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Abstract. We show that the rate of convergence towards the self–similar solution of certain
linearized versions of the fast diffusion equation can be related to the number of moments of the
initial datum that are equal to the moments of the self–similar solution at a fixed time. As a
consequence, we find an improved rate of convergence to self–similarity in terms of a Fourier based
distance between two solutions. The results are based on the asymptotic equivalence of a collisional
kinetic model of Boltzmann type with a linear Fokker-Planck equation with nonconstant coefficients,
and make use of methods first applied to the reckoning of the rate of convergence towards equilibrium
for the spatially homogeneous Boltzmann equation for Maxwell molecules.

1. Introduction
This paper concerns some aspects of the rate of convergence to equilibrium for

solutions to the Cauchy problem of the fast diffusion equation posed on the whole
space RN

∂v

∂τ
=∆vm, y∈RN , τ >0, (1.1)

v(y,0)=v0(y), (1.2)

where N
N+2 <m<1.

The long time asymptotics for equation (1.1) is described by the family of self
similar source type Barenblatt–Pattle solutions

BC(y,τ)= τ−
1

m+1

(
C +

1−m

2m
|y|2τ− 2

m+1

) 1
1−m

, (1.3)

where the constant C must be chosen in order to match the initial mass. Recent
results on the subject allow to assert that the rate of convergence is sensitive to the
choice of the initial datum, and it is believed that the values of its moments play an
important role.

As a matter of fact, in the linear case described by the heat equation the rate
of convergence towards the fundamental solution is improved by fixing the center of
mass of the initial data. Moreover, one can fix a certain number of initial moments
in order to recover a higher order asymptotic approximation for the solutions with
a faster rate of convergence [18] [20]. In the same linear case it has been shown
that mass-centering also speeds up the entropy decay [14]. These results suggest the
possibility of detecting a more accurate asymptotic description even in the nonlinear
case by fixing suitably a certain number of initial moments [34].

This phenomenon was first established by J.L. Vazquez in [31] for porous medium
equations. He was able to prove that, while the support of a general solution takes the
shape of the support of its corresponding shifted Barenblatt profile for large times,
a faster convergence rate in L∞ towards such profile could be obtained in case of
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2 Fast diffusion equations

solutions with radial symmetry. This convergence rate result is valid for the fast
diffusion range as well.

In the fast diffusion case, the spatial translation invariance is related to an explicit
eigenvalue of the linearization of the scaled equation in self-similar variables [12] [15].
Therefore, one expects an improvement of the rate of convergence for the fast diffusion
equation by mass-centering to the rate t−1 in L1 in the translation dominated range,
which is given by the next eigenvalue of the linearization. A nearly optimal con-
vergence rate in the fast diffusion range, based on mass-centering, has been recently
announced in [21] [24].

For the porous medium case, mass–centering has been recently used in [7] to show
that the Euclidean Wasserstein distance between two compactly supported solutions of
the one–dimensional porous medium equation having the same center of mass decays
to zero for large times with a computable rate. As a consequence, mass-centering
allows to detect an improved rate of convergence of solutions of the one–dimensional
porous medium equation towards well centered self–similar Barenblatt profiles.

Let us denote the total mass of v0 by

M0 =
∫

RN

v0(y)dy >0

and its center of mass by

M1 =
1

M0

∫

RN

yv0(y)dy.

Both quantities M0 and M1 are invariant with respect to time (see [30]). Hence,
mass–centering means that we choose the initial datum with the same mass and first
moment of the Barenblatt solution. Except in the linear case, however, higher order
moments of the solution do not follow the same law of evolution of the higher order
moments of a shifted in time Barenblatt profile, even if the same are equal at time
τ =0. As far as the second moment is concerned, a recent result establishes however
an asymptotic equivalence between them [28].

Taking into account this asymptotic equivalence, it can be reasonably conjectured
that information on the rate of decay in terms of moments can be obtained by consid-
ering linear or linearized versions of equation (1.1). Among others, we shall consider
in the sequel a linear version of the fast diffusion equation (1.1),

∂v(y,τ)
∂τ

=div
(
mBC(y,τ)m−1∇v(y,τ)

)
, y∈RN , τ >0, (1.4)

v(y,0)=v0(y), (1.5)

where BC(y,τ) is a Barenblatt solution suitably shifted in time. The rate of con-
vergence to equilibrium for equation (1.4) will be studied in terms of the number of
moments initially equal to thats of the Barenblatt solution.

Using the spatial-temporal scaling given in [11] [17], the initial value problem
(1.4) can be rewritten as the initial value problem for the Fokker-Planck equation

∂f

∂t
=div

[
xf +mBC(x)m−1∇f

]
x∈RN , t>0, (1.6)

f(x,t=0)=f0(x)≥0. (1.7)
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The initial value for the Fokker-Planck equation coincides with the initial value for the
fast diffusion equation (f0 =v0). In equation (1.6) BC(x) is the Barenblatt solution
(1.3) evaluated at time τ =1,

BC(x)=
(

C +
1−m

2m
|x|2

)− 1
1−m

. (1.8)

Direct computations show that, for any fixed mass, the Fokker-Planck equation (1.6)
has a unique stationary state given by (1.8).

A different linearization was first considered in [9]. There, the large–time asymp-
totic of linearized very fast diffusion equations with and without potential confine-
ments were studied, by reckoning estimates for the spectral gap and drawing con-
clusions on the time decay of the solution. The results in [9] hold for arbitrary al-
gebraically large diffusion speeds, provided the solutions have the mass–conservation
property. Hence, the problem we will be dealing with, was not considered.

Likewise, this linearized fast diffusion equation was deeply investigated in [15] by
Denzler and McCann, who were able to analyze its spectrum extracting sharp rates
of asymptotic convergence to the Barenblatt profile. Our result recovers this rate of
convergence by different methods (see Theorem 4.2 for more details). We must point
out, as explained in [15], that, although our kinetic analysis is rigorous, the passage to
linearization is clearly formal, and allows only to conjecture about analogous behavior
for the solution to the original nonlinear equation.

For any given Barenblatt profile, characterized by the exponent m, higher mo-
ments of the solution stay uniformly bounded in time up to a critical exponent linked
to the value of m. In addition to mass and momentum conservation, due to linearity,
the higher moments of the solutions to equation (1.6) evolve in time in a closed form
in terms of the lower order moments. This imply that the moments corresponding
to two different initial data which are equal initially, remain equal to any subsequent
time. Moreover, since the Barenblatt profile is a steady state to equation (1.6), if the
initial datum has moments up some natural number n>2 equal to thats of the Baren-
blatt function (1.8), these moments remain constant in time. This property allows to
compute precise rates of convergence to the stationary state in terms of the number
of moments of the initial datum which are initially equal to thats of the equilibrium
solution. The convergence rates of the linearized equations will be here derived in
terms of a Fourier based metric which has been proven very useful in the finding of
rates of convergence towards equilibrium in kinetic theory of rarefied gases, both in
the conservative case [19] and in nonconservative one [3], [25].

These Fourier-based metrics ds, for any s>0, are defined as

ds(f,g)= sup
ξ∈RN

|f̂(ξ)− ĝ(ξ)|
|ξ|s (1.9)

for any pair of probability measures in Ps(RN ), where Ps(RN ) is the set of probability
measures with bounded s-moment and as usual, f̂ is the Fourier transform of the
density f(x),

f̂(ξ)=
∫

RN

f(x)e−ix·ξ dx.

By simple Taylor expansion one shows that the distance is well-defined and finite
for any pair of probability measures with equal moments up to order [s], where [s]
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denotes the integer part of s. Moreover, in case s≥1 be an integer, it suffices equality
of moments up to order s−1 for being ds finite. In this way, an (initially) bounded
distance in our framework means an initial datum with a certain number of moments
equal to thats of its corresponding steady state. In fact, ds with s≥2 topology is
equivalent to the weak-star topology for measures plus convergence of moments up to
order [s], and can be related to the Wasserstein distance between probability measures
[29].

The study of the convergence in terms of the distance (1.9) can be obtained
through the analysis of its evolution. To this aim, the first tentative relies in the
direct study of the evolution in time of the Fourier based distance using the linearized
equation in Fourier transform. But, in view of its definition, the study of this evolution
is a overcomplicated matter, due to the presence of a variable diffusion coefficient. To
overcome this problem, instead of working on the Fokker–Planck equation directly, we
will introduce a nonlinear kinetic model of Maxwell type [5] for which the recovering
of the rate of decay in terms of the Fourier based distance is immediate. Then, the
result for the Fokker–Planck equation will follow by a well–established asymptotic
analysis recently introduced for analogous nonconservative Boltzmann equation [25].
This asymptotic procedure is reminiscent of the so-called grazing collision asymptotic.
In kinetic theory of rarefied gases this asymptotic procedure became popular after
the studies by C. Villani [32] [33], who established a rigorous connection between
the elastic Boltzmann equation [13] and the Landau equation [23]. This procedure,
which corresponds to concentrate collisions on the grazing ones, namely collisions
which leave velocities unaffected, allows to recover in the limit Fokker-Planck (or
more generally Landau-Fokker-Planck) equations. Other applications to the one-
dimensional dissipative Boltzmann equation can be found in [27].

In the rest of the paper we will assume the initial datum of unit mass, zero center
of mass and unit second moment

∫

RN

f0dx=1,

∫

RN

xf0dx=0,

∫

RN

|x|2f0 dx=1. (1.10)

Since the mass and momentum are conserved in time, the solution to equation (1.6),
which is initially a probability density of zero mean, so remains at any subsequent
time t>0.

Our main results deal with the rate of decay to zero of solutions to different
linearizations of the fast diffusion equation (1.1) in terms of the d2+δ distance, where
δ = δ(m) is given in terms of the exponent m of the fast diffusion. If equation (1.6) is
considered, the typical result in one dimension reads
Theorem 1.1. Let f(v,t) be the solution to equation (1.6), with initial datum f0(v).
Suppose in addition that

d2+δ(f0,BC)≤M <+∞, δ < (3m−1)/(1−m). (1.11)

Then, the solution f(v,t) converges exponentially to BC(x) in d2+δ–metric, and

d2+δ(f(t),BC)≤d2+δ(f0,BC)exp
{

2+δ

2

(
1−m

m
δ− 3m−1

m

)
t

}
. (1.12)

Moreover, provided 3/5<m<1 the rate of convergence in (1.12) increases in the
interval 0<δ≤ (5m−3)/(2−2m).

A careful reading of Theorem 1.1 clarifies the role of moments in the rate of
convergence to equilibrium for solutions of equation (1.6). In fact, by definition, the
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ds(f,g) distance is finite as soon as the moments of f and g are equal up to the
entire part [s] of s. Hence, while δ =0 in Theorem 1.1 only implies that there is
mass–centering of the initial data, δ0 =(5m−3)/(2−2m)≤1 implies that if at least
the second moments of the initial data are equal, convergence to equilibrium is faster
that before. Note that δ0 increases as soon as m increases, and the convergence result
is better if we are close to the linear case of the heat equation.

