Funzione Composta

Date due funzioni $g:A\to B$ e $f:B\to C$ si può definire la funzione composta:

$$f \circ g : A \rightarrow C \qquad x \mapsto g(x) \mapsto f(g(x))$$

notazione funzionale y = f(q(x))

La composizione ha senso se il valore g(x) appartiene al dominio della funzione f.

Il dominio della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

ESEMPI:

1.
$$g(x) = \sqrt{x}$$
, $f(x) = x^2 - 4 \Rightarrow g(f(x)) = \sqrt{x^2 - 4}$, $D = \{x \le -2 \text{ o } x \ge 2\}$

2.
$$g(x) = \frac{1}{x}$$
, $f(x) = x - 7 \Rightarrow y = \frac{1}{x - 7}$, $D = \{x \neq 7\}$

1.
$$g(x) = \sqrt{x}$$
, $f(x) = x^2 - 4 \Rightarrow g(f(x)) = \sqrt{x^2 - 4}$, $D = \{x \le -2 \text{ o } x \ge 2\}$
2. $g(x) = \frac{1}{x}$, $f(x) = x - 7 \Rightarrow y = \frac{1}{x - 7}$, $D = \{x \ne 7\}$
3. $g(x) = \frac{1}{x}$, $f(x) = x^2 + 1 \Rightarrow y = \frac{1}{x^2 + 1}$, $D = \mathbb{R}$

Funzione Composta

- 1. Date le funzioni $f(x) = e^x$ e g(x) = 2x + 1
 - Dire quanto vale f(g(x)) e quale è il suo insieme di definizione;
 - Dire quanto vale g(f(x)) e quale è il suo insieme di definizione.

Soluzione
$$f(g(x)) = e^{2x+1}$$
, $g(f(x)) = 2e^x + 1$

- 2. Date le funzioni $f(x) = x^2$ e g(x) = x + 1
 - Dire quanto vale f(g(x)) e quale è il suo insieme di definizione;
 - Dire quanto vale g(f(x)) e quale è il suo insieme di definizione.

Soluzione:
$$f(g(x)) = (x+1)^2$$
, $g(f(x)) = x^2 + 1$

Funzione Inversa 1

- una funzione BIUNIVOCA si dice INVERTIBILE
- se $f:A\to B$ è invertibile si definisce la funzione inversa f^{-1} come segue:

$$f^{-1}: B \to A$$
 , $x = f^{-1}(y)$ $\forall y \in B \to x \in A$ tale che $f(x) = y$

un tale x esiste ed è unico perchè la funzione f è bunivoca.

• ESEMPI:

1.
$$y = f(x) = 2x + 1$$
; $f : \mathbb{R} \to \mathbb{R}$
 $x = f^{-1}(y) = \frac{1}{2}(y - 1)$; $f^{-1} : \mathbb{R} \to \mathbb{R}$

2.
$$y = f(x) = x^2$$
; $f: (-\infty, 0] \to [0, +\infty)$
 $x = f^{-1}(y) = -\sqrt{y}$; $f^{-1}: [0, +\infty) \to (-\infty, 0]$

Funzione Inversa 2

PROPRIETÀ:

sia $f:A\to B$ invertibile e sia $f^{-1}:B\to A$ la sua funzione inversa.

considero la funzione composta $f^{-1} \circ f$

 $(y = f^{-1}(f(x)) \ con \ notazione \ funzionale)$

$$f^{-1} \circ f : x \in A \to f(x) = y \in B \to f^{-1}(y) = x \in A$$

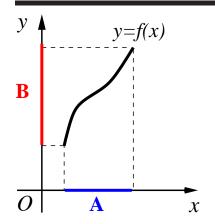
$$f^{-1} \circ f : A \to A$$
, $x \to x$ funzione identità.

