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Abstract. This work focuses on the numerical analysis of 1D nonlinear diffusion equations
involving a convolution product. First, homogeneous friction equations are considered. Algorithms
follow recent ideas on mass transportation methods and lead to simple schemes which can be proved to
be stable, to decrease entropy and to converge toward the unique solution of the continuous problem.
In particular, for the first time, homogeneous cooling states are displayed numerically. Further,
we present results on the more delicate fourth-order thin-films equation for which a nonnegativity-
preserving scheme is derived. Dead core phenomenon is presented for the Hele–Shaw cell.
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1. Introduction. One objective for the present paper is to study some construc-
tive approximations for one-dimensional dissipative Boltzmann equations modelling
granular flows; they read

∂tf + v∂xf = Q(f, f) + R, t, x, v ∈ R+
∗ × R × R,

for kinetic densities f(t, x, v) ≥ 0. Here, Q(f, f) stands for the term modeling the
inelastic collisions [1, 2, 27, 30] whereas R renders the effects of e.g. external heating
processes, like Brownian agitation which leads to a diffusion term; see [11] for a large
survey on granular materials. First, it is customary now to decouple the transport
and collision steps relying on a time-splitting technique, see e.g. [28, 26, 18]; thus it
makes sense to restrict ourselves to homogeneous densities f(t, v). We shall therefore
concentrate on the following Cauchy problem for t, v ∈ R+

∗ × R,

∂tf(t, v) = ∂v

{
f(t, v)

∫
R

I ′(v − ω)f(t, ω).dω

}
+ μ∂v(vf(t, v)) + σ∂vvf(t, v),(1.1)

where I stands for an even convex interaction potential. Generally, it is taken as
I(ξ) = |ξ|γ+2/γ + 2, γ ≥ 0. Equation (1.1) rewrites as a convolution Fokker-Planck:

∂tf = ∂v

{
f∂v

(
f ∗v I(v)

)
+ σ∂vf

}
+ μ∂v(vf).

Several particular cases of (1.1) are of interest; the first one corresponds to setting
σ = μ = 0 and models dissipative flows of granular media. This model was proposed
by McNamara and Young [27] and then studied from a mathematical viewpoint in
[1, 2, 7, 13, 14]. Roughly speaking, it describes a huge number of particles that undergo
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inelastic collisions, see [30, 26], which lead to a monotonic decay of the temperature.
Steady-states display a very elementary structure, namely a Dirac mass concentrated
onto the null velocity; however, a rescaling process allows to derive a particular class
of intermediate asymptotics called homogeneous cooling states, [2, 24, 30]. These
ones have been singled out mainly because they are minimizers of a “free energy
functional”, (which is to be intensively used in section 3.1)

J (f) :=

∫
R2

f(v)f(w)I(v − w).dv.dw −
∫

R

f(v)v2.dv,(1.2)

among probability measures on R. However, despite stability could be hoped for, it has
recently been shown that these states are too poor to play a role of similar importance
than Barenblatt-Pattle source solutions for porous media equations; detailed proofs
are available in [10]. It will be one of our objectives to display numerically such
homogeneous cooling states in section 3.2; to the authors’ knowledge, this hasn’t
been performed before.

Another objective is to develop on the numerical analysis of the so–called lubri-
cation approximation of the Navier–Stokes equations for the movement of thin films
driven by surface tension, see [25]; such a derivation leads to a fourth-order Cauchy
problem,

∂tu + ∂x(a(u)∂xxxu) = 0, u(t = 0, .) = u0 ≥ 0, t, x ∈ R+
∗ × R,(1.3)

The theory for this equation is still sparse, see [3, 4, 5, 6, 16]; especially, little is known
about uniqueness of strong, i.e. H2(R) nonnegative solutions. A special and somewhat
more tractable case of (1.3) corresponds to a(u) = u and is generally referred to as
the Hele–Shaw cell: we shall focus on it within section 5 where certain ideas proposed
in [29] will be expanded. Let us first explain why this problem can fall inside the
class of “convolutive diffusion equations”. Our main trick is to consider, for a small
number 0 < ε � 1, a smoothered equation,

∂tu
ε + ∂x

(
a(uε)∂xxxu

ε ∗x Γε(x)
)

= ∂tu
ε + ∂x

(
a(uε)uε ∗x Γ′′′

ε (x)
)

= 0,

where Γε is a standard Friedrichs’ mollifier. At this point, one can derive an approx-
imate problem for (1.3) written in the convenient form for t, x ∈ R+

∗ × R,

∂tu
ε + ∂x

(
a(uε)∂x(uε ∗x Γ′′

ε (x))
)

= 0, u(t = 0, .) = u0 ≥ 0.(1.4)

However, even if sharing some features with the aforementioned models of granular
flows (especially for a(u) = u), a major difficulty arises from the fact that −Γ′′

ε will
never be a convex function; it is nonetheless possible to obtain a numerical process able
to preserve nonnegativity of solutions, a property commonly considered important in
practice, [34, 21].

Going a bit deeper into the contents of this work, we aim at showing that mod-
ern Wasserstein techniques can be successful at producing simple numerical schemes
for (1.1) which are positivity preserving, stable, and consistent with the continuous
problem. Indeed, it has been shown in [15], and we shall briefly recall in section 2.1
how one can pass by means of a Lagrangian-type change of variables from (1.1) to
the much more tractable equation holding for t, � ∈ R+

∗ × (0, 1),

∂tV (t, �) + σ∂�

(
1

∂�V (t, �)

)
+ μV (t, �) +

∫ 1

0

I ′
(
V (t, �) − V (t, �′)

)
.d�′ = 0,(1.5)
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which reduces, in case σ = μ = 0 to some sort of integro-differential equation. This
trick is reminiscent of a previous work, [19], and allows to circumvent the issues
which are connected to numerical approximation of probabillity measures with finite-
differences, see [9, 17, 26] for more in this direction. One feature of paramount impor-
tance for (1.5) is the easiness in proving contractivity in any p-Wasserstein metric for
various numerical approximations, just relying on the standard Jensen’s inequality. It
is not difficult also to convert such an estimate into a BV-bound thus showing com-
pactness for a sequence of approximations for the V variable. Such a program is to be
realized in sections 2.2–3. The BV framework (functions of bounded variation) cor-
responds exactly to measure solutions for (1.1) hence provides a convenient approach
to the problem. section 4 is concerned by the modifications brought by the immersion
of such granular media inside a thermal fluid. Following [12], we are most of all in-
terested in classical solutions even if we shall keep on using numerical schemes based
on the “reciprocal equation” (1.5). Convergence is shown in section 4.1 whereas the
“tails” of the solutions for large |v| (see [2, 7, 8, 9, 13]) are to be studied numerically in
section 4.2. Section 5 is entirely devoted to the study of the Hele–Shaw cell’s equation
for which we can propose a nonnegativity-preserving scheme based on similar ideas.
An energy estimate is given in section 5.2 ad some numerical results are shown in
section 5.3; an extension to mobilities a(u) �= u is briefly discussed in Remark 2 and
in more detail within section 6. At last, concluding remarks are given in section 7 and
the Appendices A and B contain the proofs of two important contraction estimates.
Appendix C deals with some special features of the Fourier scheme (6.2) for equation
(1.3) with a(u) = u.

2. Lagrangian approximation of 1D friction equations; σ = μ = 0. The
object under the scope is now:

∂tf(t, v) = ∂v

{
f(t, v)

∫
R

I ′(v − ω)f(t, ω).dω

}
; t, v ∈ R+

∗ × R,(2.1)

as proposed in [27] from the Boltzmann equation in a so–called quasi-elastic limit in
case I(ξ) = |ξ|3/3 i.e. γ = 1. We use the notation R+

∗ = (0,+∞) throughout the
paper. Since (2.1) is known to admit Dirac-type similarity solutions, it is convenient
to introduce the following functional framework for p ≥ 1,

Mp(R) =
{
v �→ f(., v) probability measure such that

∫
R

|v|pf(., v).dv < +∞
}
,

equipped with the topology of weak convergence of measures. A distinguished class
of metrics on Mp(R) is given by the so-called Wasserstein (or Monge–Kantorovitch)
distance, [19, 24, 32], which can be written as the usual Lp distance of the reciprocal
mappings (to be defined in section 2.1 below),

dp(f, g) :=

(∫ 1

0

|V (., �) −W (., �)|p.d�
)1/p

, 1 ≤ p < +∞.