2. Preliminary results The main object of our analysis will be the study of
the large–time asymptotic of the solution to the Fokker–Planck equation

∂f

∂t
=div

[
xf +∇(

(α2 +β2|x|2)f(x)
)]

, (x∈RN ,t>0), (2.1)

f(x,t=0)=f0(x)≥0. (x∈RN ) (2.2)

In equation (2.1) the constants α and β are such that

α2 +β2 =
1
N

.

This condition implies that, if the initial datum f0(x) satisfies conditions (1.10), so
does the solution at any subsequent time t≥0. It can be easily verified that equation
(2.1) has a steady state with overpopulated tails, given by

B∞(x)=C
(
α2 +β2|x|2)−1−(2β2)−1

. (2.3)

The constant C in (2.3) has to be chosen to fit unit mass. In the one–dimensional
case, equation (2.1), with α2 =β2 =1/2 has been recently considered in [25] as the
grazing limit of the one-dimensional dissipative Boltzmann equation studied in [2].

2.1. Fokker-Planck equations as linearization of confined fast diffusion
equations

The linear Fokker-Planck equation (2.1) is strictly connected to the linearization
of the fast diffusion equation (1.1). Consider in fact equation (1.1), with initial datum
(1.2). It is well-known that (1.1)-(1.2) can be transformed into the fast diffusion
equation with harmonic convection

∂u

∂t
=div(xu+∇um), (x∈RN ,t>0), (2.4)

u(x,t=0)=u0(x)≥0, (x∈RN ). (2.5)

The transformation follows by the spatial-temporal scaling

x=
y

R(τ)
, R(τ)=((2−N +Nm)τ +1)1/(2−N+Nm) (2.6)

t(τ)=
1

2−N +Nm
ln((2−N +Nm)τ +1) (2.7)

v(y,τ)=R(τ)−Nu

(
y

R(τ)
,t(τ)

)
(2.8)
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Applying (2.6)-(2.8) the similarity solution of the diffusion equation (1.1), given by
(1.3) yields a equilibrium solution BC(x) of the Fokker–Planck equation, given by
(1.8).

It is a simple exercise to show that the scaling (2.6)-(2.7) with

v(y,τ)=R(τ)−Nf

(
y

R(τ)
,t(τ)

)
(2.9)

transforms the linear diffusion equation (1.4) into (1.6) and v0(x)=f0(y).
The linear Fokker–Planck equation (1.6) is obtained from (2.4), but other possible

linearizations can be done from (2.4) as we will show now.
The linear Fokker–Planck equation (1.6) is a linearization of (2.4).- We recall

(2.4)

∂u

∂t
=div(xu+∇um), (x∈RN ,t>0)

and consider a state u(x,t)≥0 close to the equilibrium BC(x), i.e., u−BC =O(ε) in
an appropriate topology. Thus we approximate the nonlinear term as

∇um =mum−1∇f umBm−1
C ∇u.

Identifying u with f , we just obtain (1.6)

∂f

∂t
=div

[
xf +mBC(x)m−1∇f

]
x∈RN , t>0.

Since

BC(x)m−1 =C +
1−m

2m
|x|2, (2.10)

one concludes with

m∇[
BC(x)m−1f

]
=mBC(x)m−1∇f +(1−m)xf.

Hence (1.6) can be rewritten as

∂f

∂t
=div

[
mxf +m∇(

BC(x)m−1f
)]

. (2.11)

Other possible linearization of (2.4).- Let us set

f(x,t)=
1

1+ε
(BC(x)+ερ(x,t)) , (2.12)

for ε>0 small and “ρ=O(1)”. Assuming mass-conservation
∫

RN

BC(x)dx=
∫

RN

f(x,t)dx=M , t≥0,

we have
∫

RN

ρ(x,t)dx=M , t≥0. (2.13)
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Inserting (2.12) into (2.4), computing the derivative with respect to the parameter ε
and setting ε=0 gives the linearization:

∂ρ

∂t
=div

[
xρ+m∇(

BC(x)m−1ρ
)]

x∈RN , t>0, (2.14)

ρ(x,t=0)=ρ0(x)≥0. (2.15)

with
∫

RN

ρ0dx=M. (2.16)

Note that both linearizations (2.14) and (2.11) have the same diffusion term, and
differ only for the presence of the constant in front of the convection term. This
difference reflects into the stationary solution, which coincides with the equilibrium
Barenblatt solution (1.8) in equation (2.11), while for (2.14) is given by

ρ∞(x)=DB2−m
C (x),

where the constant D is fixed in terms of the initial mass. Due to their similar form,
both equations (2.14) and (2.11) can be studied by a unified treatment.

Both linearizations of (2.4) can be written as the Fokker-Planck equation (2.1).-
By a simple scaling argument, one can finally show that both equations (2.14) and
(2.11) fall into the form of equation (2.1). Hence we will focus in the large-time
behavior of solutions to this last equation, and in consequence we obtain the long-
time behavior of both linearizations of (2.1).

First of all, we consider equation (2.14). Using equality (2.10)

mBC(x)m−1 =mC +
1−m

2
|x|2. (2.17)

Note that, provided m> (N−2)/N , the coefficient of |x|2 is less than 1/N . If ρ(x,t)
solves (2.14), let us set ρ(x,t)= δNg(δx,t), where δ is a constant to be chosen. Then
if y = δx, g(y,t) solves

∂g

∂t
=div

[
yg+∇

((
δ2mC +

1−m

2
|y|2

)
g(y)

)]
, (y∈RN ,t>0), (2.18)

g(y,t=0)= δ−Nf0(δ−1y)≥0 (y∈RN ). (2.19)

Therefore, g(y,t) satisfies equation (2.1) for a convenient δ in such a way that α2 +β2 =
1
N

, where α2 = δ2mC and β2 =
1−m

2
. By a simple computation we show that δ has

to be chosen in the following way

0<δ2 =
1

Cm

(
1
N
− 1−m

2

)
. (2.20)

The same strategy applies to equation (2.11). The only difference is that here we have
to scale only the time. Let us set f(x,t)=h(x,mt). Then, if τ =mt, h(x,τ) solves

∂h

∂τ
=div

[
xh+∇

((
C +

1−m

2m
|x|2

)
h(x)

)]
, (x∈RN ,τ >0), (2.21)
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h(x,τ =0)=f0(x)≥0. (x∈RN ) (2.22)

In this case,

α2 =
1
N
− 1−m

2m
; β2 =

1−m

2m
(2.23)

Note that the bound β2 <1/N implies m>N/(N +2). By resorting to the definition of
the Fourier based distance (1.9), any result on the large–time behavior of the distance
between the solution to the Fokker–Planck equation (2.1) and its stationary state (2.3)
can be easily translated into the corresponding result on the large–time behavior of
the distance between the solution to the Fokker–Planck equation (2.14) or (2.11) and
their stationary Barenblatt solutions. In fact, the relation ρ(x,t)= δNg(δx,t) implies
ĝ(ξ)= ρ̂(δξ), and

ds(g,B∞)= sup
ξ∈RN

|ρ̂(δξ)−B̂∞(δξ)|
|ξ|s =

|ρ̂(ξ)− ρ̂∞(ξ)|
|ξ|s δs, (2.24)

where δ is given by (2.20). Analogous result holds for equation (2.11).
Remark 2.1. The previous computation emphasize a noticeable difference between the
linearized fast diffusion equation (2.14) and the linear one given by equation (2.11).
In the former case, the condition β2 <1/N is satisfied if

m>
N−2

N
, (2.25)

while, in the latter case, the same condition on β holds if

m>
N

N +2
. (2.26)

Thus, finite mass for the Barenblatt solution is enough to study the linearized equation
(2.14), while finite second moment for the Barenblatt profile is needed to study the
linear equation (2.11).

2.2. On moments of the Barenblatt solution
The previous analysis shows that the Fokker-Planck equation (2.1) contains var-

ious linear or linearized versions of scaled fast diffusion equations. This fact depends
clearly on the structure of the steady Barenblatt solution. For the sake of complete-
ness, we shall recall in the following some of these properties. First, we recover the
relationship between the zero order moment (mass) of the Barenblatt solution and its
second one (the temperature) (see [28]). Let u(x,t) be a solution to equation (2.4).
For any given r∈N∪{0}, let us set

Mr(t)=
∫

RN

|x|ru(x,t) dx.

Direct computations show that

d

dt
M2(t)=−2M2(t)+2N

∫

RN

um dx, (2.27)

Since the Barenblatt is a steady solution to equation (2.27), its second moment M2

satisfies

M2 +2N

∫

RN

Bm
C dx.
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Using the expression of the Barenblatt solution (1.8) we find
∫

RN

Bm
C dx=

∫

RN

(
C +

1−m

2m
|x|2

)
BC dx=CM0 +

1−m

2m
M2.

Hence

M2

(
N(1−m)

m
−2

)
+2N CM0 =0,

and therefore

CM0 =
(

1
N
− 1−m

2m

)
M2. (2.28)

If we fix the values of the moments, M0 =M2 =1, we then obtain for C the value

C =
1
N
− 1−m

2m

found in (2.23).
Remark 2.2. Since both M0 and M2 are nonnegative, formula (2.28) implies the
restriction

1
N
− 1−m

2m
>0.

Consequently the second moment is finite if and only if m> N
N+2 .

The precise values of higher order (and bounded) moments of the Barenblatt
solution can be evaluated recursively starting from the equality

d

dt
Mn(t)=−nMn(t)+n(n−2+N)

∫

RN

|x|n−2um dx, (2.29)

where 2<n∈N. As before, we use the fact the Barenblatt is a steady solution to
equation (2.29), which implies

Mn =(n−2+N)
∫

RN

Bm
C dx.

We find
∫

RN

|x|n−2Bm
C dx=

∫

RN

|x|n−2

(
C +

1−m

2m
|x|2

)
BC dx=CMn−2 +

1−m

2m
Mn.

Finally, using the expression of C found in (2.23),
(

1
n−2+N

− 1−m

2m

)
Mn =

(
1
N
− 1−m

2m

)
Mn−2.