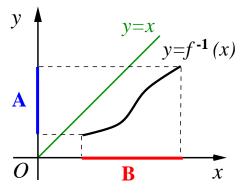
la stessa cosa vale per $f \circ f^{-1}$

$$f \circ f^{-1} : y \in B \to f^{-1}(y) = x \in A \to f(x) = y \in B$$

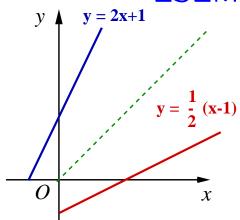
$$f \circ f^{-1} : B \to B$$
, $y \to y$ funzione identità.

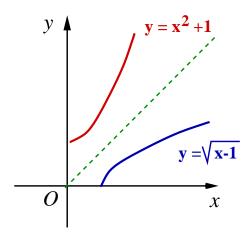
Funzione Inversa 3





il grafico di $y = f^{-1}(x)$ si ottiene per simmetria rispetto a y = x.

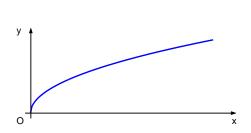


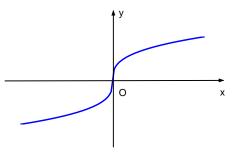


Radici

INVERTIBILITÀ DELLA POTENZA: consideriamo il problema dell'invertibilità della funzione potenza $y = x^n$ con $n \in \mathbb{N} - \{0\}$

- se n=0 la funzione $y=x^0=1$ è costante dunque non invertibile.
- se n=1 la funzione y=x è l'identità, con inversa uguale a se stessa.





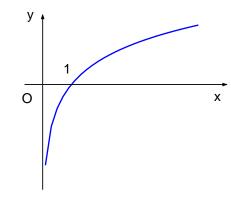
- se n=2 $y=x^2$ è invertibile in \mathbb{R}_+ se n=3 $y=x^3$ è invertibile su tutto \mathbb{R}
- $y = \sqrt{x}$ $\mathbb{R}_+ \to \mathbb{R}_+$ è detta radice quadrata. $y = \sqrt[3]{x}$ $\mathbb{R} \to \mathbb{R}$ è detta radice cubica.

In generale se n è pari si ragiona come per n=2 e la funzione $y=x^n$ risulta invertibile su \mathbb{R}_+ $y=\sqrt[n]{x}$ $\mathbb{R}_+ \to \mathbb{R}_+$ $radice \ n-sima$

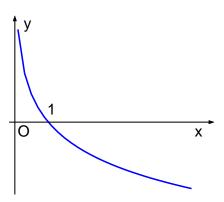
Viceversa se n è dispari si ragiona come per n=3 e la funzione $y=x^n$ risulta invertibile su tutto $\mathbb R$. $y=\sqrt[n]{x}$ $\mathbb R o \mathbb R$ $radice \ n-sima$

Funzione Logaritmo

- $y = a^x \quad \mathbb{R} \to \mathbb{R}_+ \quad strettamente \ monotona \Rightarrow invertibile$
- $f^{-1}: y \in \mathbb{R}_+ \mapsto x \in \mathbb{R} / a^x = y$; $x = f^{-1}(y) = \log_a y$ (logaritmo in base a di y)



$$y = \log_a x \quad \mathbb{R}_+ \to \mathbb{R} \quad per \quad a > 1$$



$$y = \log_a x \quad \mathbb{R}_+ \to \mathbb{R} \quad per \quad a > 1$$
 $y = \log_a x \quad \mathbb{R}_+ \to \mathbb{R} \quad per \quad 0 < a < 1$

POPRIETÀ DEI LOGARITMI:

$$\bullet \log_a(x_1x_2) = \log_a x_1 + \log_a x_2$$

$$\log_a \left(\frac{x_1}{x_2}\right) = \log_a x_1 - \log_a x_2$$

$$\bullet \log_a(x^b) = b \log_a x$$

$$\log_b x = \frac{\log_a x}{\log_a b} \quad (cambio \ di \ base)$$