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Abstract We show that the sharp Young’s inequality for convolutions first
obtained by Bechner [2] and Brascamp-Lieb [7] can be derived from the mono-
tone in time evolution of a Lyapunov functional of the convolution of two so-
lutions to the heat equation, with different diffusion coefficients. Our proof is
based on a suitable adaptation of an old idea of Stam [19] and Blachman [6],
used to obtain Shannon’s entropy power inequality.
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1 Introduction

The goal of this note is to present a new proof of the Young inequality in the
sharp form obtained by Bechner [2],

‖f ∗ g‖r ≤ (ApAqAr′)
n‖f‖p‖g‖q. (1)

In (1) f ∈ Lp(IRn), g ∈ Lq(IRn), 1 < p, q, r < ∞ and 1/p + 1/q = 1 + 1/r.
Moreover, the constant Am which defines the sharp constant is given by

Am =

(
m1/m

m′1/m′

)1/2

(2)

where primes always denote dual exponents, 1/m+ 1/m′ = 1.
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The best constants in Young’s inequality were found by Beckner [2], using
tensorisation arguments and rearrangements of functions. In [7], Brascamp and
Lieb derived them from a more general inequality, which is nowadays known
as the Brascamp-Lieb inequality. The expression of the best constant, in the
case in which both f and g are probability density functions, is obtained by
noticing that inequality (1) is saturated by Gaussian densities. This principle
has been largely utilized by Lieb in a more recent paper [15]. Among many
other results, this paper contains a new proof of the Brascamp-Lieb inequality.
In [7], Brascamp and Lieb noticed that the sharp form of Young inequality
also holds in the so-called reverse case

‖f ∗ g‖r ≥ (ApAqAr′)
n‖f‖p‖g‖q, (3)

where now 0 < p, q, r < 1 while, as in Young inequality (1), 1/p+1/q = 1+1/r.
In this case, however, the dual exponents p′, q′, r′ are negative, and

Am =

(
m1/m

|m′|1/|m′|

)1/2

. (4)

The proof of this sharp reverse Young inequality was subsequently simplified
by Barthe [1]. While the original proof in [7] was rather complicated, and
used tensorisation, Schwarz symmetrization, Brunn-Minkowski and some not
so intuitive phenomenon for the measure in high dimension, the new proof
in [1] was based on relatively more elementary arguments and gave a unified
treatment of both cases, the Young inequality (1) and its reverse form (3). As
a matter of fact, the proof of the main result in [1] relies on a parametrization
of functions which was used in [13] and was suggested by Brunn’s proof of the
Brunn-Minkowski inequality.

In a recent paper, Young’s inequality has been seen in a different light by
Bennett and Bez [4]. In their paper, Young’s inequality is derived by looking
at the closure properties, with respect to the so-called heat inequalities, of
certain functionals of the solution to the heat equation. Even if not explicitly
mentioned in the paper, this idea connects Young’s inequality in sharp form
with other inequalities, for which the proof exactly moved along the same idea.

The connections of the sharp form of Young inequality with other inequal-
ities has been enlightened by Lieb in [14]. He proved in fact that, by letting
p, q, r → 1 in (1), the sharp form of Young’s inequality reduces to another well-
known inequality in information theory, known as Shannon’s entropy power
inequality [18].

In its original version, Shannon’s entropy power inequality gives a lower
bound on Shannon’s entropy functional of the sum of independent random
variables X,Y with densities

exp (2H(X + Y )) ≥ exp (2H(X)) + exp (2H(Y )) , (5)

with equality if X and Y are Gaussian random variables. Shannon’s entropy
functional of the probability density function f(x) of X is defined by

H(X) = H(f) = −
∫
IR

f(x) log f(x) dx. (6)
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Note that Shannon’s entropy functional coincides to Boltzmann’s H-functional
[10] up to a change of sign. The entropy-power

N(X) = N(f) = exp (2H(X))

(variance of a Gaussian random variable with the same Shannon’s entropy
functional) is maximum and equal to the variance when the random variable
is Gaussian, and thus, the essence of (5) is that the sum of independent ran-
dom variables tends to be more Gaussian than one or both of the individual
components.

The first rigorous proof of inequality (5) was given by Stam [19] (see also
Blachman [6] for the generalization to n-dimensional random vectors), and
was based on an identity which couples Fisher’s information with Shannon’s
entropy functional [12].