By a weak solution to the Cauchy problem for (2.1), we mean any f ∈ C1(R+
∗ ;Mp(R))

satisfying for all ϕ ∈ C1(R) and t > 0,

d
dt

∫
R
ϕ(v)f(t, v).dv = − ∫

R2 I ′(v − w)ϕ′(v)f(t, v)f(t, w).dv.dw
= 1

2

∫
R2 I ′(v − w)(ϕ′(w) − ϕ′(v))f(t, v)f(t, w).dv.dw,

(2.2)
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and f(t, .) → f(t = 0, .) = f0 ∈ Mp(R) weakly as a measure as t → 0. The second
equality holds because I ′ is an odd function. Obviously, choosing ϕ(v) = 1, v in (2.2)
yields conservation of mass and momentum; thus it makes sense to restrict ourselves
to centered probability measures. Further, inserting ϕ(v) = v2 leads to,

d

dt
θ(t) :=

d

dt

∫
R2

v2f(t, v).dv = −
∫

R2

I ′(v − w)(v − w)f(t, v)f(t, w).dv.dw ≤ 0.

Thus the temperature is meant to decrease monotonically in time (at most at an
exponential rate, see [30] and Figure 3.1) because I ′ is monotone nondecreasing. We
also deduce from [24] the following uniqueness theorem:

Theorem 2.1. Let f0 ∈ Mp(R) for p = 2 and I be a smooth even convex
function; then the weak solution to (2.1) is unique.

The proof is forwarded to Appendix A.

2.1. The reciprocal mapping. From [10], the decay towards stable similarity
solutions (homogeneous cooling states) can be expected to be slow and because of their
singular structure, one cannot use high-order discretizations. This clearly constitutes
a numerical difficulty we propose to overcome by means of the change of variable
described as follows:

• Let us introduce the distribution function associated to the initial probability
measure f0,

�0(v) =

∫ v

−∞
f0(ω).dω ∈ (0, 1), �0 ∈ BV (R),

which is obviously nondecreasing in the v variable. We can thus define a
(nondecreasing) pseudo-inverse:

v0 : (0, 1) → R

�̄ �→ v0(�̄) := inf{ω ∈ R such that �0(ω) = �̄}.(2.3)

• For any given value �̄ ∈ (0, 1), we can define the reciprocal mapping,

V : R+ → R

t �→ V (t, �̄),

by means of the implicit function theorem in case ∂v� �= 0, such that

V (t = 0, �̄) = v0(�̄), �(t, V (t, �̄)) = �̄.(2.4)

Integrating (2.1) in v,

∂t�(t, v) = ∂v�(t, v)

∫
R

I ′(v − ω)∂v�(t, ω).dω, ∂v�(t, v) = f(t, v),

and differentiating the second equality of (2.4) with respect to time, one
deduces easily the time evolution of V (., �) (we drop the .̄ for ease of reading),
see also [15, 24]:

∂tV (t, �) +

∫ 1

0

I ′
(
V (t, �) − V (t, �′)

)
.d�′ = 0, t > 0,(2.5)

and V (t = 0, �) = v0(�) for any � ∈ (0, 1).
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We define a Cartesian computational grid by means of the two positive parameters
Δt,Δv. From now on, let vk and tn stand for kΔv and nΔt respectively. Therefore
our numerical approach to (2.1) with convenient (unit mass, centered) initial data is
built on computing the pseudo-inverse of �0, V (t = 0, .), evolving it in time by means
of an explicit marching scheme for (2.5) in order to deduce the values of �(t,X(t, .)) ∈
[0, 1] thanks to (2.4). Working on this pseudo-inverse V (t, .) allows to bypass the
usual problems in approximating Dirac measures, [9, 17]. This trick can be used
mainly because equation (2.1) is mass–preserving. It will prove useful to introduce
the equivalent definition of weak solution to (2.1) (see [24] p. 412):

Definition 1. Let f0 ∈ Mp(R); f(t, v) ∈ C1(R+
∗ ;Mp(R)) is a weak solution to

(2.1), (2.5) if it satisfies for all ϕ ∈ C1(R) and t > 0,

d
dt

∫ 1

0
ϕ(V (t, �)).d� = − ∫

(0,1)2
I ′(V (t, �) − V (t, �′))ϕ′(V (t, �)).d�.d�′

= − ∫
(0,1)2

I ′(V (t, �) − V (t, �′))ϕ
′(V (t,�)−ϕ′(V (t,�′)

2 .d�.d�′.

And f(t, .) → f0 as t → 0 weakly as a measure.
We now discretize the � and t axes and define:

V n
k � V (tn, �k); �k := �0(vk), tn = nΔt for k ∈ K ⊂ N, n ∈ N.(2.6)

A numerical scheme for (2.5) reads:

V n+1
k = V n

k − Δt
∑
k′∈K

|Ck′ |I ′(V n
k − V n

k′),(2.7)

where |Ck| = �k+ 1
2
−�k− 1

2
stands for the width of the control cell centered on �k with

�k+ 1
2

= �0(xk+ 1
2
). As �0 is at least of bounded variation (hence it makes sense to

speak about left/right values at a given point), a convenient choice is given by linear
interpolation, �k+ 1

2
= 1

2 (�k + �k+1), which yields |Ck| = 1
2

(
�k+1 − �k−1

)
. Since no

divided differences show up in (2.7), there is no need for boundary conditions. The
scheme (2.7) is conservative by construction. This furthermore yields, since I is an
even function:

∀n ∈ N,
∑
k

|Ck|V n
k =

∑
k

|Ck|V 0
k �

∫ 1

0

V (t = 0, �).d� =

∫
R

v.f0(x).dv.

We stress that the �k’s do not depend on time. In order to reconstruct �̃(tn, .), an
approximation of �(t, .) at a given time t � tn, one has to interpolate the family of
numerical values �k, X

n
k , t

n since

�̃(tn, V n
k )

def
= �k � �(tn, V n

k ),

∂v� being the weak solution to (2.1), up to the numerical truncation errors on V n
k com-

ing from the discretization (2.7). Then one deduces f(tn, .) by e.g. centered divided
differences.

2.2. Wasserstein contraction estimate. The fundamental lemma reads:
Lemma 2.2. Let f0, g0 be two nonnegative initial data in Mp(R) for (2.1) and

V,W their reciprocal mappings. Under the CFL restriction,

Δt sup
V 0
k
,W 0

k′

(
I ′′

)
≤ 1, k, k′ ∈ K2,(2.8)
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the scheme (2.7) is contractive in any Wasserstein metric dp; more precisely,

∀n ∈ N,
∑
k

|Ck||V n+1
k −Wn+1

k |p ≤
∑
k

|Ck||V n
k −Wn

k |p, p ≥ 1.(2.9)

In practice, for (2.8), the supremum can be taken on the convex hull of the given set
of data.

Proof. We readily substract the schemes (2.7) on each variable to derive

∀n ∈ N, V n+1
k −Wn+1

k = V n
k −Wn

k −Δt
∑
k′∈K

|Ck′ |
(
I ′(V n

k −V n
k′)−I ′(Wn

k −Wn
k′)

)
.