This relation also gives the maximum moment of the Barenblatt solution which is
bounded. In fact, the procedure can be iterated up to the value of n for which the
coefficient of Mn is greater than zero. A further interesting property of Barenblatt
solutions is related to the scaling of variables. We used this scaling in the previous
section to normalize the constants α and β. We have
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Lemma 2.1 (Relation between Barenblatt solutions). Let B a Barenblatt solution
with constant C and mass and energy M0 and M2 respectively. Then, if bm−1a2 =1,
the function B̄(x)= bB(ax) is a Barenblatt solution with

M̄0 =
b

aN
M0, M̄2 =

b

aN+2
M2 and C̄ = bm−1C. (2.30)

Proof. Expressions for mass and energy are direct computations. We will focus
only in proving that B̄ is really a Barenblatt solution. We have

B̄(x)m−1 = bm−1

(
C +

1−m

2m
a2|x|2

)
= bm−1C +bm−1 1−m

2m
a2|x|2.

Then, since bm−1a2 =1 the previous equality can be written as

B̄(x)=
(

bm−1C +
1−m

2m
|x|2

) −1
1−m

.

2.3. Remark on the heat equation
In order to understand the role of the Fourier based distance in the reckoning of

the large–time behavior of the linear Fokker–Planck equation (2.1) we recall briefly
how this distance can be used in the case of the linear heat equation. The result
that follows is contained in [20], where it appears as a simple example to justify
application of the distance ds to the rate of convergence towards the Gaussian density
in the central limit theorem. Another application of the distance (1.9) to the classical
Fokker–Planck equation can be found in [10]. These results follow in consequence of
the fact that in these cases there exists an explicit solution, which allows for exact
computations. Due to its importance in applications to the linear Fokker–Planck
equations, we briefly describe how this distance works.

It is well known that a solution of the heat equation

∂u

∂t
=∆u, x∈RN , (2.31)

u(x,0)=u0(x), (2.32)

where u0(x) is a probability density function satisfying conditions (1.10), behaves
asymptotically in time as the fundamental solution of (2.31), which is given by the
Gaussian density

ω2t(x)=
1√
4πt

exp
{
−|x|

2

4t

}
. (2.33)

The rate of convergence, that in L2 norm is governed by t−N/2, can be improved as
soon as we have more information on the moments of the initial data. A simple proof
of this result follows by using the Fourier based distance (1.9). More precisely, let u1

and u2 be solutions of (2.31), corresponding to initial data u0,1 and u0,2 respectively,
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and let s>0 be such that ds(u0,1,u0,2) is finite . By Fourier transform, we get for
i=1,2

∂tûi(t,ξ)=−|ξ|2ûi(t,ξ).

Solving the ordinary differential equation leads to

|û1(t,ξ)− û2(t,ξ)|2 =exp(−2t|ξ|2)|û0,1(ξ)− û0,2(ξ)|2.

It follows that the L2 norm is estimated by using the Parseval equality
∫

RN

|u1(t,x)−u2(t,x)|2dx = (2π)−N

∫

RN

|û1(t,ξ)− û2(t,ξ)|2dξ

= (2π)−N

∫

RN

exp(−2t|ξ|2)|û0,1(ξ)− û0,2(ξ)|2dξ

≤ ds(u0,1,u0,2)2 F (t).

The function of time F (t), that is equal to

F (t)=(2π)−N

∫

RN

exp(−2t|ξ|2)|ξ|2sdξ

is bounded and can be computed explicitly to give (2.34). In fact, if

C =(2π)−N

∫

RN

exp(−2|ξ|2)|ξ|2sdξ,

F (t)=Ct−(s+N/2).

Therefore, it follows that

‖(u1−u2)(t,·)‖2L2(RN )≤ds(u0,1,u0,2)2 C t−(s+N/2), (2.34)

where the constant C is explicitly computable [20].
In particular, as s→0, we recover from (2.34) the usual t−N/2 decay rate. The

decay rate in (2.34) can be rephrased in terms of moments. Let s=m+δ, where m
is an integer and 0≤ δ <1. Since the Gaussian density (2.33) is a solution to the heat
equation, looking at the definition of the metric ds, if the initial datum u0(x) has
the same moments of the fundamental solution ω2(x) up to p=m, the ds-distance
ds(u0,ω2) is bounded, and the rate of convergence becomes t−(s+N/2).

As the previous example shows, one of the interesting features of the distance
(1.9) is that it can be used through interpolation to obtain convergence in stronger
spaces. This property has been discovered in [6], and subsequently used in various
applications to the dissipative Boltzmann equation [3].

2.4. A property of the Fourier-based distance
Various properties of the distance (1.9) were collected in papers [19], [29], where

the interested reader can achieve information on the relationship of this norm to
other more familiar equivalent norms used both in probability theory and in mass
transportation. For the purposes of this paper, however, further properties are needed.
We prove the following
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Lemma 2.2. Let {fn(x)}n≥0 and {gn(x)}n≥0, x∈RN , be two sequences satisfying
conditions (1.10) and such that fn ⇀f , gn ⇀g. Suppose in addition that, for some
r>2

∫

Rn

|x|rfn(x)<+∞,

∫

Rn

|x|rgn(x)<+∞ (2.35)

and, in addition

dr(fn,gn)<+∞.

Then, for all s<r,

ds(f,g)≤ liminf ds(fn,gn). (2.36)

Proof. By definition, dr(fn,gn) is bounded if all moments of order less or equal
than [r] of fn and gn are equal. Since fn ⇀f and gn ⇀g, condition (2.35) implies
that, for any s<r

∫

Rn

|x|sfn(x)→
∫

Rn

|x|sf(x),
∫

Rn

|x|sgn(x)→
∫

Rn

|x|sg(x). (2.37)

Thus, dr(f,g)=D is bounded. Now, consider that

sup
ξ∈RN

∣∣∣f̂(ξ)− ĝ(ξ)
∣∣∣

|ξ|s ≤

inf
n≥k

sup
ξ∈RN

∣∣∣f̂n(ξ)− ĝn(ξ)−(f̂(ξ)− ĝ(ξ))
∣∣∣

|ξ|s + inf
n≥k

sup
ξ∈RN

∣∣∣f̂n(ξ)− ĝn(ξ)
∣∣∣

|ξ|s .

Now, from the inequality

sup
|ξ|≤δ

∣∣∣f̂n(ξ)− ĝn(ξ)
∣∣∣

|ξ|s ≤ sup
|ξ|≤δ

∣∣∣f̂n(ξ)− ĝn(ξ)
∣∣∣

|ξ|r |δ|r−s,

for any given ε>0 there exists δ >0 such that, for all n

sup
|ξ|≤δ

∣∣∣f̂n(ξ)− ĝn(ξ)−(f̂(ξ)− ĝ(ξ))
∣∣∣

|ξ|s ≤ (C +D)|δ|r−s≤ ε.

Likewise, there exists R>0 such that, for all n

sup
|ξ|≥R

∣∣∣f̂n(ξ)− ĝn(ξ)−(f̂(ξ)− ĝ(ξ))
∣∣∣

|ξ|s ≤4/Rs≤ ε.

Thus, for any ε>0 we can find δ and R such that

sup
ξ∈RN

∣∣∣f̂n(ξ)− ĝn(ξ)−(f̂(ξ)− ĝ(ξ))
∣∣∣

|ξ|s ≤
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max



ε, sup

δ≤|ξ|≤R

∣∣∣f̂n(ξ)− ĝn(ξ)−(f̂(ξ)− ĝ(ξ))
∣∣∣

|ξ|s



≤

max

{
ε, sup

δ≤|ξ|≤R

1
δs

(
|f̂n(ξ)− f̂(ξ)|+ |ĝn(ξ)− ĝ(ξ)|

)}
. (2.38)

Now, since fn ⇀f and gn ⇀g we have

∀ξ, f̂n(ξ)−→ f̂(ξ);

and since fn satisfies conditions (1.10), |D2f̂n(ξ)|≤1 and Df̂n(0)=0. Thus
{

f̂n

}
n≥0

is uniformly equi-continuous on the compact set {δ≤|ξ|≤R}. By Ascoli’s theorem,
this entails that supδ≤|ξ|≤D |f̂n(ξ)− f̂(ξ)| goes to 0. Same conclusion for the sequence
gn. Finally, there exists n0≥0 such that for n≥n0,

max

{
ε, sup

δ≤|ξ|≤R

1
δs

(
|f̂n(ξ)− f̂(ξ)|+ |ĝn(ξ)− ĝ(ξ)|

)}
≤ ε. (2.39)

This concludes the proof.

3. The one–dimensional Fokker-Planck equation

3.1. A nonconservative kinetic model
This section concerns the introduction of some nonlinear kinetic model of Boltz-

mann type, which is related to the Fokker–Planck equation (2.1) in the so–called
grazing collision limit procedure [32], [33]. Similar ideas were introduced in [25] in
order to obtain information on the self–similar profile of one–dimensional nonlinear
Boltzmann equations of Maxwell type, in the case of lack of conservation of the en-
ergy. The main advantage in working with a Boltzmann type equation relies in the
possibility to obtain in a relatively easy way the rate of decay of the Fourier based
distance.

Let us consider a binary interaction between particles governed by the law:

v∗=v+n(λv+µw), w∗=w+n(λw+µv); (3.1)

where (v,w) are the pre-collisional velocities which generate the post-collisional ones
(v∗,w∗). In (3.1) λ and µ are positive constants and n is a parameter which varies in
[−1,1].

Let f(v,t) denote the distribution of particles with velocity v∈R at time t≥0.
A kinetic model governed by binary collisions among particles can be easily derived
by standard methods of kinetic theory, considering that the change in time of f(v,t)
depends on a balance between the gain and loss of particles with velocity v due to
collisions. This leads to the following integro-differential equation of Boltzmann type
[25],

∂f

∂t
=

∫ 1

−1

∫

R
Bε(n)

(
1
J

f(v∗)f(w∗)−f(v)f(w)
)

dwdn. (3.2)
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In (3.2) (v∗,w∗) are the pre-collisional velocities that generate the couple (v,w) af-
ter the interaction. J is the Jacobian of the transformation of (v,w) into (v∗,w∗),
while Bε(n) represents the collision frequency. The collision frequency depends on
a small parameter ε>0. As ε→0, binary collisions concentrate on collisions which
are grazing, namely the post-collision velocities are close to the pre-collision ones.
This phenomenon is well-known for the Boltzmann equation, where the grazing limit
allows to recover in the limit the Landau equation [32], [33]. In what follows, we will
assume that Bε(n) satisfies the following properties:

P.1 For all ε, Bε(n) is a symmetric function of n, so that
∫ 1

−1

Bε(n)n dn=0

P.2 For all ε, the second moment of Bε(n) is bounded, Aε :=
∫ 1

−1

Bε(n)n2 dn .

Moreover limε→0Aε =1

P.3 For any r>2, with r∈N, it holds limε→0

∫ 1

−1

|n|r Bε(n) dn=0 .