The original proofs of Blachman and Stam make a substantial use of the
solution to the heat equation

∂f(x, t)

∂t
= ∆f(x, t), (7)

that is, for t ≥ 0, of the function f(x, t) = f ∗M2t(x), where Mt(x) denotes
the Gaussian density in IRn of variance t

Mt(x) =
1

(2πt)n/2
exp

(
|v|2

2t

)
. (8)

Other variations of the entropy–power inequality are present in the litera-
ture. Costa’s strengthened entropy–power inequality [11], in which one of the
variables is Gaussian, and a generalized inequality for linear transforms of a
random vector due to Zamir and Feder [22].

Also, other properties of Shannon’s entropy-power N(f) have been inves-
tigated so far. In particular, the concavity of entropy power theorem, which
asserts that

d2

dt2
(N(f ∗M2t)) ≤ 0 (9)

Inequality (9) is due to Costa [11]. More recently, a short and simple proof of
(9) has been obtained by Villani [21], using an old idea by McKean [17].

Summarizing, the proof of Stam is based on the following argument. Let
f(x, t) = f ∗Mγ(t) and g(x, t) = g∗Mη(t) be two solutions of the heat equation
(7) corresponding to the initial data f(x) (respectively g(x)), with γ(t) and
η(t) increasing functions of time. If the entropies of the initial data are finite,
one considers the evolution in time of the functional Θf,g(t) defined by

Θf,g(t) =
exp{2H(f(t))}+ exp{2H(g(t))}

exp{2H(f(t) ∗ g(t))}
. (10)

Evaluating the time derivative of Θf,g(t), and using a key inequality for Fisher
information on convolutions, shows that, for a particular choice of the functions
γ(t) and η(t), Θf,g(t) is increasing in time, and converges towards the constant
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value Θf,g(+∞) = 1, thus proving inequality (5). Note that this method of
proof also determines the cases of equality in (5).

It is fundamental to remark that the evaluation of the limit of Θf,g(t), as
t → ∞, is made easy in reason of a scaling property. Indeed, the (Lyapunov)
functional Θ(f, g) is invariant with respect to the scaling (dilation)

f(x)→ fa(x) =
1

an
f
( x
an

)
, a > 0, (11)

which preserves the total mass of the function f . The importance of this prop-
erty will be clarified later on.

The proof by Stam is a physical proof, in the spirit of Boltzmann H-
theorem [10] in kinetic theory of rarefied gases, where convergence towards
the Maxwellian equilibrium is shown in consequence of the monotonicity in
time of the logarithmic entropy (6).

In the rest of the paper, inspired by the Stam’s approach to the proof of
Shannon’s entropy power inequality, we will present a physical proof of both
direct and reverse Young’s inequalities, which is based on the two ingredients
specified above: a suitable use of two solutions to the heat equation, corre-
sponding to different coefficients of diffusion, coupled with the scaling invari-
ance property (11). Our proof is alternative to the proof of [4], and relies on
a result which generalizes Stam proof of subadditivity of Fisher information.
Moreover, as one learns form Stam’s proof of Shannon’s entropy power, where
the exact form of the functions γ(t) and η(t) is found in a constructive way,
our proof of Young inequality is also constructive, in that it characterizes in
a clear and direct way the unique possible set of values the two coefficients of
diffusion can assume.

In the following Section, we will describe how the method works by prov-
ing Hölder inequality. Even if this is a well-known result [8,?,?], it will give
indication on the underlying methodology. Next, Section 3 will contain our
main result.

To make computations as simple as possible, we will present all proofs in
one dimension. Without loss of generality, in fact, one can easily argue that
identical proofs hold in dimension n, with n > 1. Also, if not strictly necessary,
we will restrict ourselves to consider as functions probability density functions.
Since our computations involve solutions to the heat equation, all details in-
volving regularity and the various integrations by parts can be assumed to
hold true.

The basic idea used here is that many inequalities can be viewed as the
tendency of various Lyapunov functionals of the solution to the heat equation
to reach their extremal values as time tends to infinity. The discovery of a
Lyapunov functional which allows to prove Young inequality is only one of the
possible application of this idea [3,?,?]. In a forthcoming paper [20], we are
going to develop this strategy by revisiting various well-known inequalities in
terms of the monotonicity of suitable Lyapunov functionals.
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These results do justice to the ideas of various researchers who worked in
information theory in the last fifty years, with sharp results which are not so
well-known to the audience of mathematicians.

2 Heat equation and Hölder inequality

We begin by showing that Hölder’s inequality can be viewed as a consequence
of the time monotonicity of a suitable Lyapunov functional of the solution to
the heat equation [8,4].