We apply the mean-value theorem for each k, k′ to obtain,

I ′(V n
k − V n

k′) − I ′(Wn
k −Wn

k′) = (I ′′)nk,k′

(
(V n

k −Wn
k ) − (V n

k′ −Wn
k′)

)
,

where convexity manifests itself through

0 ≤ (I ′′)nk,k′ := I ′′
(
λ(V n

k − V n
k′) + (1 − λ)(Wn

k −Wn
k′)

)
,

for some λ ∈ [0, 1]. Hence rearranging terms, one finds out that V n+1
k − Wn+1

k is a
convex combination of each V n

k′ −Wn
k′ , k′ ∈ K, under the CFL condition (2.8) since I

is convex:

V n+1
k −Wn+1

k = (V n
k −Wn

k )
(
1−Δt

∑
k′∈K

|Ck′ |(I ′′)nk,k′

)
+Δt

∑
k′∈K

|Ck′ |(I ′′)nk,k′(V n
k′−Wn

k′)

The result (2.9) follows from summing on k ∈ K and invoking Jensen’s inequality.

This result is but a numerical equivalent of Theorem 1 in [24]. As an immediate
consequence of Lemma 2.2, one obtains the Lp-stability of the method, just taking
W 0

k ≡ 0 (which implies Wn
k ≡ 0 since I ′(0) = 0):

Proposition 2.3. Under the hypotheses of Lemma 2.2, there holds:

∀n ∈ N,
∑
k

|Ck|
(
|V n+1

k |p − |V n
k |p

)
≤ 0, p ≥ 1.

This somehow highlights the solution’s support decay proved in [24]. It shows in
particular the constant decrease of the numerical solution’s temperature since θ(tn) �∑

k |Ck||V n
k |2. Clearly more involved treatments of the integral term of (2.5) would

yield an estimate of the same flavour. It would also be possible to consider higher-
order Runge-Kutta methods in time, see e.g. [20].

Corollary 2.4. Under the hypotheses of Lemma 2.2, if f0 has compact support,
Lipschitz time-regularity holds:

∀k, n ∈ K × N, |V n+1
k − V n

k | ≤ Δt sup
V 0
k

|I ′|,(2.10)

Proof. From Proposition 2.3, the sequence V n
k is bounded in L∞(0, 1). The

estimate (2.10) follows from
∑

k∈K |Ck| = ‖f0‖L1(R) = 1.
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2.3. Compactness and entropy consistency of the scheme. By analogy
with (1.2), we can define an “entropy” functional for (2.1),

∀t ≥ 0, E(t, f) =

∫
R2

I(v − v′)f(t, v)f(t, v′).dv.dv′,

which is known to decrease as times grow at least for certain potentials. It can be
easily checked that (2.7) keeps this property; this is the purpose of the next result.

Proposition 2.5. Let En =
∑

k,k′ |Ck||Ck′ |I(V n
k −V n

k′)| for I(ξ) = |ξ|2+γ/γ+2.
Under the hypotheses of Lemma 2.2, there holds:

∀n ∈ N, En ≤
(
1 − Δt inf

V 0
k

(I ′′)
)n(γ+2)

E0.(2.11)

Proof. The proof proceeds as Lemma 2.2’s; substracting and linearizing (2.7) with
Wn

k = V n
� for some � ∈ K gives:

|V n+1
k − V n+1

� | = |V n
k − V n

� − Δt
∑

k′∈K |Ck′ |
(
I ′(V n

k − V n
k′) − I ′(V n

� − V n
k′)

)
|

= |V n
k − V n

� − Δt
∑

k′∈K |Ck′ |(I ′′)nk,�,k′

(
(V n

k − V n
� ) − (V n

k′ − V n
k′)

)
|

= |V n
k − V n

� |
(
1 − Δt

∑
k′∈K |Ck′ |(I ′′)nk,�,k′

)
,

where (I ′′)nk,�,k′ = I ′′(λV n
k +(1−λ)V n

� −V n
k′) and from which we deduce that |V n+1

k −
V n+1
� | ≤ |V n

k −V n
� |(1−Δt infV n

k
(I ′′)

)
under the CFL condition (2.8). Summing leads

to (2.11). Thus we are done.

Of course, if one lets Δt → 0, (2.11) provides the exponential decay of the entropy,
see [24]. Lemma 2.2 implies also a bound on the total variation of the scheme as we
show now.

Corollary 2.6. Under the hypotheses of Lemma 2.2, there holds:

∀n ∈ N,
∑
k≥1

|V n
k − V n

k−1| ≤
(
1 − Δt inf

V 0
k

(I ′′)
)n ∑

k≥1

|V 0
k − V 0

k−1|.(2.12)

Moreover, the scheme (2.7) is monotonicity-preserving.

Proof. The proof is essentially the same than Proposition 2.5’s; substracting
and linearizing (2.7) with � = k − 1 gives again |V n+1

k − V n+1
k−1 | ≤ |V n

k − V n
k−1|

(
1 −

Δt infV n
k

(I ′′)
)

using the CFL condition (2.8). This also implies monotonicity preser-
vation. By summing for k, k′ ≥ 1, one obtains the decrease of the total variation
which is initially bounded if f0 has compact support.

Remark 1. One clearly sees that the CFL (2.8) condition is indeed very mild in
this case, since the values of Δt and |Ck| are completely decorralated. In particular,
no implicit time integrator is needed to ensure stability, in sharp contrast with [9].

The decrease of the total variation was to be expected; one can imagine consid-
ering V (t = 0, �) as an initial value and W (t = 0, �) := V (t = 0, � − h), 0 < h � 1.
Thus the Wasserstein contraction (2.9) ensures that the corresponding numerical ap-
proximations (2.7) will go closer to each other as times grow. For p = 1, this is exactly
what is meant by (2.12). Eventually, and at least for I(ξ) = |ξ|2+γ/γ+2, both V and
W will get stuck onto a self-similar profile which depends only on the value of γ ≥ 0.
We shall return to this in section 3.
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At this level, it is convenient to define a sequence of approximate “Lagrangian
solutions” V Δt ∈ BVloc(R

+
∗ × (0, 1)) as for all t, � ∈ R+

∗ × (0, 1),

V Δt(t, �) = V n
k , if |t− tn| ≤ Δt

2
and |�− �k| ≤ |Ck|

2
.(2.13)

Obviously, this implies the existence of another sequence �Δt(t, v) defined as follows:
for all t, v ∈ R+

∗ × R,

�Δt(t, v) = �k, if |t− tn| ≤ Δt

2
and

V n
k−1 − V n

k

2
≤ v − V n

k ≤ V n
k+1 − V n

k

2
,(2.14)

from which one can recover an approximation fΔt(t, v) to (2.1) by divided differences.
As a consequence of the monotonicity of the sequence (V n

k )k∈K for all n ∈ N, fΔt ≥ 0
as soon as f0 ≥ 0. We note in passing that the total variation of �Δt in the v variable
is constant by construction.

Thus it just remains to extract a subsequence still denoted V Δt converging strongly
in L1

loc(R
+
∗ × (0, 1)) by Helly’s compactness principle. From (2.7), we can compute

ϕ(V n+1
k ) for ant smooth function ϕ; then applying the mean-value theorem leads to:

∀k, n, 1

Δt

(
ϕ(V n+1

k ) − ϕ(V n
k )

)
= −

∑
k′∈K

|Ck′ |I ′(V n
k − V n

k′)ϕ′(V n
k ) + o(1).

It is now easy to deduce that V Δt, (2.13) will satisfy the requirements of Definition 1
as Δt,Δv → 0. Hence we deduce:

Theorem 2.7. Let f0 ∈ Mp(R) with compact support and I be a convex smooth
even function; under the CFL condition (2.8), the sequence V Δt defined by (2.13) and
the scheme (2.7) converges strongly in L1

loc(R
+
∗ × (0, 1)) as Δt,Δv → 0 towards the

unique solution of (2.1) in the sense of Definition 1. Moreover, it decreases the entropy
E in case I(ξ) = |ξ|2+γ/(γ + 2)

3. Study of the solution’s large-time behaviour. From [10], we know that
the so–called homogeneous cooling states cannot be hoped to play the role of paramount
importance as it is the case for Barenblatt-Pattle similarity solutions for nonlinear
diffusion equations. However, we are about to show that they still can be evidenced
numerically by means of our approach.