The kinetic equation (3.2) is the analogous of the Boltzmann equation for Maxwell
molecules [5]. Also, it presents several similarities with the one-dimensional Kac model
without cut–off introduced by Desvillettes [16]. Among the possible choices of the
collision frequency, one can consider the following

Bε(n)=





1
2ε(n2 +ε4)

if n∈ [−ε,ε],

0 otherwise.

When necessary, we will denote by fε(v,t) the solution to the initial value problem
for equation (3.2). In this way, we emphasize the dependence of this solution on the
ε–parameter. Moreover, without loss of generality, we can fix the nonnegative initial
density f0(v) to satisfy conditions (1.10).
Remark 3.1. At a first view, the choice of a nonnegative initial density satisfying
conditions (1.10), while quite natural for the study of a kinetic model of Boltzmann
type, appears quite restrictive at least for the study of the linearized equation (2.14),
where the solution is a perturbation of the Barenblatt profile, and there are no reasons
to pretend the perturbation to be positive. To clarify why it is enough to get results on
the kinetic equation (3.2) with nonnegative initial data, consider that thanks to mass
conservation, this equation can be rewritten as

∂f

∂t
=Qε(f,f)−Cεf(v), (3.3)

where

Qε(f,f)(v)=
∫ 1

−1

∫

R
Bε(n)

1
J

f(v∗)f(w∗)dwdn, (3.4)

and

Cε =
∫ 1

−1

Bε(n)dn. (3.5)

The solution to equation (3.3) can be expressed as

f(v,t)=f0(v)exp{−Cεt}+
∫ t

0

Qε(f,f)(v,s)exp{−Cε(t−s)} ds. (3.6)
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Of course, representation (3.6) holds independently of the sign of the initial datum
f0(v). On the other hand, in consequence of the form of the bilinear operator Qε,

|f(v,t)|≤ |f0(v)|exp{−Cεt}+
∫ t

0

Qε(|f |,|f |)(v,s)exp{−Cε(t−s)} ds. (3.7)

Since the solution to the Boltzmann equation (3.3) is nonnegative in correspondence to
a nonnegative initial density, choosing |f0(x)| as initial density, the solution f+(v,t)
to equation (3.3) is nonnegative, and

f+(v,t)= |f0(v)|exp{−Cεt}+
∫ t

0

Qε(f+,f+)(v,s)exp{−Cε(t−s)} ds. (3.8)

This implies |f(v,t)|≤f+(v,t). Thus, any upper bound related to the absolute value of
the solution to the Boltzmann equation with a general initial value (with no sign!) can
be derived from the same equation taking as initial value a nonnegative density (the
absolute value of the initial value). A further comment is in order. Since equation
(2.14) is a linear equation on can split the solution in its positive and negative part,
and solve the equation for these parts separately. Then the original solution can be
recovered by the sum of both.

3.2. A related conservative kinetic model
Thanks to the remark of the previous section, without loss of generality, in what

follows we will work with nonnegative initial values, satisfying conditions (1.10). To
avoid the presence of the Jacobian, and to study approximation to the collision oper-
ator it is extremely convenient to write equation (3.2) in weak form. It corresponds
to consider, for all smooth functions φ(v), the equation

d

dt

∫

R
φ(v)fε(v,t) dv =

∫ 1

−1

∫

R2
Bε(n)(φ(v∗)−φ(v)) fε(v)fε(w) dw dv dn, (3.9)

One can alternatively use the symmetric form

d

dt

∫

IR

fε(v)φ(v)dv =
1
2

∫ 1

−1

∫

R2
Bε(n)fε(v)fε(w)

(3.10)
(φ(v∗)+φ(w∗)−φ(v)−φ(w))dvdwdn.

Existence of solutions to (3.9) or, equivalently, to (3.10), can be proven by using
arguments like in [16]. Evolution of moments then follows by a suitable choice of the
function φ. If φ=1 we obtain from (3.9)

d

dt

∫

R
fε(v,t) dv =0, (3.11)

namely mass conservation. Conservation of momentum is obtained by taking φ(v)=v,
and making use of assumption P.1. We have

d

dt

∫

R
vfε(v,t) dv =

∫ 1

−1

∫

R2
Bε(n)(n(λv+µw)) fε(v)fε(w) dw dv dn=

(λ+µ)
∫ 1

−1

Bε(n)n dn

∫

R
vfε(v)dv =0. (3.12)
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Taking finally φ(v)=v2 we obtain

d

dt

∫

R
v2fε(v,t) dv =

∫ 1

−1

∫

R2
Bε(n)

(
(v+n(λv+µw))2−v2

)
fε(v)fε(w) dw dv dn=

∫ 1

−1

∫

R2
Bε(n)

(
n2(λv+µw)2 +2nv (λv+µw)

)
fε(v)fε(w) dw dv dn=

(
λ2 +µ2

)∫ 1

−1

Bε(n)n2 dn

∫

R
v2fε(v) dv =

(
λ2 +µ2

)
Aε

∫

R
v2fε(v) dv. (3.13)

Since the initial density satisfies (1.10), we obtain that the second moment is expo-
nentially increasing, and

M2(t)=exp{Aε

(
λ2 +µ2

)
t}. (3.14)

Due to (3.14), it follows clearly that stationary solutions of finite energy do not exist,
and the large–time behavior of the kinetic equation can at best be described by self-
similar solutions. The standard way to look for self–similar profiles is to scale the
solution according to the role

gε(v,t)=
√

M2(t)fε

(
v
√

M2(t),t
)

. (3.15)

This scaling implies that
∫

v2gε(v,t)=1 for all t≥0. Assuming φ smooth and of

bounded support, by elementary computations one concludes that gε =gε(v,t) satisfies
the equation

d

dt

∫

R
φ(v)gε(v,t) dv+

(λ2 +µ2)Aε

2

∫

R
vgεφ

′(v) dv =

∫ 1

−1

∫

R2
Bε(n)(φ(v∗)−φ(v)) gε(v)gε(w) dw dv dn. (3.16)

Let us consider a third–order Taylor expansion of φ(v∗) around v

φ(v∗)−φ(v)=φ′(v)(v∗−v)+
φ′′(v)

2
(v∗−v)2 +

φ′′′(ṽ)
3!

(v∗−v)3

or equivalently

φ(v∗)−φ(v)=φ′(v)(n(λv+µw))+
φ′′(v)

2
n2 (λv+µw)2 +

φ′′′(ṽ)
3!

n3 (λv+µw)3,

where ṽ is a value between v and v∗. Substituting the Taylor expansion into the
integral on the right-hand side of (3.16), taking the limit ε→0 and using property
P.3 we obtain that the integral containing the third order term vanishes. Moreover,
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provided gε(v,t) converges to g(v,t) as ε→0, using mass and momentum conservation
into the weak form (3.16) we obtain that g(v,t) satisfies

d

dt

∫

R
φ(v)g(v,t) dv+

(λ2 +µ2)
2

∫

R
vgφ′(v) dv =

∫

R

(
λ2v2 +µ2

)

2
φ′′(v)g(v) dv, (3.17)

which is the weak formulation of the following Fokker-Planck equation

∂

∂t
g(v,t)− λ2 +µ2

2
∂

∂v
(vg)=

∂2

∂v2

(
λ2v2 +µ2

2
g(v)

)
. (3.18)

Since in our linearized equations the coefficient in the convection term is one we take
λ and µ such that λ2 +µ2 =2. Within this choice,

∂

∂t
g(v,t)=

∂

∂v
(vg)+

1
2

∂2

∂v2

((
λ2v2 +µ2

)
g
)
. (3.19)

Note that equation (3.19) is nothing but the Fokker–Planck equation (2.1), where

β2 =
λ2

2
and α2 =

µ2

2
. (3.20)

The passage to the limit outlined above is largely formal. The derivation, however, can
be made rigorous by using the same arguments like in [25]. Consider in fact the class of
probability densities {gε(v,t)}ε≥0. For all ε, the solution to (3.16) satisfies conditions
(1.10). By virtue of Prokhorov theorem (cfr. [22]) the existence of a uniform bound on
the second moment implies that this class is tight, so that any sequence {gεn(v,t)}n≥0

contains an infinite subsequence which converges weakly to some probability measure
g(v,t). Therefore, the weak solution to the Boltzmann equation (3.16) converges, up
to extraction of a subsequence, to a probability density g(v,t). This density is a weak
solution of the Fokker-Planck equation (3.19).

3.3. The evolution of higher moments
A detailed calculation, along the lines of [25], allows to recognize how many

moments of the solution to (3.2) remain uniformly bounded in time with respect to ε.
Suppose that the initial density g0(v)=f0(v) is such that

∫

IR

|v|2+δg0(v)dv =M2+δ <∞. (3.21)

Then, since the contribution due to the term ∂
∂v (vgε(v)) can be evaluated integrating

by parts,
∫

IR

|v|2+δ ∂

∂v
(vgε(v))dv =−(2+δ)

∫

IR

|v|2+δgε(v,t)dv,

we obtain

d

dt

∫

IR

|v|2+δgε(v,t)dv+(2+δ)
λ2 +µ2

2
Aε

∫

IR

|v|2+δgε(v,t)dv =

∫ 1

−1

Bε(n)dn

∫

IR2
dvdw

(|(1+λn)v+µnw|2+δ−|v|2+δ
)
gε(v)gε(w) . (3.22)
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Let us recover a suitable upper bound for the last integral in (3.22). Given any two
constants a,b, and 0<δ≤1 the following inequality holds

(|a|+ |b|)δ≤|a|δ + |b|δ. (3.23)

Hence, choosing a= |1+λn||v| and b= |µn||w|,
|(1+λn)v+µnw|2+δ≤ ((1+λn)v+µnw)2

(|1+λn|δ|v|δ + |µn|δ|w|δ).

Substituting into the right-hand side of (3.22), recalling that the mean value of g is
equal to zero, and the second moment of g equal to one, gives

∫ 1

−1

Bε(n)dn

∫

IR2
|(1+λn)v+µnw|2+δgε(v)gε(w) dvdw≤

∫

IR2
((1+λn)v+µnw)2

(|1+λn|δ|v|δ + |µn|δ|w|δ)gε(v)gε(w) dvdw =

∫ 1

−1

Bε(n)dn
(|1+λn|2+δ + |µn|2+δ

)∫

IR

|v|2+δgε(v)dv+

∫ 1

−1

Bε(n)dn
(|1+λn|2|µn|δ + |µn|2|1+λn|δ)

∫

IR

|v|δgε(v)dv.