Hölder’s inequality for integrals states that, if p, q > 1 are such that 1/p+
1/q = 1 ∫

IR

|f(x)g(x)| dx ≤
(∫

IR

|f(x)|p dx
)1/p(∫

IR

|g(x)|q dx
)1/q

. (12)

Moreover, there is equality in (12) if and only f and g are such that there exist
positive real numbers a and b such that afp(x) = bgq(x) almost everywhere.
Hölder’s inequality can be proven in many ways, for example resorting to
Young’s inequality for constants, which states that, if 1/p+ 1/q = 1

cd ≤ cp

p
+
dq

q
, (13)

for all nonnegative c and d, where equality is achieved if and only if cp = dq.
Without loss of generality, one can assume that the functions f, g in (12)

are nonnegative. A different way to achieve inequality (12) is contained into
the following

Theorem 1 Let Φu,v(t) be the functional

Φu,v(t) =

∫
IR

u(x, t)1/pv(x, t)1/q dx, (14)

where 1/p + 1/q = 1, and u(x, t) and v(x, t), t > 0, are solutions to the
heat equation corresponding to the initial values u(x) ∈ L1(IR) (respectively
v(x) ∈ L1(IR)). Then φu,v(t) is increasing in time from

Φu,v(t = 0) =

∫
IR

u(x)1/pv(x)1/q dx,

to

lim
t→∞

Φu,v(t) =

(∫
IR

u(x) dx)

)1/p (∫
IR

v(x) dx

)1/q

.

Proof We outline that the functional Φu,v(t) is invariant with respect to the
mass preserving scaling (11). Moreover, the condition u(x), v(x) ∈ L1(IR) is
enough to ensure that Φu,v(t) ∈ L1(IR) at any time t ≥ 0. Indeed, inequality
(13) implies

u(x, t)1/pv(x, t)1/q ≤ 1

p
u(x, t) +

1

q
v(x, t),
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where, since u(x, t) and v(x, t) are solution to the heat equation,∫
IR

u(x, t) dx =

∫
IR

u(x) dx,

∫
IR

v(x, t) dx =

∫
IR

v(x) dx.

Let us first proceed in a formal way. However, by resorting to the smoothness
properties of the solution to the heat equation, all mathematical details can
be rigorously justified.

Let us evaluate the time derivative of Φ(t). It holds

Φ′u,v(t) =

∫
IR

[
(u(x, t)1/p)tv(x, t)1/q + u(x, t)1/p(v(x, t)1/q)t

]
dx =

∫
IR

[
1

p
u1/p−1v1/quxx +

1

q
u1/pv1/q−1vxx

]
dx =∫

IR

[
1

p
u−1/qv1/quxx +

1

q
u1/pv−1/pvxx

]
dx.

Integrating by parts we end up with

Φ′u,v(t) =
1

pq

∫
IR

u1/pv1/q
[(ux

u

)2
− 2

ux
u

vx
v

+
(vx
v

)2]
dx =

1

pq

∫
IR

u1/p(x, t)v1/q(x, t)

(
ux(x, t)

u(x, t)
− vx(x, t)

v(x, t)

)2

dx ≥ 0. (15)

Hence the functional Φu,v(t) is increasing in time. Note that the time derivative
of the functional is equal to zero if and only if, for every t > 0

ux(x, t)

u(x, t)
− vx(x, t)

v(x, t)
= 0

for all points x ∈ IR. This condition can be rewritten as

d

dx
log

u(x, t)

v(v, t)
= 0.

Consequently Φ′(t) = 0 if and only if

u(x, t) = c v(x, t) (16)

for some positive constant c. Thus, unless condition (16) is verified almost
everywhere at time t = 0, the functional Φ(t) is monotone increasing, and it
will reach its eventual maximum value as time t → ∞. The computation of
the limit value uses in a substantial way the scaling invariance of Φ. In fact,
at each time t > 0, the value of Φu,v(t) does not change if we scale u(x, t) and
v(x, t) according to

u(x, t)→ U(x, t) =
√

1 + 2t u(x
√

1 + 2t, t)

v(x, t)→ V (x, t) =
√

1 + 2t v(x
√

1 + 2t, t).
(17)
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On the other hand, it is well-known that [9]

lim
t→∞

U(x, t) = M1(x)

∫
IR

u(x) dx lim
t→∞

V (x, t) = M1(x)

∫
IR

v(x) dx, (18)

where, according to (8) M1(x) is the Gaussian density in IR of variance equal
to 1. Therefore, passing to the limit one obtains

lim
t→∞

Φu,v(t) =

(∫
IR

u(x) dx

)1/p(∫
IR

v(x) dx

)1/q ∫
IR

M1(x)1/pM1(x)1/q dx =

(∫
IR

u(x) dx

)1/p(∫
IR

v(x) dx

)1/q ∫
IR

M1(x) dx =

(∫
IR

u(x) dx

)1/p(∫
IR

v(x) dx

)1/q

.