3.1. Entropy dissipation properties and similarity variable. In this sec-
tion, we must restrict ourselves to usual interaction potentials I(ξ) = |ξ|γ+2/γ + 2,
γ ≥ 0, because we shall use homogeneity properties. The plan is to change variables
in order to make potential self-dimilar profiles stationary; this opens the way to the
study of long-time asymptotics for (2.1). We proceed by considering the associated
problem with an anti-drift term: (it corresponds to (1.1) with μ = −1 and σ = 0)

∂tg(t, v) = ∂v

{
g(t, v)

∫
R

I ′(v − ω)g(t, ω).dω − vg(t, v)

}
; t, v ∈ R+

∗ × R,(3.1)

Indeed, if g∞(v) is a steady-state solution for (3.1), then we can deduce a similarity
solution of (2.1) quite easily, (see [31])

fs(t, v) =
1

α(t)
g∞

(
v

α(t)

)
; α′(t) + α1+γ(t) = 0, α(0) = 1.
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Let us now consider g(τ, v) solution of (3.1) for τ(t) = − log(α(t)) in order to state
one result from [1, 10, 24].

Theorem 3.1. Let f0 ∈ Mp(R) for p = 2, and let f be the unique weak solution
to (2.1). Let g(τ, v) be defined by (3.1), then

g
τ→+∞−→ 1

2

(
δ(v − 1/2) + δ(v + 1/2)

)
,

weakly as a measure. (δ stands for the Dirac mass in zero)
Notice that α(0) = 1 implies that θs(0) =

∫
R
fs(t = 0, v)v2.dv =

∫
R
v2g∞(v).dv =

1/4. Following [1, 24], we recall the free energy functional (1.2) defined in the intro-
duction. However, we rewrite it in terms of the reciprocal mapping,

J (g, τ) =
1

2 + γ

∫
(0,1)2

|Ṽ (τ, �) − Ṽ (τ, �′)|2+γ .d�.d�′ −
∫

R

Ṽ (τ, �)2.d�,

where Ṽ (τ, �) is the reciprocal mapping of g(τ, v). We can give at once the value of
J (g∞):

J (g∞) = 1
2+γ

∫
(0,1)2

|Ṽ∞(�) − Ṽ∞(�′)|γ+2.d�.d�′ − 1
4

= 2
2+γ

∫ 1
2

0

∫ 1
1
2
|Ṽ∞(�) − Ṽ∞(�′)|2+γ .d�.d�′ − 1

4

= 1
2(2+γ) − 1

4 = − γ
4(2+γ) ≤ 0

In particular, there holds:

Ṽ (τ, �) =
V (τ, �)

α(t)
,

where V still stands for the reciprocal mapping of f(t, v) solution of (2.1). Hence
J (g, τ) rewrites (at this level we use that I(V/α) = α−(2+γ)I(V )),

J (f, t) =
1

2 + γ
.

1

α(t)(2+γ)

∫
(0,1)2

|V (t, �) − V (t, �′)|2+γ .d�.d�′ − θ(t)

α(t)2
,

with the temperature θ(t) defined in section 2, θ(t) =
∫ 1

0
V (t, �)2.d� can be shown to

satisfy the following equation:

dθ(t)
dt =

∫ 1

0
∂tV (t, �)V (t, �).d�

= −2
∫
(0,1)2

V (t, �)I ′(V (t, �) − V (t, �′)).d�.d�′

= − ∫
(0,1)2

I(V (t, �) − V (t, �′)).d�.d�′ ≤ 0.

In the last step we use explicitly that I(ξ) is a power function. It is now necessary to
make an assumption concerning the speed of decay for J , namely we assume that,

∃z such that 0 ≤ J (g, τ) − J (g∞) ≤ [J (g, τ = 0) − J (g∞)]z(τ)︸ ︷︷ ︸
Z(τ(t))

,(3.2)

upon which relies the following result.
Proposition 3.2. Let V (t = 0, �) be the reciprocal mapping associated to the

initial datum f0(v) ∈ Mp(R); assumption (3.2) implies:

lim
t→+∞

1

t

∫ t

0

Z(τ(s)).ds = 0 ⇒ lim
t→+∞

θ(t)

α(t)2
=

1

4
.
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As an immediate consequence, this statement allows to use the temperature as a
way of rescaling the solution, as already done for nonlinear diffusion equations in [19]
(exacept that here, the task is to zoom out a Dirac measure); this might be of interest
if considering more general interaction potentials I(ξ), in the spirit of [31], for which
no similarity variable α is available yet.

Proof. From the evolution of θ, we deduce that:

J (g, τ) = −α−(2+γ)(t)

γ(2 + γ)

dθ(t)

dt
− θ(t)

α2(t)
.

Hence we compute:

d
dt

(
θ(t)α−(2+γ)(t)

)
= dθ(t)

dt α−(2+γ)(t) − (2 + γ)α−(3+γ)(t)α′(t)θ(t)
= dθ(t)

dt α−(2+γ)(t) + (2 + γ)α−2(t)θ(t)
= −(2 + γ)J (g, τ).

If (3.2) holds, then

−J (g∞) ≥ 1

2 + γ

dθ(t)

dt

(
θ(t)α−(2+γ)(t)

)
≥ −J (g∞) − Z(τ(t)).

Thus we integrate in time and multiply by αγ(t) to derive:

−J (g∞).t.αγ(t) ≥ 1

2 + γ

θ(t)

α2(t)
− θ(0)αγ(t) ≥ αγ(t)

(
−J (g∞).t−

∫ t

0

Z(s).ds

)
.

The final step is to notice that αγ(t) = (1 + γt)−1 and that −J (g∞)(2 + γ)/γ = 1
4 .

3.2. Numerical validation: Homogeneous cooling states. Proposition 3.2
provides us with a simple and systematic way to visualize approximate similarity
solutions of (2.1) just computing

gΔt
∞ (v) = fΔt

(
t, 2v

√
θ(t)

)
2
√

θ(t),(3.3)

which can be easily obtained from (2.7). Indeed, Proposition 3.2 (relying on assump-
tion (3.2)) ensures that (3.3) will behave asymptotically well. This is illustrated in
Figure 3.1 for various values of γ ≥ 0. To the authors’ knowledge, this is the first time
such intermediate asymptotics are displayed numerically. Clearly, as γ decreases, θ
gets closer to the zero-machine and the accuracy in computing (3.3) is reduced. How-
ever, the correct shape is kept even with θ � 10−10. The parameters we used were
Δv = 0.05 and the time step is chosen adaptively. The initial data is a Gaussian
distribution, f0(v) = 1

2π exp(−x2/2).

4. Inclusion in a “thermal bath”: the 1D friction–diffusion equation
σ > 0. We now deal with the Cauchy problem for the granular diffusion equation:

∂tf(t, v) = ∂v

{
f(t, v)

∫
R

I ′(v − ω)f(t, ω).dω

}
+ σ∂vvf ; t, v ∈ R+

∗ × R.(4.1)
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Fig. 3.1. Decay of the temparatures t �→ θ(t) (left) and numerical similarity solutions (right)
for γ = 1.8, 1.2, 0.5 (top to bottom). Notice the duration of stabilizing processes as γ is decreased.

Existence and uniqueness have been shown in [12]. As in the preceding sections, we
recall the weak solution to (4.1) as a distribution f(t, v) ∈ C1(R+

∗ ;Mp(R)) satisfying,

d
dt

∫
R
ϕ(v)f(t, v).dv = − ∫

R2 I ′(v − w)ϕ′(v)f(t, v)f(t, w).dv.dw
+σ

∫
R
ϕ′′(v)f(t, v).dv

= 1
2

∫
R2 I ′(v − w)(ϕ′(w) − ϕ′(v))f(t, v)f(t, w).dv.dw

+σ
∫

R
ϕ′′(v)f(t, v).dv,

(4.2)

and f(t, .) → f(t = 0, .) = f0 ∈ Mp(R) weakly as a measure as t → 0. Clearly from
this definition, one deduces again the conservation of mass and momentum, which
corresponds to ϕ(v) = 1, v. However, the temperature isn’t meant to vanish as for
the case σ = 0.