Grouping all these inequalities, we obtain

d

dt

∫

IR

|v|2+δgε(v,t)dv≤Sε(δ)
∫

IR

|v|2+δgε(v,t)dv+Dδ, (3.24)

where

Sε(δ)=
∫ 1

−1

Bε(n)dn
(|1+λn|2+δ + |µn|2+δ−1

)−(2+δ)
λ2 +µ2

2
Aε, (3.25)

and, by Hölder inequality

Dδ≤
∫ 1

−1

Bε(n)dn
(|1+λn|2|µn|δ + |µn|2|1+λn|δ). (3.26)

By property P3 it follows that Dδ is uniformly bounded with respect to ε. On the
other hand, using a Taylor development up to the order three we obtain

|1+λn|2+δ =1+(2+δ)λn+
(2+δ)(1+δ)

2
λ2n2 +O(n3). (3.27)

Substituting into (3.25) we obtain

Sε =
2+δ

2
(
λ2δ−µ2

)
Aε +0(ε). (3.28)

Hence, Sε≤0 as soon as λ2δ−µ2 <0 and ε is suitably small. In this case, inequality
(3.24) gives an upper bound for the moment, that reads

∫

IR

|v|2+δgε(v,t)dv≤M2+δ +
Dδ

|Sε(δ)| <∞. (3.29)
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Let us set δ̄ =µ2/λ2. In the case δ̄ >3 we can easily iterate our procedure to obtain
that any moment of order 2+δ, with δ < δ̄ which is bounded initially, remains uni-
formly bounded with respect to ε at any subsequent time. The only difference now is
that the explicit expression of the bound is more and more involved. We proved
Lemma 3.1. Let gε(v,t) be the solution to the initial value problem for the kinetic
equation (3.16), where the initial datum g0(v) satisfies

∫

IR

|v|2+δg0(v)dv =M2+δ <∞. (3.30)

Then, if δ < δ̄ =µ2/λ2,
∫

IR

|v|2+δgε(v,t)dv (3.31)

is uniformly bounded in time for all ε. Moreover, if δ < δ̄ the function Sε defined by
(3.25) satisfies

lim
ε→0

Sε(δ)<0. (3.32)

3.4. Rate of convergence in Fourier based metrics
Let M0 denote the space of all probability measures in R and

Mr =
{

µ∈M0 :
∫

R
|v|rµ(dv)<∞, r≥0

}

the space of all Borel probability measures with finite momentum of order r equipped
with the topology of the weak convergence of the measures. By a weak solution of the
initial value problem for equation (3.2), corresponding to the initial probability density
f0(w)∈Mr r>2 we shall mean any probability density f ∈C1(R,Mr) satisfying the
weak form of the equation (3.9) for t>0 and all smooth functions φ, and such that
for all φ

lim
t→0

∫

IR

φ(v)f(v,t)dv =
∫

IR

φ(v)f0(v)dv. (3.33)

In the rest of this section, we shall study the weak form of equation (3.2), with the
normalization conditions (1.10). It is equivalent to use the Fourier transform of the
equation [5]:

∂f̂(ξ,t)
∂t

= Q̂
(
f̂ , f̂

)
(ξ,t), (3.34)

where f̂(ξ,t) is the Fourier transform of f(v,t) and

Q̂
(
f̂ , f̂

)
(ξ)=

∫ 1

−1

Bε(n)
[
f̂(ξ (1+λn),t)f̂(nµξ,t)− f̂(ξ,t)

]
dn. (3.35)

The initial conditions (1.10) turn into

f̂(0)=1, f̂ ′(0)=0, f̂ ′′(0)=−1,
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where f̂0∈C2(R). Hence equation (3.34) can be rewritten (recall (3.5)) as

∂f̂(ξ,t)
∂t

+Cεf̂(ξ,t)=
∫ 1

−1

Bε(n)f̂(ξ (1+λn),t)f̂(nµξ,t)dn. (3.36)

We work with the metric introduced in [19]

ds(f,g)=sup
ξ∈R

∣∣∣f̂(ξ)− ĝ(ξ)
∣∣∣

|ξ|s . (3.37)

It is easy to show that (see [26], [25]), for any given collision integral of form
(3.35), given two initial densities f0,1 and f0,2 belonging to Mr,r >2, and such that
dr(f0,1,f0,2) is bounded, dr(f1(t),f2(t)) is bounded at any subsequent time t>0, and
the following inequality holds

dr(f1(t),f2(t))≤dr(f0,1,f0,2)·

·exp
{(∫ 1

−1

Bε(n)[|1+λn|r +(µn)r−1] dn

)
t

}
. (3.38)

Inequality (3.38) implies a similar inequality for the scaled function g, which we recall
is defined through the scaling g(v,t)=

√
M2(t)f(v

√
M2(t),t). The Fourier transform

of g is ĝ(ξ)= f̂
(
ξ/

√
M2(t)

)
. From the definition of dr it follows

dr(g1(t),g2(t))=

(
1√

M2(t)

)r

dr(f1(t),f2(t)).

Therefore

dr(g1(t),g2(t))≤dr(g0,1,g0,2)·

·exp
{(∫ 1

−1

Bε(n)
[
|1+λn|r + |µn|r−1− r

2
n2(λ2 +µ2)

]
dn

)
t

}
. (3.39)

The exponent in (3.39) coincides with the function Sε(·) defined in (3.25), and evalu-
ated at δ = r−2.

Applying Lemma 2.2, and taking the limit ε→0 on (3.39) and calling again g
the solution, for all δ <r−2 we find that the solution to the Fokker-Planck equation
(3.18) satisfies

d2+δ(g1(t),g2(t))≤d2+δ(g0,1,g0,2)exp
{

2+δ

2
(
λ2δ−µ2)

)
t

}
. (3.40)

The exact rate of convergence in δ–metric follows by analyzing the parabola h(δ)=
2+δ

2
(
λ2δ−µ2

)
, that is nonpositive in the interval δ∈ [0, δ̄ =µ2/λ2] (see Figure

??). The minimum value in this interval is achieved at δ0 = δ̄/2−1 where h(δ0)=

−1
8

(
µ2 +2λ2

)
. Thus, if δ0 >0, in the interval δ∈ [0,δ0] the rate of convergence in
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d2+δ–metric is increasing, and we have a gain in the rate of convergence if the initial
data have a big number of equal moments. Now, δ0 >0 if µ2 >2λ2, or, what is the
same (see (3.20)),

α2 =
µ2

2
>2β2 =

2λ2

2
. (3.41)

This implies that we have an improved rate of convergence in d2+δ–metric for equation
(2.18) in the range 1/3<m<1, while the same holds for equation (2.21) in the range
3/5<m<1. We include these results into the following.
Theorem 3.2. Let f(v,t) be the solution to equation (2.14), corresponding to the
initial datum f0(v) satisfying (1.10). Suppose in addition that

d2+δ(f0,DB2−m
C )<+∞, δ < (1+m)/(1−m). (3.42)

Then, the solution f(v,t) converges exponentially to BC(v)2−m in d2+δ–metric, and

d2+δ(f(t),DB2−m
C )≤d2+δ(f0,DB2−m

C )exp
{

2+δ

2
((1−m)δ−(1+m))t

}
. (3.43)

Moreover, provided 1/3<m<1 the rate of convergence in (3.43) increases in the
interval 0<δ≤ (3m−1)/(2−2m). Likewise, let f(v,t) be the solution to equation
(1.6), with initial datum f0(v). Suppose in addition that

d2+δ(f0,BC)<+∞, δ < (3m−1)/(1−m). (3.44)

Then, the solution f(v,t) converges exponentially to BC(x) in d2+δ–metric, and

d2+δ(f(t),BC)≤d2+δ(f0,BC)exp
{

2+δ

2

(
1−m

m
δ− 3m−1

m

)
t

}
. (3.45)

Moreover, provided 3/5<m<1 the rate of convergence in (3.45) increases in the
interval 0<δ≤ (5m−3)/(2−2m).

Proof. The proof of this theorem is a direct consequence of the previous compu-
tations and we can obtain it by identification of coefficients, as follows. First of all,
we recall that both linear equation ((2.14) and (1.6)) can be written using different
scaling as equation (2.1) (see section 2.1). For equation (2.14) we have

α2 =
µ2

2
=

1+m

2
and β2 =

λ2

2
=

1−m

2

thus (3.41) holds if and only if m>1/3. On the other hand, since

µ2 =1+m and λ2 =1−m

we obtain that the rate of convergence
2+δ

2
(
λ2 δ−µ2

)
is written as

2+δ

2
((1−m)δ−(1+m)) .

And the minimum value is achieved in δ0 =
3m−1
2−2m

(see previous computations) and

this value is

− 1
23

(3−m)2

1−m
.
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For equation (1.6) we have

α2 =
µ2

2
=

3m−1
2m

and β2 =
λ2

2
=

1−m

2m

and in this case (3.41) holds if and only if m>3/5 and the rate of convergence is
written as

2+δ

2

(
1−m

2m
δ− 3m−1

2m

)
.

And the minimum value is achieved in δ0 =
5m−3
2−2m

(see previous computations) and

this value is

− 1
23

(m+1)2

m
.

The result of Theorem 3.2 introduces new bounds into the game. As a matter
of fact, while our method of proof improves the rate of convergence in both cases as
soon as we are sufficiently close to the linear heat equation, while we are not able to
show improvements in the rate of convergence to equilibrium as soon as we are too
far from the linear one.

4. The N-dimensional Fokker–Planck equation
The results of Section 3 clarify the strategy we used to obtain precise rates of

convergence towards the steady state for the one-dimensional Fokker–Planck equation
(2.4). In one dimension of the velocity variable the connection between nonconser-
vative models of the Boltzmann equation and the Fokker–Planck equation with non
constant diffusion coefficients was known for binary collisions of different type [25]. To
our knowledge, however, in higher dimensions, at present no studies on this connection
have been considered so far. Clearly, higher dimensional models have been studied in
the grazing limit in the conservative case by Villani [32] [33], but there, starting from
the nonlinear Boltzmann equation with elastic collisions, the limit equation results in
the nonlinear Landau equation. To obtain in the limit a linear Fokker-Planck type
equation requires the introduction of a particular collision dynamics. We deal with
this extension in the forthcoming Section. Since many arguments will be taken from
the one-dimensional analysis of Section 3, when not necessary to the understanding,
we will only briefly outline them.