Since

lim
t→0+

Φu,v(t) =

∫
IR

u(x)1/pv(x)1/q dx,

the monotonicity of the functional Φ(t) implies the inequality∫
IR

u(x)1/pv(x)1/q dx ≤
(∫

IR

u(x) dx

)1/p(∫
IR

v(x) dx

)1/q

, (19)

with equality if and only if (16) is verified at time t = 0, that is

u(x) = cv(x), (20)

for some positive constant c. Setting f = u1/p and g = v1/q proves both Hölder
inequality (12) and the equality cases.

Despite its apparent complexity, this way of proof is based on a solid phys-
ical argument, namely the monotonicity in time of a Lyapunov functional of
the solution to the heat equation. This gives a clear indication that many in-
equalities reflect the physical principle of the tendency of a system to move
towards the state of maximum entropy. In the next Section we will see how
this idea applies to prove Young’s inequality.

3 Young’s inequality and Lyapunov functionals

The proof of the sharp Young’s inequality follows along the same lines of the
proof of Hölder’s inequality we presented in Section 2. In this case the key
functional to study is the one considered by Bennett and Bez [4]

Ψu,v(t) =

(∫
IR

(
u(x, t)1/p ∗ v(x, t)1/q

)r
dx

)1/r

, (21)
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where, as in Young’s inequality, 1/p+1/q = 1+1/r. With respect to the nota-
tions of the previous Section, there is a substantial difference in the meaning
of the functions u(x, t) and v(x, t). Here u(x, t) and v(x, t) are still solutions
of the heat equation corresponding to the initial data u(x) (respectively v(x)).
However, these solutions correspond to two different heat equations, with dif-
ferent coefficients of diffusions, say α and β. In other words, u(x, t) solves the
diffusion equation

ut = αuxx, (22)

while v(x, t) solves
vt = βvxx. (23)

Hence u(x, t) and v(x, t) diffuse at different velocities. It is a simple exercise
to verify that, in view of the relationship between p, q and r, the functional
Ψu,v(t) is invariant with respect to the mass preserving scaling (11).

Theorem 2 Let Ψu,v(t) be the functional (21), where 1/p + 1/q = 1 + 1/r,
and u(x, t) and v(x, t), t > 0, are solutions to the heat equation correspond-
ing to the initial values u(x) ∈ L1(IR) (respectively v(x) ∈ L1(IR)). Then, if
p, q, r > 1, and the diffusion coefficients in (22) and (23) are given by α = q′/p
(respectively β = p′/q), or by a multiple of them, Ψu,v(t) is increasing in time
from

Ψu,v(t = 0) =

(∫
IR

(
u(x)1/p ∗ v(x)1/q

)r
dx

)1/r

,

to the limit value

lim
t→∞

Ψu,v(t) = (ApAqAr′)
1/2

(∫
IR

u(x) dx

)1/p(∫
IR

v(x) dx

)1/q

. (24)

If on the contrary 0 < p, q, r < 1, and the diffusion coefficients in (22) and
(23) are given by α = |q′|/p (respectively β = |p′|/q), or by a multiple of them,
Ψu,v(t) is decreasing in time from

Ψu,v(t = 0) =

(∫
IR

(
u(x)1/p ∗ v(x)1/q

)r
dx

)1/r

,

to the limit value (24), where now Am is given by (4). In both cases Ψ ′u,v(t) = 0
if and only if u(x, t) and v(x, t) are Gaussian functions.