Uniqueness still holds for these measure solutions:
Theorem 4.1. Let f0 ∈ Mp(R) for p = 2 and I is a smooth even convex
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function; then the weak solution to (4.1) is unique.

The proof is given in Appendix B. The solution of (4.1) has been shown to
converge weakly to the one of (2.1) as σ → 0 in [26] However, the results of [12] are
more interesting at a computational level because they deal with smoother solutions.
Let us recall:

Theorem 4.2. Let f0 ∈ Mp(R) be such that
∫

R
(1 + v4)f0(v).dv is finite and I

is a smooth even convex function; then the solution to (4.1) is unique and satisfies
(1+v4)f(t, v) ∈ C0(R+

∗ ;L1(R)). Moreover, if f0 ∈ C2(R), the solution f is classical.

From this result, one sees immediately that the behaviour of solutions is very
different because of the diffusive term: global smooth solutions do exist.

4.1. Numerical scheme and Wasserstein contraction estimate. We don’t
recall the whole derivation of the equation satisfied by the reciprocal mapping (which
can be easily derived from the considerations in section 2.1 and [19]): ∀t, � ∈ R+

∗ ×
(0, 1),

∂tV (t, �) + σ∂�

(
1

∂�V (t, �)

)
+

∫ 1

0

I ′
(
V (t, �) − V (t, �′)

)
.d�′ = 0.(4.3)

We shall also rely on the same type of discretization, hence we give at once the
expression of the resulting scheme:

(4.4)

V n+1
k = V n

k − Δt
∑
k′∈K

|Ck′ |I ′(V n
k − V n

k′) − σΔt

|Ck|
{( �k+1 − �k

V n
k+1 − V n

k

)
−
( �k − �k−1

V n
k − V n

k−1

)}
.

This scheme can be easily proven to be conservative and preserves momentum. It
is also clearly Asymptotic-Preserving (AP) in the sense of Jin [22]. In contrast with
section 2.1, (4.4) has to be completed by boundary conditions in � = 0, 1; we observe
that,

1

∂�V (t, �)
= f(t, V (t, �)) = 0 for � = 0, 1,

at least for smooth functions vanishing at infinity. Hence in � = 0, we have:

V n+1
0 = V n

0 − Δt
∑
k′∈K

|Ck′ |I ′(V n
0 − V n

k′) − Δtσ

|Ck|
(

�1 − �0

V n
1 − V n

0

)
.

And a similar experssion in � = 1. In the spirit of Lemma 2.2, we can prove:

Lemma 4.3. Let f0, g0 be two nonnegative initial data in Mp(R) for (4.1) and
V,W their reciprocal mappings. Under the CFL restriction,

Δt sup
V n
k
,Wn

k′

{
I ′′ + σ

( �k+1 − �k
(V n

k+1 − V n
k )2

+
�k+1 − �k

(Wn
k′+1 −Wn

k′)2

)}
≤ 1, k, k′ ∈ K2,(4.5)

the scheme (4.4) is contractive in any Wasserstein metric dp; more precisely,

∀n ∈ N,
∑
k

|Ck||V n+1
k −Wn+1

k |p ≤
∑
k

|Ck||V n
k −Wn

k |p, p ≥ 1.(4.6)
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Proof. We substract the schemes (4.4) and rearrange the terms corresponding to
each variable. The integral term is linearized the same way and with the notation of
Lemma 2.2; the diffusive part gives

V n+1
k −Wn+1

k = (V n
k −Wn

k )
(
1 − Δt

∑
k′∈K |Ck′ |(I ′′)nk,k′ + Δt

|Ck| (Φ
′
k+ 1

2

+ Φ′
k− 1

2

)
)

+Δt
∑

k′∈K |Ck′ |(I ′′)nk,k′(V n
k′ −Wn

k′)

− Δt
|Ck|Φ

′
k+ 1

2

(V n
k+1 −Wn

k+1) − Δt
|Ck|Φ

′
k− 1

2

(V n
k−1 −Wn

k−1),

with the following function:

Φk+ 1
2
(V ) =

σ(�k+1 − �k)

V
, Φ′

k+ 1
2
(V ) = −σ(�k+1 − �k)

V 2
≤ 0.

Then Φ′
k+ 1

2

stands for a mid-point value obtained through the mean-value theorem.

From the CFL condition (4.5), the combination is convex thus Jensen’s inequality
yields the announced result.

We stress that Lemma 4.3 doesn’t imply any Lp decay no more simply because ini-
tializing with W 0

k ≡ Ct ∈ (0, 1) is forbidden by the CFL condition (4.5). Nevertheless,
the order-preserving property still holds.

However, as said before, this result allows one to restrict the attention to smooth
C2 initial data (which give rise to classical solutions as well) in order to take advantage
of classical techniques in numerical analysis. Indeed, even in case the initial data
is singular, one can argue that the error between the solutions emerging from its
regularization and the genuine one decay with time in any Wasserstein metric dp.

So, going down this track, we first oberve (by means of Taylor expansions) that the
scheme (4.4) is clearly a first-order discretization of (4.1); hence its local truncation
error is enk = O(Δt+|Ck|). Hence in order to establish convergence, we must study the

evolution in time of its global error eΔt(t, �)
def
= V Δt(t, �)−V (t, �) for all � ∈ (0, 1).

It satisfies,

∂te
Δt(t, �) + σ∂�

(
1

∂�V Δt(t,�) − 1
∂�V (t,�)

)
+

∫ 1

0

I ′
(
V Δt(t, �) − V Δt(t, p)

)
− I ′

(
V (t, �) − V (t, p)

)
.dp = enk ,

for t = tn and � = �k. At this point, one multiplies by eΔt(t, �) and integrates in
� ∈ (0, 1). The integral term is positive by the uniqueness proof of Theorem 2.1 given
in Appendix A. The diffusive term is handled thanks to a monotonicity argument,
as in the proof of Theorem 4.1 given in Appendix B; indeed, an integration by parts
yields

−σ

∫ 1

0

(∂�V
Δt − ∂�V )

(
1

∂�V Δt
− 1

∂�V

)
(t, �).d� ≥ 0, σ ≥ 0.

Thus remains only

1

2
∂t

∫ 1

0

eΔt(t, �)2.d� ≤ O(Δt + sup
k

|Ck|)
∫ 1

0

|eΔt(t, �)|.d�,

and since (0, 1) is bounded, the L2 norm dominates the L1. Hence the error grows
at most exponentially in time depending on the local truncation error of (4.4). We
deduce:
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Theorem 4.4. Let f0 ∈ C2(R) with compact support and I be a convex smooth
even function; under the CFL condition (4.5), the sequence V Δt defined by (2.13)
and the scheme (4.4) converges pointwise as Δt,Δv → 0 towards the unique classical
solution of (4.3), or equivalently of (4.1).

The equivalence of the two notions of solution to (4.1) has been used previously in
[26]. It is easy to obtain a formal notion of consistency for the scheme (4.4) following
the ideas presented in [19], namely, one writes down the basic equality coming directly
from (2.4),

∀k, n ∈ K × N, �Δt(tn, V n
k ) = �Δt(tn+1, V n+1

k ),

and then plugs (4.4). A partly implicit finite-volume discretization of (4.1) is derived
by means of Taylor expansions assuming that �Δt is at least C1 in the v variable.
We close this section mentioning that (4.4) isn’t the unique choice leading to the
contraction property (4.6); a time-splitting strategy would behave equally well. In
this last case, the proof would be the concatenation of Lemma 2.2’s and [19] (the
CFL would be slightly lighter though). The last situation emanating from (2.1) which
hasn’t been treated yet is σ > 0 and μ �= 0 and corresponds to a so–called granular
Fokker–Planck equation, as studied in [12]. However, when expressed by means of
the reciprocal mapping, the confining term rewrites simply μV (t, �) thus leading to a
simple exponential term which can be integrated explicitly. Indeed, upon multiplying
(1.5) by exp(μt), one derives the following equation:

∂tṼ (t, �)+exp(μt)

{
σ∂�

(
1

exp(−μt)∂�Ṽ (t, �)

)
+

∫ 1

0

I ′
(

exp(−μt)(Ṽ (t, �) − Ṽ (t, �′))
)
.d�′

}
= 0,

(4.7)
where Ṽ (t, .) = exp(μt)V (t, .). The aforementioned techniques allow to cover this case
with minor changes.