4.1. N-dimensional binary collisions and nonconservative kinetic mod-
els

The starting point of our analysis will be the introduction of a particular collision
dynamics, that in the grazing limit is able to produce the target equation (2.4).
Clearly, as the one-dimensional analysis suggests, this is not the only possible model
of binary collision that produces the correct result. Nevertheless, this law is in our
opinion the simplest possible generalization of (3.1) to higher dimensions. The binary
interaction between particles will be governed by the law:

v∗=v+n(λ e ·v+µ e ·w), w∗=w+n(λ e ·w+µ e ·v). (4.1)

In (4.1) (v,w)∈R2N are the pre-collisional velocities which generate the post-
collisional ones (v∗,w∗)∈R2N , λ and µ are positive constants, n∈ [−1,1]N and e∈RN
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is a unit vector. Consequently, the integro-differential equation of Boltzmann type
(3.2) is written as

∂f

∂t
=

∫

CN

∫

SN−1

∫

RN

Bε(n)
BN

(
1
J

f(v∗)f(w∗)−f(v)f(w)
)

dwde dn (4.2)

where (v∗,w∗) are the pre-collisional velocities that generate the couple (v,w) after the
interaction, J is the Jacobian of the transformation of (v,w) into (v∗,w∗), CN denotes
the cube in RN centered on the origin with dimensions [−1,1]N , SN−1 represents the
unit sphere in RN , BN is the measure of the surface of SN−1 and Bε(n) represents
the collision frequency. Proceedings as in dimension one, we will assume that Bε(n)
satisfies the following properties:
PN.1 For all ε, Bε(n) is a symmetric function of all the components of n, so that

for all i
∫

CN

Bε(n)ni dn=0, for all i 6= j,
∫

CN

Bε(n)ni nj dn=0

PN.2 For all ε, the second moment of Bε(n) is bounded,

Aε :=
∫

CN

Bε(n) |n|2 dn<∞. Moreover limε→0Aε =1.

PN.3 For any r>2, with r∈N, it holds limε→0

∫

CN

|n|r Bε(n) dn=0 .

The weak formulation of (4.2) now reads

d

dt

∫

RN

fε(v)φ(v)dv =
1
2

∫

CN

∫

SN−1

∫

R2N

Bε(n)
BN

fε(v)fε(w)

(4.3)
(φ(v∗)+φ(w∗)−φ(v)−φ(w))dvdwdedn.

Conservation of mass follows directly considering φ(v)=1 and using PN.1. Likewise,
conservation of momentum follows by taking φ(v)=v and using PN.1 again. The
evaluation of the law of variation of the second momentum requires computations we
present below. Precisely we obtain
Lemma 4.1. Let fε be a solution of (4.2) corresponding to an initial value satisfying
conditions (1.10). Then the moment of order two is exponentially increasing and it
holds

M2(t)=exp

{
Aε

(
λ2 +µ2

)

N
t

}
. (4.4)

Proof. Choosing φ(v)= |v|2 into the weak form (4.3) we find

d

dt

∫

RN

fε(v)|v|2dv =
1
2

∫

CN

∫

SN−1

∫

R2N

Bε(n)
BN

fε(v)fε(w) ·

·(|v∗|2 + |w∗|2−|v|2−|w|2)dvdwdedn.

By the collision rule (4.1) we obtain

d

dt

∫

RN

fε(v)|v|2dv =
∫

CN

∫

SN−1

∫

R2N

Bε(n)
BN

fε(v)fε(w) ·

·
(
|n|2 |λ e ·v+µ e ·w|2 +2(λ e ·v+µ e ·w) v ·n

)
dvdwdedn.
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By property PN.1 follows
∫

CN

∫

SN−1

∫

R2N

Bε(n)
BN

fε(v)fε(w)(λ e ·v+µ e ·w) v ·ndvdwdedn=0.

Therefore,

d

dt

∫

RN

fε(v)|v|2dv =
∫

CN

∫

SN−1

∫

R2N

Bε(n)
BN

fε(v)fε(w) ·

·|n|2 |λ e ·v+µ e ·w|2 dvdwdedn,

which can be written as

d

dt

∫

RN

fε(v)|v|2dv =
∫

CN

∫

SN−1

∫

R2N

Bε(n)
BN

fε(v)fε(w)

|n|2(
λ2(e ·v)2 +µ2(e ·w)2 +2λµ(e ·v)(e ·w)

)
dvdwdedn.

Finally, since mass and momentum are conserved, we obtain

d

dt

∫

RN

fε(v)|v|2dv =
∫

CN

∫

SN−1

∫

R2N

Bε(n)
BN

fε(v)fε(w)

|n|2(
λ2(e ·v)2 +µ2(e ·w)2

)
dvdwdedn

=(λ2 +µ2)
∫

CN

∫

SN−1

∫

RN

Bε(n)
BN

fε(v)|n|2(e ·v)2dvdedn

=
Aε(λ2 +µ2)

N

∫

RN

fε(v)|v|2dv.

The last equality follows by symmetry, since from the equality

1
BN

∫

SN−1
e2
i de=

1
BN

∫

SN−1
e2
j de, i 6= j (4.5)

it follows

1
BN

∫

SN−1
e2
i de=

1
N

i=1,.. .n,

and

1
BN

∫

SN−1
(e ·v)2de=

1
N
|v|2.

As discussed in the one-dimensional case, the exponential growth of the second
moment implies that do not exist stationary solutions with finite energy. To look for
self-similar profiles, we scale the solution according to

gε(v,t)=(M2(t))
N/2

fε

(
v
√

M2(t),t
)

. (4.6)

By this scaling, we obtain that the second moment of gε remains equal to one for all
t≥0. Thus, if the initial value to the kinetic equation (4.2) satisfies condition (1.10),
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so does gε(v,t) at any subsequent time. The weak formulation of equation (4.2) for
the scaled function gε is written as

d

dt

∫

RN

φ(v)gε(v,t) dv+
(λ2 +µ2)Aε

2N

∫

RN

∇φ ·vgε dv =

∫

CN

∫

SN−1

∫

R2N

Bε(n)
BN

(φ(v∗)−φ(v)) gε(v)gε(w) dw dv de dn. (4.7)

If we consider a third-order Taylor development of φ(v∗) around v we obtain

φ(v∗)−φ(v)=∇vφ(v) ·(v∗−v)+
1
2

(v∗−v)Hess(φ)(v)(v∗−v)t +R(φ,ṽ,v∗,v)

where we denoted by Hess the Hessian matrix of a function, and by wt the transpose
of a vector w. Moreover R represents the remainder evaluated in correspondence to
a vector ṽ =λv+(1−λ)v∗, where λ is a suitable constant, 0≤λ≤1. Resorting to the
expression of v∗ in terms of v we find

φ(v∗)−φ(v)=∇vφ(v) ·n (λe ·v+µe ·w)+

1
2

n (λe ·v+µe ·w)Hess(φ)(v)(n (λe ·v+µe ·w))t +R(φ,ṽ,v∗,v).

Substituting the above expression into (4.7), and owing to property PN.3 shows that
the term corresponding to the remainder vanishes when ε goes to zero. Therefore, we
will focus on the remaining two terms. The integral corresponding to the first term
in the Taylor expansion vanishes thanks to property PN.1. In fact

∫

CN

∫

SN−1

∫

R2N

Bε(n)
BN

∇vφ(v) ·n (λe ·v+µe ·w) gε(v)gε(w) dw dv de dn=

∫

SN−1

∫

R2N

1
BN

∇vφ(v) ·
(∫

CN

Bε(n)n dn

)
(λe ·v+µe ·w) gε(v)gε(w) dw dv de=0.

On the other hand, by property PN.1 the second term can we written as follow

1
2

∫

CN

∫

SN−1

∫

R2N

Bε(n)
BN

gε(v)gε(w)n (λe ·v+µe ·w)

Hess(gε)(v)(n (λe ·v+µe ·w))t dw dv de dn=

1
2

∫

SN−1

∫

R2N

1
BN

gε(v)gε(w)

(∑

i

∂2φ(v)
∂v2

i

∫

CN

Bε(n)n2
i dn

)

(λe ·v+µe ·w)2 dw dv de=
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1
2

∫

SN−1

∫

R2N

1
BN

gε(v)gε(w)

(∑

i

∂2φ(v)
∂v2

i

Aε

N

)

(
λ2(e ·v)2 +µ2(e ·w)2 +2λµ(e ·v)(e ·w)

)
dw dv de=

Aε

2NBN

∫

SN−1

∫

R2N

gε(v)gε(w)∆φ(v)
(
λ2(e ·v)2 +µ2(e ·w)2 +2λµ(e ·v)(e ·w)

)
dw dv de=

Aε

2NBN

∫

SN−1

∫

R2N

gε(v)gε(w)∆φ(v)
(
λ2(e ·v)2 +µ2(e ·w)2

)
dw dv de=

Aε

2N2

∫

R2N

gε(v)gε(w)∆φ(v)
(
λ2|v|2 +µ2|w|2) dw dv =

Aε

2N2

∫

RN

gε(v)∆φ(v)
(
λ2|v|2 +µ2

)
dv.

Therefore, collecting terms, and taking the limit ε→0 we find that the limit function
g(v,t) satisfies the equation (in weak form)

d

dt

∫

RN

φ(v)g(v,t) dv+
(λ2 +µ2)Aε

2N

∫

RN

∇φ(v) ·vg dv =

Aε

2N2

∫

RN

∆φg(v)
(
λ2|v|2 +µ2

)
dv, (4.8)

which is the weak formulation of the following Fokker-Planck equation

∂

∂t
g(v,t)− λ2 +µ2

2N
div(vg)=∆

(
λ2v2 +µ2

2N2
g(v)

)
. (4.9)

As in the one-dimensional case the coefficient in front of the convection term can be
made equal to one by setting λ2 +µ2 =2N . Within this choice,

∂

∂t
g(v,t)=div(vg)+∆

[(
λ2

2N2
v2 +

µ2

2N2

)
g(v)

]
. (4.10)

Again, as in the one dimensional case, it follows that the limit function g(v,t) satisfies
the Fokker-Planck equation (2.1), by taking

α2 =
µ2

2N2
and β2 =

λ2

2N2

which satisfy α2 +β2 =1/N . We can now repeat the reasoning we did in one-dimension
of space, to conclude that the sequence {gε(v,t)}ε≥0 contains a subsequence that
converges weakly to a function g satisfying (4.8).

4.2. Convergence in Fourier based metrics We use the same notation as
in one dimensional case and we denote by M0 the space of all probability measures
in RN and

Mr =
{

µ∈M0 :
∫

RN

|v|rµ(dv)<∞, r≥0
}
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the space of all Borel probability measures with finite momentum of order r equipped
with the topology of the weak convergence of the measures. A weak solution of the
initial value problem for equation (4.2), corresponding to the initial probability density
f0(w)∈Mr, r >2 we shall mean any probability density f ∈C1(RN ,Mr) satisfying the
weak form of the equation (4.3) for t>0 and all smooth functions φ, and such that
for all φ

lim
t→0

∫

IR

φ(v)f(v,t)dv =
∫

IR

φ(v)f0(v)dv. (4.11)

In the rest of this section, we shall study the weak form of equation (4.2), with the
normalization conditions (1.10). It is equivalent to use the Fourier transform of the
equation [5]:

∂f̂(ξ,t)
∂t

= Q̂
(
f̂ , f̂

)
(ξ,t), (4.12)

where

Q̂
(
f̂ , f̂

)
(ξ)=

∫

CN

∫

SN−1

Bε(n)
BN

[
f̂(ξ +(n ·ξ)λe,t)f̂((n ·ξ)µe,t)− f̂(ξ,t)

]
de dn

∫

CN

∫

SN−1

Bε(n)
BN

f̂(ξ +(n ·ξ)λe,t)f̂((n ·ξ)µe,t) de dn−CN
ε f̂(ξ,t)

(4.13)

where

CN
ε =

∫

CN

Bε(n) dn.