Proof Let us consider first the case in which p, q, r > 1. Without loss of gener-
ality, we will assume that both the initial data u(x) and v(x) are probability
density functions. This is sufficient to show that, for any time t > 0, the
functional Ψu,v(t) is bounded. Indeed we can write∫

IR

u(x− y)1/pv(y)1/q dy =∫
{u(x−y)≤v(y)}

u(x− y)1/pv(y)1/q dy +

∫
{u(y)>v(x−y)}

u(y)1/pv(x− y)1/q dy.
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Now, since r > 1, and v(x, t) has mass equal to 1, Jensen’s inequality implies(∫
{u(x−y)≤v(y)}

u(x− y)1/pv(y)1/q dy

)r
=

(∫
{u(x−y)≤v(y)}

u(x− y)1/pv(y)1/q−1v(y) dy

)r
≤

∫
{u(x−y)≤v(y)}

u(x− y)r/pv(y)r/q−rv(y) dy =∫
{u(x−y)≤v(y)}

u(x− y)r/pv(y)r/q−r+1 dy.

Note that
r

p
+
r

q
− r + 1 = 2,

r

p
> 1.

Therefore, on the set {u(x− y) ≤ v(y)}, since the exponent of v(y) is smaller
than 1,

u(x− y)r/pv(y)r/q−r+1 ≤ u(x− y)v(y). (25)

Inequality (25) follows simply dividing by u2. Therefore(∫
{u(x−y)≤v(y)}

u(x− y)1/pv(y)1/q dy

)r
≤
∫
{u(x−y)≤v(y)}

u(x−y)v(y) dy ≤ 1.

Identical computations show that(∫
{u(y)>v(x−y)}

u(y)1/pv(x− y)1/q dy

)r
≤
∫
{u(x−y)≤v(y)}

u(y)v(x−y) dy ≤ 1.

Therefore ∫
IR

(
u(x)1/p ∗ v(x)1/q

)r
≤ 2cr,

where cr is the positive constant in the inequality

(a+ b)r ≤ cr(ar + br).

We proceed now to compute the time derivative of the functional Ψu,v(t). To
shorten, let us denote

h(x, t) = u(x, t)1/p ∗ v(x, t)1/q. (26)

Since u(x, t) and v(x, t) are solutions to the heat equation

∂

∂t
h(x, t) =

∂

∂t

∫
IR

u(x− y, t)1/pv(y, t)1/q dy =

1

p

∫
IR

u(x− y, t)1/p−1ut(x− y, t)v(y, t)1/q dy+
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1

q

∫
IR

u(x− y, t)1/pv(y, t)1/q−1vt(y, t) dy =

α

p

∫
IR

u(x− y, t)1/p−1uxx(x− y, t)v(y, t)1/q dy+

β

q

∫
IR

u(x− y, t)1/pv(y, t)1/q−1vyy(y, t) dy.

On the other hand, we have

∂2

∂x2
h(x, t) =

∫
IR

∂

∂x

(
1

p
u(x− y, t)1/p−1ux(x− y, t)

)
v(y, t)1/q dy =

1

p

∫
IR

u(x− y, t)1/p−1uxx(x− y, t)v(y, t)1/q dy+

1

p

(
1

p
− 1

)∫
IR

u(x− y, t)1/p−2u2x(x− y, t)v(y, t)1/q dy. (27)

Hence
1

p

∫
IR

u(x− y, t)1/p−1uxx(x− y, t)v(y, t)1/q dy =

∂2

∂x2
h(x, t) +

1

pp′

∫
IR

u(x− y, t)1/pv(y, t)1/q
(ux
u

)2
(x− y, t) dy. (28)

Analogous formula for the last integral in (27). Therefore we have

∂

∂t
h(x, t) = (α+ β)

∂2

∂x2
h(x, t)+

α

pp′

∫
IR

u(x− y, t)1/pv(y, t)1/q
(ux
u

)2
(x− y, t) dy+

β

qq′

∫
IR

u(x− y, t)1/pv(y, t)1/q
(vx
v

)2
(y, t) dy. (29)

Making use of formula (29), we obtain

d

dt

∫
IR

hr(x, t) dx = r

∫
IR

h(x, t)r−1ht(x, t) dx =

r(α+ β)

∫
IR

hr−1(x, t)hxx(x, t) dx+∫
IR

hr−1(x, t)

[
α

pp′

∫
IR

u(x− y, t)1/pv(y, t)1/q
(ux
u

)2
(x− y, t) dy+

β

qq′

∫
IR

u(x− y, t)1/pv(y, t)1/q
(vx
v

)2
(y, t) dy

]
dx.

Since it holds (
u1/p

)
x

u1/p
=

1

p

ux
u
,

(
v1/q

)
x

v1/p
=

1

q

vx
v

(30)
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we obtain

α

pp′

∫
IR

u(x− y, t)1/pv(y, t)1/q
(ux
u

)2
(x− y, t) dy =

α
p

p′

∫
IR

(
u
1/p
x (x− y, t)

)2
u1/p(x− y)

v(y, t)1/q dy,

and
β

qq′

∫
IR

u(x− y, t)1/pv(y, t)1/q
(vx
v

)2
(y, t) dy =

β
q

q′

∫
IR

u1/p(x− y)

(
v
1/q
y (y, t)

)2
v1/q(y)

dy.