4.2. Numerical results; study of the solution’s “tails”. Our first validation
for (4.4) has been to look at the behaviour of rescaled numerical solutions (3.3) as
σ is decreased of several orders of magnitude. This has to do with checking the so–
called Asymptotic-Preserving property in the sense of [22]. In this case, the decay
of the approximate solution’s temperature is interesting to look at since it should
strengthen as σ → 0. This is indeed the case as seen on Figure 4.1; parameters used
were Δv = 0.27 and γ = 1.2. The time-step Δt is chosen adaptively according to
(4.5).

It is a well-known fact that for great values of |v|, the solution of (4.1) with γ = 1
behaves like exp(−|v|3), see [7, 8, 9]. We tried to check it out by iterating (4.4) with
σ = 1 for quite a long time starting from a Gaussian initial datum. Results are shown
in Figure 4.2. However, as the values of fΔt become very small (less than 10−50),
results could be slightly corrupted by spurious noise; it is nevertheless seeable that
the behaviour is qualitatively correct.

5. Numerical approximations of the Hele–Shaw cell.

5.1. Derivation of the numerical process. As announced in the introduction,
we are about to concentrate mainly on a particular case of (1.4) corresponding to
a(u) = u (we drop the superscripts ε as there is no ambiguity),

∂tu + ∂x

(
u∂x(u ∗x Γ′′

ε (x))
)

= 0, 0 ≤ u0 ∈ L1 ∩H1(R).
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Fig. 4.1. Decay of the temparatures t �→ θ(t) (left) and rescaled numerical solutions (3.3) (right)
for σ = 0.1, 0.01, 0.001 (top to bottom).

The general case with mobility a(u) �= u is to be tackled in section ?? by means of quite
different techniques. It is well-known that equation (1.3) is mass-preserving, hence
there is no loss of generality in considering only nonnegative initial data satisfying
the additional requirement

∫
R
u0(x).dx = 1. One easily shows that it also dissipates

energy, i.e.

d

dt

∫
R

|∂xu(t, x)|2.dx ≤ 0, t ∈ R+.

Nonnegativity preservation has been proved to hold as a consequence of entropy dis-
sipation, [4, 5, 6]; however, in one space dimension, positive solutions to (1.3) are
classical for a(u) = up, p big enough. As the solution vanishes, it typically suffers a
loss of regularity and propagates at finite speed (it admits in particular source-type
solutions, [16]). This is strongly reminiscent of second-order degenerate parabolic
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Fig. 4.2. Large-time behaviour for (4.1) at time t � 33 (left) and comparison of its solution’s
tails with v �→ exp(−|v|3) (right, we plotted − ln(fΔt) and |v3| in logscale).

equations already treated numerically in [19]. In this context, we first recall that
approximations of the type (1.4) have been shown to be consistent with the original
problem (1.3) for the special choice of Γε being a Gaussian kernel,

Γε(x) =
1√
2πε

exp

(
−x2

2ε

)
,

see Theorem 3.1 in [29]. Relying on this result, we shall pursue with this choice even if
(many) other choices could be admissible too, as for instance the compactly supported
Landau kernel given by (m ∈ N)

Γε,m(x) =

⎧⎨⎩
(ε2−x2)m∫ ε

−ε
(ε2−y2)m.dy

, |x| ≤ ε,

0, |x| > ε.

For our purpose, one would get:

Γε,4(x) =
315(ε2 − x2)4

128ε9
, Γ′′′

ε,4(x) =
105

2ε6
x(9ε2 − 21x2)Γε,1(x).

Other kernels can be found in e.g. [33]. Anyway, following ideas from the preceding
sections, one can derive a numerical scheme for (1.4): by integration,

∂t� + (∂x�)(∂x� ∗x Γ′′′
ε ) = 0, �(t, x) =

∫ x

−∞
u(t, y).dy,

and introducing X(t, �) as the reciprocal mapping of u(t, x), (‖u0‖L1(R) = 1)

∂tX(t, �) −
∫ 1

0

Γ′′′
ε (X(t, �) −X(t, �′)).d�′ = 0, (t, �) ∈ R+ × (0, 1).(5.1)

For Γε being Gaussian, the scheme is completely determined with:

Γε(x) =
1√
2πε

exp

(
−x2

2ε

)
, Γ′′′

ε (x) =

(
3x

ε2
− x3

ε3

)
Γε(x).

Hence, defining a cartesian grid by means of two positive parameters Δt,Δx and
denoting tn = nΔt, xk = kΔx, �k = �0(xk), one obtains finally:

Xn+1
k = Xn

k + Δt
∑
k′∈K

|Ck′ |Γ′′′
ε (Xn

k −Xn
k′).(5.2)
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Now, the novelty lies in the fact that Γ′′′
ε has no sign; this somehow reflects the high-

order space derivative in (1.3). As in section 2, no boundary conditions are needed
for (5.2).

5.2. Stability estimates for ε > 0. As in former papers, [34, 21], we aim at es-
tablishing a nonnegativity-preserving property; however, our scheme isn’t contractive
in any Wassertein distance. Only remains the monotonicity-preserving property:

Proposition 5.1. Let u0 ≥ 0 and X(t, �) stand for the reciprocal mapping
satisfying (5.1) with X(t = 0, .) stands for the pseudo-inverse of �(t = 0, .). Under
the CFL condition,

Δt ≤ 1

6
ε2
√

2πε exp(3),(5.3)

the scheme (5.2) is monotonicity-preserving.
Proof. The proof proceeds by substracting and linearizing (5.2); one gets

Xn+1
k −Xn+1

k−1 = Xn
k −Xn

k−1 + Δt
∑

k′∈K |Ck′ |
(
Γ′′′
ε (Xn

k −Xn
k′) − Γ′′′

ε (Xn
k−1 −Xn

k′)
)

= (Xn
k −Xn

k−1)
(
1 + Δt

∑
k′∈K |Ck′ |(Γ′′′′

ε )nk,k−1,k′

)
,

where (Γ′′′′
ε )nk,k−1,k′ = Γ′′′′

ε (λXn
k + (1 − λ)Xn

k−1 −Xn
k′). Now, for Γε being Gaussian,

its fourth derivative reads:

Γ′′′′
ε (x) =

Γε(x)

ε2

(
y2 − 6y + 3

)
, y =

x2

ε
.

By elementary calculus, this polynomial has a minimum for y = 3 and the corre-
sponding value is −6. It remains to observe that (5.3) ensures that 1+Δt inf Γ′′′′

ε ≥ 0.

As an immediate consequence, nonnegativity for the u variable holds under the
same condition (5.3). At this point, we stress that our scheme (5.2) is endowed with
a very light CFL restriction Δt = O(ε5/2); indeed the parameters Δt and Δx are
completely decorralated as in section 2.2. Clearly, the smaller ε, the more precise the
numerical approximation, but the higher the computational cost. The choice of the
Landau kernel would impose Δt = O(ε5).

We now move on to an energy estimate for the scheme (5.2); it is convenient to
recall some short-hand notation from [19], namely,

δXn
k− 1

2
:= Xn

k −Xn
k−1, δ�k− 1

2
:= �k − �k−1.