In the N -dimensional case, the initial conditions (1.10) take the form

f̂0(ξ =0)=1, ∇f̂0(ξ =0)=0, ∆f̂0(ξ =0)=−1,

where f̂0∈C2(RN ).
Then, proceeding as in the one-dimensional case [19], given two initial data f0,1

and f0,2 such that dr(f0,1,f0,2) is bounded for some r≥2, one obtains for the corre-
sponding solutions to ((4.3)) the estimate

dr(f1(t),f2(t))≤dr(f0,1,f0,2) ·exp{Rε
N (r)t} (4.14)

where

Rε
N (r)=

∫

CN

∫

SN−1

Bε(n)
BN

[|γ +(n ·γ)λe|r + |(n ·γ)µe|r−1] de dn,

and γ = ξ/|ξ| denotes a unit vector. The estimation (4.14) is translated to the analo-
gous estimation for the scaled function gε. As in the one-dimensional case

dr(gε1(t),gε2(t))=M2(t)−r/2dr(f1(t),f2(t))≤dr(f0,1,f0,2) ·exp{Rε
N (r)t}

or equivalently, since dr(f0,1,f0,2)=dr(g0,1,g0,2)

dr(gε1(t),gε2(t))=M2(t)−r/2dr(f1(t),f2(t))≤dr(gε01 ,gε02) ·exp{Sε
N (r)t} (4.15)
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where now

Sε
N (r)=

∫

CN

∫

SN−1

Bε(n)
BN

·

·
[
|γ +(n ·γ)λe|r + |(n ·γ)µe|r−1− r

2N
n2

(
λ2 +µ2

)]
de dn. (4.16)

In order to pass to the limit ε→0 we use a Taylor development for the function
h(v)= |v|2+δ with v∈RN ,

h(v)=h(v0)+∇vh(v0) ·(v−v0)+
1
2

(v−v0)Hess(h)(v0)(v−v0)t +R(h,ṽ,v0,v)

Since v =γ +(n ·γ)λe and v0 =(n ·γ)λe,we use properties PN.1−PN.3 and (4.5) into
(4.16) to obtain

Sε
N (2+δ)=

λ2

2
1
N

Aε(2+δ)δ
1
N

+
λ2

2N
Aε (2+δ)−Aε

2+δ

2N

(
λ2 +µ2

)
+O(n2+δ).

Taking the limit ε→0 we find

SN (2+δ)=
2+δ

2N

[
δ

N
λ2−µ2

]
.

Therefore, using Lemma 2.2 we obtain for the limit function g the following inequality

d2+δ(g1(t),g2(t))≤d2+δ(g01 ,g02) ·exp{SN (2+δ)t}, (4.17)

which can be rewritten in terms of the general Fokker-Planck equation (2.1) for the
stationary solution and a general solution as

d2+δ(f(t),B∞)≤d2+δ(f0,B∞) ·exp
{
2(2+δ)

(
δβ2−2Nα2

)
t
}

. (4.18)

We are now in a position to prove the main result of this Section, namely the N -
dimensional version of Theorem 3.2. We can observe that for the linearized equation
(2.14) also considered in [15] we obtain the same rate of convergence taking δ =0.
Theorem 4.2. Let f(v,t) be the solution to equation (2.14), corresponding to the
initial datum f0(v) satisfying (1.10), and let us denote by B̄ =DB2−m

C the stationary
solution to the same equation Suppose in addition that

d2+δ(f0,B̄)<+∞, δ < (2−N +N m)/(1−m). (4.19)

Then, the solution f(v,t) converges exponentially to B̄ in d2+δ–metric, and

d2+δ(f(t),B̄)≤d2+δ(f0,B̄)exp
{

2+δ

2
((1−m)δ−(2−N +N m))t

}
. (4.20)

Moreover, provided
N

N +2
<m<1 the rate of convergence in (4.20) increases in the

interval 0<δ≤ ((N +2)m−N)/(2−2m). Likewise, let f(v,t) be the solution to equa-
tion (1.6), with initial datum f0(v). Suppose in addition that

d2+δ(f0,BC)<+∞, δ < (m(N +2)−N)/(1−m). (4.21)
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Then, the solution f(v,t) converges exponentially to BC(x) in d2+δ–metric, and

d2+δ(f(t),BC)≤d2+δ(f0,BC)exp
{

2+δ

2N

(
1−m

m
δ− (2+N)m−N

m

)
t

}
. (4.22)

Moreover, provided (N +2)/(N +4)<m<1 the rate of convergence in (4.22) increases

in the interval 0<δ≤ (N +4)m−(N +2)
2−2m

.

Proof. The proof of this theorem is an easy generalization of the 1-dimensional
case and we can obtain it simply by identifying coefficients, since in section 2.1 we
showed that both linear equation ((2.14) and (1.6)) can be written, using different
scaling, as equation (2.1). For equation (2.14) we have

α2 =
µ2

2N2
=

1
N
− 1−m

2
and β2 =

λ2

2N2
=

1−m

2
.

SN (2+δ) is nonpositive if and only if δ≤ N µ2

λ2
. And the minimum value is achieved

at δ0 =
Nµ2

2λ2
−1 which is positive if and only if Nµ2 >2λ2 or equivalently if and only

if Nα2 >2β2 (analogous N-dimensional version of (3.41)). And finally, this inequality

holds if and only if m>
N

N +2
. On the other hand, since

µ2 =2N
2−N +N m

2
and λ2 =2N2 1−m

2

we obtain that the rate of convergence SN (2+δ) takes the form

SN (2+δ)=
2+δ

2
((1−m)δ−(2−N +N m)).

The minimum value is achieved at δ0 =
(2+N)m−N

2−2m
(see previous computations)

and this value is

SN (2+δ0)=−1
8

(4−N +(N−2)m)2

1−m
.

For equation (1.6) we have

α2 =
µ2

2N2
=

1
N
− 1−m

2m
and β2 =

λ2

2N2
=

1−m

2m

and in this case Nα2 >2β2 holds if and only if m> (N +2)/(N +4) and the rate of
convergence is written as

SN (2+δ)=
2+δ

2N

(
1−m

m
δ− (2+N)m−N

m

)
.

The minimum value is now achieved in δ0 =
(N +4)m−(N +2)

2−2m
and this value is

SN (2+δ0)=−1
8

((2−N)+N m)2

N m
.
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Remark 4.1. For equation (2.14) the condition δ <1 (which means only equality for
the initial mass) is satisfied if N−2

N <m< N−1
N+1 , while δ0 <1 (which means equality of

the second moments) requires N
N+2 <m< 2+N

N+4 . For equation (1.6) the condition δ <1
holds whenever N

N+2 <m< N+1
N+3 . Likewise δ0 <1 if N+2

N+4 <m< N+4
N+6 .

Some comments to Theorem 4.2 are needed. Despite the one-dimensional situa-
tion, the boundedness of the Fourier based metric for s>2 requires that all the cross
moments of both the initial value f0 and the stationary state are equal up to [s], where
[s] is the entire part of the number s. When s>2, this condition reads very strong.
Thus, the conditions of Theorem 4.2 are equivalent to thats of Theorem 3.2 only for
radially symmetric initial data, which, as it can be easily seen looking at the kinetic
model, imply that the solution is radially symmetric at any subsequent time. In this
case, in fact, only the principal moments of both the initial value and the stationary
state need to be equal.

In the general situation, however, it has been shown first for the elastic spatially
homogeneous Boltzmann equation for Maxwell molecules [19], and subsequently for
the inelastic Boltzmann equation for Maxwell type interactions [4], that the explicitly
computable and fast decay to zero of the cross moments can be used to relax the
condition of Theorem 4.2 to all the initial data satisfying (1.10). A similar strategy
could be applied in the present situation. On the other hand, since we are interested
in understanding how the values of the moments improve the rate of convergence to
equilibrium, this problem is not of primary importance for our analysis.

Second, as shown in paper [6] for the elastic spatially homogeneous Boltzmann
equation for Maxwell molecules, the decay of the Fourier metric, combined with the
uniform boundedness of stronger norms, gives rise to precise rates of convergence
towards the stationary state in these strong norms. This idea has been recently
applied to the spatially uniform Boltzmann equation for inelastic Maxwell model in
presence of a thermal bath in [3]. In the purely inelastic setting, however, the lack of
an entropy principle, makes it difficult to extend the results of [6] to this case [4]. In
the next Section we will give indications on a possible way to obtain decay rates in
stronger norm for the target Fokker-Planck equations.

5. Rate of convergence for general initial values

5.1. Propagation of regularity
The goal of this section is to show that the smoothness of the initial data of the

Fokker-Planck equation (2.1) is propagated, so that we have uniform in time bounds
on the smoothness. This result, combined with suitable interpolation inequalities [6]
can be used to obtain convergence in stronger spaces with almost the same rate of
convergence of the metric d2. This strategy has been recently applied to the dissipative
Boltzmann equation in a thermal bath in [3].

After application of the Fourier transform, the Fokker-Planck equation (2.1) takes
the form

∂f̂

∂t
=−ξ ·∇ξ f̂−α2|ξ|2f̂ +β2 |ξ|2∆ξ f̂ . (5.1)

To simplify computations, thanks to linearity, we can consider separately the real and
imaginary parts of f̂(ξ), f̂(ξ)=a(ξ)+ ib(ξ). Both the functions a and b then satisfy
the same equation (5.1). In the following we argument for a but clearly the same
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holds for b. Multiplying the equation (5.1) satisfied by the real part a(ξ) by 2 |ξ|2ka
one has

∂a2

∂t
|ξ|2k =−|ξ|2kξ ·∇ξ a2−2α2|ξ|2k+2a2 +2β2 |ξ|2k+2a∆ξa.

Therefore, integrating over RN we obtain

d

dt

∫

RN

|ξ|2ka2 dξ =−
∫

RN

|ξ|2kξ ·∇ξ a2 dξ

−2α2

∫

RN

|ξ|2k+2a2 dξ+2β2

∫

RN

|ξ|2k+2a∆ξa dξ. (5.2)

Direct computations, integrating by parts produce
∫

RN

|ξ|2kξ ·∇ξ a2 dξ =−(N +2k)
∫

RN

|ξ|2ka2 dξ,

and
∫

RN

|ξ|2k+2a∆ξa dξ =(k+1)(N +2k)
∫

RN

|ξ|2ka2 dξ−
∫

RN

|ξ|2k+2 (∇ξa)2 dξ.

