Funzione Composta

- 1. Date le funzioni $f(x) = e^x$ e $g(x) = \log_e(x-2)$
 - Dire quanto vale f(g(x)) e quale è il suo insieme di definizione;
 - Dire quanto vale g(f(x)) e quale è il suo insieme di definizione.
- 2. Date le funzioni $f(x) = -x^3$ e $g(x) = \log_e(x)$
 - Dire quanto vale f(g(x)) e quale è il suo insieme di definizione;
 - Dire quanto vale g(f(x)) e quale è il suo insieme di definizione.

Funzione Composta

- 1. Date le funzioni $f(x) = e^x$ e g(x) = 2x + 1
 - Dire quanto vale f(g(x)) e quale è il suo insieme di definizione;
 - Dire quanto vale g(f(x)) e quale è il suo insieme di definizione.

Soluzione
$$f(g(x)) = e^{2x+1}$$
, $g(f(x)) = 2e^x + 1$

- 2. Date le funzioni $f(x) = x^2$ e g(x) = x + 1
 - Dire quanto vale f(g(x)) e quale è il suo insieme di definizione;
 - Dire quanto vale g(f(x)) e quale è il suo insieme di definizione.

Soluzione:
$$f(g(x)) = (x+1)^2$$
, $g(f(x)) = x^2 + 1$

Funzione Inversa

- 1. Data la funzione $\mathbf{R} \longrightarrow \mathbf{R}$ così definita: f(x) = -x + 3 dire se è invertibile e trovare la formula dell'inversa;
 - Soluzione: la funzione è biunivoca e l'inversa è $f^{-1}(y)=3-y$ cioè $f^{-1}(x)=3-x$
- 2. Data la funzione $f(x) = x^3 + 2$ dire se è invertibile e trovare la formula dell'inversa;
 - Soluzione: la funzione è biunivoca e l'inversa è $f^{-1}(y)=(y-2)^{\frac{1}{3}}$ cioè $f^{-1}(x)=(x-2)^{\frac{1}{3}}$
- 3. Data la funzione $f(x) = x^2 + 2x + 1$ dire se è invertibile e trovare la formula dell'inversa;
 - Soluzione: la funzione non è invertibile in quanto non è ne iniettiva ne suriettiva. per renderla suriettiva basta pensarla a valori in \mathbf{R}^+ e per renderla iniettiva basta per esempio restringerla a $[-1, +\infty)$,

dunque la funzione $\mathbf{R}^+ \longrightarrow [-1, +\infty)$ definita da $f(x) = x^2 + 2x + 1$ è invertibile e la sua inversa è $f^{-1}(y) = \sqrt{y} - 1$.