Proposition 5.2. Let us denote α = 6

ε2
√

2πε exp(3)
; under the hypotheses of

Proposition 5.1, the following holds for (5.2):

∀n ∈ N,

∣∣∣∣∣ δ�k+ 1
2

δXn
k+ 1

2

−
δ�k− 1

2

δXn
k− 1

2

∣∣∣∣∣ ≤ exp(αtn)

{∣∣∣∣∣ δ�k+ 1
2

δX0
k+ 1

2

−
δ�k− 1

2

δX0
k− 1

2

∣∣∣∣∣ + O(ε2)

}
.(5.4)

Proof. We observe that from the proof of Prop. 5.1, the divided difference satisfies,∣∣∣∣∣ δ�k− 1
2

δXn
k− 1

2

∣∣∣∣∣ ≤
∣∣∣∣∣∣ δ�k− 1

2

δXn−1
k− 1

2

∣∣∣∣∣∣ 1

1 + Δt inf Γ′′′′
ε

≤
∣∣∣∣∣ δ�k− 1

2

δX0
k− 1

2

∣∣∣∣∣ exp(−tn inf(Γ′′′′
ε )),
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since the CFL condition (5.3) ensures monotonicity preservation and inf(Γ′′′′
ε ) ≤ 0.

For any choice of a, b, c, d in R+, there holds
∣∣a
b − c

d

∣∣ ≤ |a−c|
b + c

∣∣ 1
b − 1

d

∣∣. Hence we
get that:

∣∣∣∣∣∣ δ�k+ 1
2

δXn+1
k+ 1

2

−
δ�k− 1

2

δXn+1
k− 1

2

∣∣∣∣∣∣ ≤
∣∣∣∣ δ�

k+ 1
2

δXn

k+ 1
2

− δ�
k− 1

2

δXn

k− 1
2

∣∣∣∣
1 + Δt inf(Γ′′′′

ε )
+ O(Δt)

∣∣∣∣∣ δ�k− 1
2

δX0
k− 1

2

∣∣∣∣∣ exp(−tn inf(Γ′′′′
ε )).

By induction, this yields:∣∣∣∣∣ δ�
k+ 1

2

δXn+1

k+ 1
2

− δ�
k− 1

2

δXn+1

k− 1
2

∣∣∣∣∣ ≤ exp(−(n + 1)Δt inf(Γ′′′′
ε ))

×
{∣∣∣∣ δ�

k+ 1
2

δX0

k+ 1
2

− δ�
k− 1

2

δX0

k− 1
2

∣∣∣∣ + O(Δt)

∣∣∣∣ δ�
k− 1

2

δX0

k− 1
2

∣∣∣∣ 1+Δt inf(Γ′′′′
ε )

−Δt inf(Γ′′′′
ε )

}
.

It remains to plug the value of inf(Γ′′′′
ε ) ≤ 0 and to observe that the last term is at

least O(ε2). Thus (5.4) follows.
Unfortunately, it doesn’t seem easy to establish the equivalent of the energy decay

which holds for the continuous problem (1.3) as a consequence of the nonnegativity
of a(u). However, (5.4) can be considered as a “cheap” estimate which ensures that
approximate solutions generated by (5.2) won’t blow up in finite time.

5.3. Numerical results: Dead core phenomenon and similarity solution.
We finally aim at illustrating our approach’s outcome on two test-cases from the
literature, each describing a typical phenomenon for equation (1.3): the first one is
the appearance of the so–called “dead core”, which corresponds to film rupture (see
section 9 in [34] and [21]), the second is the spreading of the source-type solution
already studied in [16, 29].

We first consider the following initial data, taken from [6, 34]:

u0(x) = 0.8 − cos(πx) + 0.25 cos(2πx), x ∈ (−2, 2).(5.5)

Despite the fact the authors of [34] consider a(u) =
√
u, we obtained dead core

evidence around time t � 0.003 as shown in Figure 5.1; initial data are plotted for
comparison. Parameters used for this run were Δx = 2−7, ε = 0.002 and Δt has been
computed from (5.3). Observe in particular the loss of regularity when passing from
t = 0.002 to t = 0.0035. There is no clear touchdown onto the x axis as our scheme is
endowed with an error in ε > 0 from the very beginning, left apart the ones coming
from the discretisation in Δt,Δx.

The second case of interest is the simulation of a droplet’s spreading, rendered
through a similarity solution which is only C1(R); the following formula is (partially)
taken from [29],

(5.6)

S(t, x) =
1

24(5t + τ)
1
5

max

[
0,

(
ω2 − x2

(5t + τ)
2
5

)2
]
, u0(x) =

S(0, x)

‖S(0, .)‖L1(R)
.

Parameters used here were Δx = 2−8, ε = 0.03, ω = 2, τ = 0.5 and we iterated
up to time t = 0.11, see Figure 5.2. The main difference with the preceding case
is that the rendering of our scheme (5.2) shows up oscillations (which decay with
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Fig. 5.1. Evolution of the dead core for initial data (5.5) at times t = 0.001, 0.002, 0.0035. (top
to bottom).

ε): this comes from the loss of regularity at the vanishing points of the approximate
solution. We note in passing that oscillations occured also for [29] and [34] where a
post-processing has been implemented to plot only selected points (see p. 550). From
our CFL condition (5.3), there is clearly a tradeoff between quality of rendering and
CPU time for such a simulation. We plotted the initial data and the exact value of
the source-type profile for the sake of completeness; an evolution of the temperature
is also shown.

Remark 2. From the computations in section 5.1, one could formally extend
the present approach to mobilities a(u) �= u. In this direction, equation (5.1) would
modify like,

∂tX(t, �) − a

(
1

∂�X

)
∂�X(t, �)

∫ 1

0

Γ′′′
ε (X(t, �) −X(t, �′)).d�′ = 0,
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Fig. 5.2. Spreading of the similarity solution (5.6) at time t = 0.11 with τ = 0.5 (left) and
evolution of its temperature t �→ θ(t) (right).

and the numerical scheme (5.2), with obvious notation,

Xn+1
k = Xn

k + ã

(
δ�k+ 1

2

δXn
k+ 1

2

,
δ�k− 1

2

δXn
k− 1

2

)
Δt

∑
k′∈K

|Ck′ |Γ′′′
ε (Xn

k −Xn
k′).

Hence the design of a discrete mobility ã ≥ 0 which could maintain monotonicity and
energy estimates has to be tackled (as in [34]).

6. An efficient Fourier scheme for general thin film equations. As pointed
out in Remark 2, the preceding approach can’t be extended to general mobilities
a(u) = up in a straightforward manner. To partially fix this drawback, we wish to
propose here a general way to build schemes for equation (1.3), based on repeated
use of fft routines. However, we’ve been unable to establish any rigorous bound on
this class of approximate solutions thus we just mention it here. Future work might
be dedicated to these matters.

We assume solutions of (1.3) endowed with a H1(R) regularity in the space vari-
able, see [16]; hence we introduce their Fourier transform which we shall denote û(t, ξ)

for ξ ∈ R. Obviously, there holds ∂tû(t, ξ) = −iξ ̂a(u)∂xxxu. Our strategy is based on
the idea of computing correctly the nonlinear term relying on the unknown’s smooth-
ness. By repeated integrations by parts, one derives the following equality:

̂a(u)∂xxxu(t, ξ) = −iξ

∫
R

(
A(∂xu) − 2∂xu∂xa(u) − ξ2A(u)

)
exp(−ixξ).dx,

where, for a(u) = up, A(u) = up+1

p+1 . This leads to the general expression:

∂tû(t, ξ)+ξ2
{

̂B(u, ∂xu)(t, ξ) + ξ2Â(u)(t, ξ)
}

= 0, B(u, ∂xu) = p(∂xu)2up−1+A(∂xu).

(6.1)
The Hele-Shaw cell corresponding to p = 1 is actually a quite particular case as (6.1)
simplifies and boils down to1:

∂tû(t, ξ) + ξ2

{
3

2
|̂∂xu|2(t, ξ) +

ξ2

2
|̂u|2(t, ξ)

}
= 0.(6.2)

1This has to do with Theorem 1, Case 2 in [6].
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It is easy to implement both (6.1) and (6.2) using e.g. the SciLab package. The
derivative |∂xu|2 is computed via Fourier transform too; this has the advantage of
suppressing the wide-stencil problem inherent to (1.3). Indeed, both approaches in
[21, 34] suffer from it. Moreover, we observed that (6.2) doesn’t ask for an implicit
time-integrator; like all the schemes proposed in this paper, it can be treated explicitly
thus keeping the computational cost very low. A last observation is that it seems that
the CFL condition for (6.2) is linear, like Δt ≤ Δx/203 instead of Δt = O(Δx4)
for finite differences; the factor 20 has been found experimentally, we cannot give
any rigorous explanation of it. It is necessary to filter spurious oscillations when
computing derivatives; a standard Gaussian filter has been used there.
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Fig. 6.1. Similarity solution (5.6) at time t = 0.06 with (6.2), τ = 0.2 (left); difference with
initial data for exact solution and numerical (right).