Hence (5.2) is written as

d

dt

∫

RN

|ξ|2ka2 dξ =(N +2k)
[
1+2β2(k+1)

]∫

RN

|ξ|2ka2 dξ

−2α2

∫

RN

|ξ|2k+2a2 dξ−2β2

∫

RN

|ξ|2k+2 (∇ξa)2 dξ.

(5.3)

Since |f̂ |2 =a2 +b2, we obtain

d

dt

∫

RN

|ξ|2k|f̂ |2 dξ =(N +2k)
[
1+2β2(k+1)

]∫

RN

|ξ|2k|f̂ |2 dξ

−2α2

∫

RN

|ξ|2k+2|f̂ |2 dξ−2β2

∫

RN

|ξ|2k+2
[
(∇ξa)2 +(∇ξb)

2
]

dξ (5.4)

The next step is to find suitable lower bounds for the two negative terms in (5.4).
We are almost sure that the bounds we will derive in what follows are not new, and
one can find them somewhere in the pertinent literature. Due to the simplicity of the
proofs, however, we will present them in some detail. We have
Lemma 5.1. Let f ∈L1(RN ) be a probability density function such that, for some
k >0

∫

RN

|ξ|2k+2
[
(∇ξa)2 +(∇ξb)

2
]

dξ <∞. (5.5)

Then,
∫ |ξ|2k|f̂(ξ)|2 is bounded, and the following inequality holds

∫

RN

|ξ|2k|f̂(ξ)|2 dξ≤ 4
(N +2k)2

∫

RN

|ξ|2k+2
[
(∇ξa)2 +(∇ξb)

2
]

dξ. (5.6)
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Proof.
Let λ be a positive constant. Then

0≤
∫

RN

|ξ|2k

∣∣∣∣λ
ξ

|ξ|a(ξ)+ |ξ|∇a(ξ)
∣∣∣∣
2

dξ =λ2

∫

RN

|ξ|2ka2(ξ) dξ

+
∫

RN

|ξ|2k+2|∇a(ξ)|2 dξ+2λ

∫

RN

|ξ|2ka(ξ)ξ ·∇a(ξ) dξ. (5.7)

The last integral into (5.7) can be integrated by parts to give

2λ

∫

RN

|ξ|2ka(ξ)ξ∇a(ξ) dξ =λ

∫

RN

|ξ|2kξ ·∇a2(ξ) dξ =

−λ(N +2k)
∫

RN

|ξ|2ka2(ξ) dξ.

Substituting into (5.7) implies
∫

RN

|ξ|2k+2|∇a(ξ)|2 dξ≥λ(N +2k)
∫

RN

|ξ|2ka2(ξ) dξ−λ2

∫

RN

|ξ|2ka2(ξ) dξ. (5.8)

Choosing λ=(N +2k)/2 into (5.8) then proves inequality (5.6).

Let us introduce, for r≥0, the Sobolev space norms ‖·‖Hr(RN ) by

‖f‖2Hr(RN ) =
∫

RN

|ξ|2r|f̂(ξ)|2dξ.

Using inequality (5.6) into inequality (5.4), we can rewrite it as

d

dt
‖f‖2Hk(RN )≤D‖f‖2Hk(RN )−2α2‖f‖2Hk+1(RN ), (5.9)

where the constant D holds

D=D(N,k,β)=(N +2k)
(
1+2β2(k+1)

)−β2 (N +2k)2

2
. (5.10)

From the differential inequality (5.9) we deduce the uniform boundedness of
‖f‖Hk(RN ). The result follows by the following Nash-type inequality.
Lemma 5.2. Let f ∈L1(RN ) be a probability density function such that, for some
q >0

∫

RN

|ξ|q|f̂(ξ)|2 dξ <∞.

Then, if 0<p<q,
∫ |ξ|p|f̂(ξ)|2 is bounded, and the following inequality holds

∫

RN

|ξ|p|f̂(ξ)|2dξ≤C(p,q,N)
(∫

RN

|ξ|q|f̂(ξ)|2dξ,

)d(p,q,N)

(5.11)
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where, denoting by BN the measure of the unit ball in RN ,

C(p,q,N)=B
q−p
N+q

N

(
q−p

p+N

) p+N
q+N q+N

q−p
,

and

d(p,q,N)=
p+N

q+N
<1.

Proof. Since f is a probability density, |f̂ |≤1. Therefore, for any constant R>0
the following bound holds,

∫

RN

|ξ|p|f̂(ξ)|2 dξ≤Rp

∫

|ξ|≤R

|f̂ |2 dξ+Rp−q

∫

|ξ|>R

|ξ|q|f̂ |2 dξ

≤Rp

∫

|ξ|≤R

dξ+Rp−q

∫

|ξ|>R

|ξ|q|f̂ |2 dξ

≤RN+p|BN |+Rp−q

∫

RN

|ξ|q|f̂ |2 dξ

(5.12)

Optimizing in R we obtain the result.

We can use Lemma 5.2 to obtain a bound in (5.9). To this aim, choosing p=2k
and q =2k+2

d

dt
‖f‖2Hk(RN )≤D‖f‖2Hk(RN )−2α2C(2k,2k+2,N)−1/d(2k,2k+2,N)‖f‖2/d(2k,2k+2,N)

Hk(RN )

≤D‖f‖2Hk(RN )

(
1−2

α2

DC1/d
‖f‖2(1−d)/d

Hk(RN )

)
.

Since d<1, the time derivative can growth only if the right-hand side remains positive,
that is when

‖f‖2(1−d)/d

Hk(RN )
≤ DC1/d

2α2
.

Clearly this implies a uniform bound on ‖f‖2Hk(RN ). We proved

Theorem 5.3. Let f0 be the initial datum for equation (2.1) such that ‖f0‖Hk(RN ) is
finite. Then, any probability density f(t,v) solution of (2.1) is bounded in Hk(RN ),
and there is a universal constant D so that, for all t>0,

‖f(t)‖Hk(RN )≤max
{‖f0‖Hk(RN ),B

}
,

where

B =
(

DC1/d

2α2

) d
2(1−d)

.

C(2k,2k+2,N) and d(2k,2k+2,N) are defined as in Lemma 5.2, while the constant
D is defined in (5.10).
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5.2. Strong convergence to equilibrium
This section is very short. The regularity result proven in the previous Section

can be used together with Theorem 4.2 to obtain rates of convergence to equilibrium
in stronger norms. We only need to collect results and to explain how to compute
the constants involved in it. The key point are some interpolation inequalities, re-
cently considered in [6] to obtain strong convergence results for the elastic Boltzmann
equation for Maxwell molecules. These inequalities have been subsequently been used
for obtaining sharp rates of convergence to equilibrium for the dissipative Boltzmann
equation in presence of a thermal bath [3]. The first of these inequalities reads
Lemma 5.4. [Control of the Hk-distance] Let k,p≥0, then

‖f−g‖2Hk(RN )≤Cd2(f,g)β1‖f−g‖β2
Hk+p(RN )

,

with

β1 =
4p

2k+2p+N +4
,

β2 =
2(2k+N +4)

2k+2p+N +4
,

C(k,p,N)=
(

BN

2k+N +4

) β1
2

(2p)
β2
2 +

(
2p(2k+N +4)

BN

)−β1
2

Proof. For R>0 we obtain

‖f−g‖2Hk(RN )≤
∫

|ξ|≤R

|ξ|2k|f̂− ĝ|2 dξ+
1

R2p

∫

|ξ|>R

|ξ|2(k+p)|f̂− ĝ|2 dξ

≤
∫

|ξ|≤R

|ξ|2(k+2)d2
2(f,g) dξ+

1
R2p

‖f−g‖2Hk+p

and optimizing on R we obtain the result.
This result shows that the weak d2 distance coupled with ‖·‖Hr smoothness,

controls the Hk distance for r sufficiently larger than k. The next inequality shows
that control of sufficiently many moments and control of the L2 norm together, control
the L1 norm.
Lemma 5.5. [Control of the L1-distance [6, Theorem 4.2]] Let f be an integrable
function on RN . Then, for all r>0

∫

RN

|f(v)|dv≤C(N,r)
(∫

RN

|f(v)|2dv

)2r/(N+4r)(∫

RN

|v|2r|f(v)|dv

)N/(N+4r)

with

C(N,r)=

[(
N

4r

)4r/(N+4r)

+
(

4r

N

)N/(N+4r)
]
|BN |2r/(N+4r).

Using both Theorems 5.3 and 5.4 with r=1, we prove
Theorem 5.6. Let f0 be any initial datum for the Fokker-Planck equation (2.1)
satisfying conditions (1.10). Suppose in addition that the conditions of Theorem 4.2
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are satisfied, so that there exists a positive constant χ such that for some δ >0 there
is convergence of the solution f(v,t) in d2+δ-norm towards the steady state f∞(v) at
the exponential rate χ . Let ε>0 be given. Then, there is a number r depending only
on ε so that whenever

∫

RN

|v|2f0(v)dv+
∫

RN

|k|2r
∣∣∣f̂0(k)

∣∣∣
2

dk <∞

then it holds that

‖f(·,t)−f∞‖L1(RN )≤Cεexp{−(1−ε)χt}. (5.13)

Cε is explicitly computable in terms of the integrals specified above. Moreover, in-
creasing r, we obtain the same result if the L1-norm is replaced by any Hm-norm.

Proof. The result follows from the uniform propagation of regularity shown in
Theorem 5.3, and from the interpolation inequalities, Lemmas 5.4 and 5.5 above.

6. Conclusions
We discussed in this paper the approach to equilibrium for various Fokker-Planck

equations with variable coefficient of diffusion. These equations separate in a distinc-
tive way from other Fokker-Planck equations with variable coefficients for the reason
that they are obtained by linearizing fast diffusion equations confined by convection.
We investigated the approach to equilibrium by using suitable kinetic models of the
Boltzmann equation corresponding to nonconservative collision interactions. These
interactions are in fact such that the energy is produced by binary collisions. This
allows to use for the reckoning of rates of decay Fourier-based metrics which are easy
to handle in this kinetic framework. From one side, this seems artificial, since one
has to use nonlinear kinetic equations to obtain results on a linear equation. Look-
ing however to previous attempts to the study of this problem, a similar artificial
approach based on the nonlinear diffusion equation has been used in [9] to obtain
Poincaré inequalities for the linearized fast diffusion equation. As a matter of fact,
the analysis of [1] based on the decay of suitable entropies fails for Fokker-Planck
equations with polynomial growth of the diffusion coefficient, and requires a further
development of entropy techniques.
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MIUR project “Mathematical Problems of Kinetic Theories”. Research of Maŕıa
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