raddoppio è
$$\frac{8}{\frac{\log_{10} 8}{\log_{10} 2}} = 8 \cdot \frac{\log_{10} 2}{\log_{10} 8}$$

Un materiale radioattivo è caratterizzato da un tempo di dimezzamento pari a 800 anni. Dopo quanto tempo un campione di tale materiale si sarà ridotto del 15%? Qual è il tempo di dimezzamento di un secondo campione che si riduce del 15% in 800 anni?

Un materiale radioattivo è caratterizzato da un tempo di dimezzamento pari a 1000 anni. Dopo quanto tempo un campione di 1 kg di tale materiale si sarà ridotto del 20%?

Soluzione: Si deve avere $P \cdot \frac{1}{2^n} = \frac{80}{100}P$ avendo indicato con P il peso iniziale. Dunque $2^n = \frac{5}{4}$ e $n = \log_2 \frac{5}{4}$ e il tempo è $1000 \cdot \log_2 \frac{5}{4}$.

Una sostanza radioattiva ha un tempo di dimezzamento T pari a 100 anni. Quanto tempo deve trascorrere affinché di un campione della sostanza rimanga il 40% del quantitativo iniziale?

Soluzione: Indichiamo con P il peso inziale. Il peso finale deve essere $\frac{40}{100}P$ Dunque $\frac{1}{2^n}P=\frac{40}{100}P$ cioè $\frac{1}{2^n}=\frac{40}{100}$, $2^n=\frac{10}{4}$, $n=\log_2\frac{10}{4}$