As a numerical validation, we selected again the similarity solution (5.6) with the
same parameters, except a lower value of τ , and 256 discretization points in space
(this asks for Δt = 2.10−6). The results are displayed on Figure 6.1. One observes
that despite a lower space resolution, the approximate solution is better than the one
on Figure 5.2 as it doesn’t show any oscillations at its tails. The speed of propa-
gation is also correct. There is a particular structure associated to the differential
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Fig. 6.2. Evolution of Lipschitz initial data, for a(u) = |u| (left) and a(u) = |u|4 (right)

equation (6.2); we present some computations on this in Appendix C. For the sake
of completeness, we also include numerical results on a test-case proposed in [21]: it
is a Lipschitz initial datum, u0(x) = 0.1 max(0, π − 2|π − x|), for x ∈ [0, 2π]. This
highlights the great importance of the exponent p in the dynamics of (1.3) since, for
p = 1, it develops instantaneously a zero-angle contact on each side whereas for p = 4,
the support doesn’t spread at all and convergence onto a parabolic profile is observed.
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Both features are successfully rendered by our Fourier approach (6.1), as can be seen
on Figure 6.2. Similar parameters have been used and the scheme is fully explicit in
time.

7. Conclusion and outlook. We have proposed in this paper to work out a
rather wide class of 1D nonlinear diffusion equations arising from physics modelling by
using numerical techniques borrowed from mass transportation theory, [32]. In cases it
applies, this approach generally allows for the derivation of simple schemes and short
proofs. Similar techniques could be applied in other areas of application, like e.g.
the so–called flashing ratchet, [23]. However, several questions remain open; among
them lies the design of an efficient strategy for the simulation of the full dissipative
Boltzmann equation in the space t, x, v (see however [26]). The situation for the
general thin films equation is even more challenging; especially, the case a(u) = u3 is
very much of interest from the physics perspective, see again [25]. For this case, p = 3
and (6.1) reads:

∂tû(t, ξ) + ξ2

{
3

2
̂|∂xu2|2(t, ξ) +

1

4
|̂∂xu|4(t, ξ) +

ξ2

4
|̂u|4(t, ξ)

}
= 0.

Appendix A. Proof of Theorem 2.1. We consider two possible solutions f, g
and assume that as densities, they satisfy

∫
R
f(t, v).dv ≡ 1 and

∫
R
vf(t, v).dv ≡ 0.

Then we insert equation (2.5) in the following expression to derive:

d
dt

∫ 1

0
|V (t, �) −W (t, �)|2.d� = 2

∫ 1

0
∂t(V (t, �) −W (t, �))(V (t, �) −W (t, �)).d�

= −2
∫
(0,1)2

(
I ′(V (t, �) − V (t, p)) − I ′(W (t, �) −W (t, p))

)
×(V (t, �) −W (t, �)).dp.d�

At this point, it is useful to recall from [24] that
∫

R
(v−w)dμ(v, w) = 0 for all density

μ admitting f and g as marginals. This implies that
∫ 1

0
V (t, �) − W (t, �).d� = 0;

hence,

V (t, �) −W (t, �) =

∫ 1

0

(V (t, �) − V (t, q)) − (W (t, �) −W (t, q)).dq.

This is to be plugged in the previous equality in order to derive:

d

dt

∫ 1

0

|V (t, �) −W (t, �)|2.d� = −2

∫ 1

0

(∫ 1

0

I ′(V (t, �) − V (t, p)) − I ′(W (t, �) −W (t, p)).dp
)

×
(∫ 1

0

(V (t, �) − V (t, q)) − (W (t, �) −W (t, q)).dq
)
.d�

Now, the trick is to observe that the roles of p and � are symmetric, thus we can
exchange them in the second integral part. The integral rewrites:

d

dt

∫ 1

0

|V (t, �) −W (t, �)|2.d� = 2

∫
(0,1)3

(
I ′(V (t, p) − V (t, �)) − I ′(W (t, p) −W (t, �))

)
×
(
(V (t, p) − V (t, q)) − (W (t, p) −W (t, q))

)
.d�.dp.dq.

The sign changes because I ′ is odd. At this point, one computes half the difference
of the preceding expressions in order to make the q-terms disappear. All this boils
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down to

d

dt

∫ 1

0

|V (t, �) −W (t, �)|2.d� = −
∫

(0,1)2

(
(V (t, �) − V (t, p)) − (W (t, �) −W (t, p))

)
×
(
I ′(V (t, �) − V (t, p)) − I ′(W (t, �) −W (t, p))

)
.dp.d� ≤ 0,

since I ′ is nondecreasing. Finally, we reach the contraction estimate which has been
first proved in [24] for special potentials.

Appendix B. Proof of Theorem 4.1. We follow the same idea while aiming

at computing d
dt

∫ 1

0
|V (t, �) −W (t, �)|2.d� as in section A. Two terms appear on the

right-hand side; the first one corresponds to the friction part and is to be treated
exactly as in section A. For the second one, it is enough to observe that,

−
∫ 1

0

(V (t, �) −W (t, �))∂�

(
1

∂�V (t, �
− 1

∂�W (t, �)

)
.d� =∫ 1

0

(∂�V (t, �) − ∂�W (t, �))

(
1

∂�V (t, �)
− 1

∂�W (t, �)

)
.d� ≤ 0,

by monotonicity of the function v �→ 1/v. The boundary terms are zero thanks to:

1

∂�V (t, �)
= f(t, V (t, �)) = 0 for � = 0, 1.

Appendix C. The structure of (6.2). It is interesting to rewrite in full detail
the equation (6.2):

∂tû(t, ξ) = − ξ2

8π2

∫
R

exp(−ixξ)

{
3
(∫

R

iηû(t, η) exp(ixη).dη
)2

+ ξ2
(∫

R

û(t, η) exp(ixη).dη
)2
}
.dx.

It trivially yields the conservation of mass since ∂tû(t, 0) = 0. The quantities between
parentheses belong to R. We use the fact that a2 + b2 = (a + ib)(a− ib) and derive,
after a simple change of variables:

∂tû(t, ξ) = − 3ξ2

8π2

∫
R

exp(−ixξ)
(∫

R

iηû

(
t, η − ξ√

3

)
exp(ixη).dη

)(∫
R

iηû

(
t, η +

ξ√
3

)
exp(ixη).dη

)
.dx.

We can easily see that the terms between parentheses are now each other’s complex
conjugate since they read, e.g.,

M(x, ξ)
def
=

∫
R
iηû

(
t, η + ξ√

3

)
exp(ixη).dη

=
∫

R+ iη

[
û
(
t, η + ξ√

3

)
exp(ixη) − û

(
t, η − ξ√

3

)
exp(ixη)

]
.dη,

where we have used that u being real, û(t,−ξ) = û(t, ξ) for all ξ. Moreover, the
quantity appearing in the expression of ∂tû(t, ξ), ξ �→ M(x, ξ)M(x, ξ), is an even
function for any value of x. Using this while performing a backwards Fourier transform
leads us to a simple expression for ∂tu(t, x),

∂tu(t, x) +
1

32π3

∫
R2

ξ2 cos((y − x)ξ)M(x, ξ)M(x, ξ).dy.dξ = 0,
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which turns out to belong to R. Hence the whole computation is coherent. This high-
lights a convolution structure inside the Hele-Shaw equation since one could rewrite
it under the form:

∂tu(t, x) +
1

32π3

∫
R2

ξ2
(
M(., ξ)M(., ξ) ∗ cos(ξx)

)
.dξ = 0.
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