Finally

1

r

d

dt

∫
IR

hr(x, t) dx = −(α+ β)(r − 1)

∫
IR

hr−2(x, t) (hx(x, t))
2
dx+

α
p

p′

∫
IR

hr−1(x, t)A(u1/p, v1/q)(x, t) dx+β
q

q′

∫
IR

hr−1(x, t)B(u1/p, v1/q)(x, t) dx.

(31)
In (31) we defined

A(f, g)(x, t) =

∫
IR

(fx(x− y, t))2

f(x− y)
g(y, t) dy, (32)

and

B(f, g)(x, t) =

∫
IR

f(x− y)
(gy(y, t))

2

g(y)
dy. (33)

Since
dΨu,v(t)

dt
= Ψu,v(t)

1−r d

dt

∫
IR

hr(x, t) dx,

the sign of the time derivative of the functional Ψu,v(t) depends of the sign of
the expression on the right-hand side of (31). In order to determine this sign,
the following Lemma will be of paramount importance.

Lemma 3 Let f(x) and g(x) be probability density functions such that both
A(f, g) and B(f, g), given by (32) and (33), are well defined. Then, for all
positive constants a, b and r > 0(

a2 + b2 + 2abr
) ∫

IR

(f ∗ g)r−2 ((f ∗ g)x)
2
dx ≤

a2
∫
IR

(f ∗ g)r−1A(f, g) dx+ b2
∫
IR

(f ∗ g)r−1B(f, g) dx. (34)

Moreover, there is equality in (34) if and only if, for any positive constant c
and constants m1,m2, f and g are Gaussian densities, f(x) = Mca(x −m1)
and g(x) = Mcb(x−m2).
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Proof The proof will follow along the same lines of the analogous one for Fisher
information, given by Blachman [6]. First of all, to easily justify computations,
let us prove the lemma by considering smooth functions f and g. Then the
proof for general f and g will follow owing to the convexity properties of A
and B [16]. This can be easily done by considering f ∗Mt and g ∗Mt solutions
to the heat equation for some t > 0. Let

k(x) = f ∗ g(x).

Then, for any pair of positive constants a, b

(a+ b)k′(x) = a

∫
IR

f ′(x− y)g(y) dy + b

∫
IR

f(x− y)g′(y) dy.

Therefore

(a+ b)
k′(x)

k(x)
= a

∫
IR

f ′(x− y)

f(x− y)

f(x− y)g(y)

k(x)
dy + b

∫
IR

g′(y)

g(y)

f(x− y)g(y)

k(x)
dy =

∫
IR

(
a
f ′(x− y)

f(x− y)
+ b

g′(y)

g(y)

)
dµx(y),

where we denoted

dµx(y) =
f(x− y)g(y)

k(x)
dy.

Note that, for every x ∈ IR, dµx is a unit measure on IR. Consequently, by
Jensen’s inequality

(a+ b)2
[
k′(x)

k(x)

]2
=

[∫
IR

(
a
f ′(x− y)

f(x− y)
+ b

g′(y)

g(y)

)
dµx(y)

]2
≤

∫
IR

(
a
f ′(x− y)

f(x− y)
+ b

g′(y)

g(y)

)2

dµx(y). (35)

Hence, for every constant r > 0

(a+ b)2
∫
IR

kr(x)

[
k′(x)

k(x)

]2
dx ≤

∫
IR

kr(x)

∫
IR

(
a
f ′(x− y)

f(x− y)
+ b

g′(y)

g(y)

)2
f(x− y)g(y)

k(x)
dy dx =∫

IR

kr−1(x)

[
a2
∫
IR

(f ′(x− y))2

f(x− y)
g(y) dy + b2

∫
IR

(g′(y))2

g(y)
f(x− y) dy

]
dx+

2ab

∫
IR

kr−1(x)

∫
IR

f ′(x− y)g′(y) dy dx.

On the other hand, ∫
IR

f ′(x− y)g′(y) dy = k′′(x),
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so that ∫
IR

kr−1(x)

∫
IR

f ′(x− y)g′(y) dy dx =∫
IR

kr−1(x)k′′(x) dx = −(r − 1)

∫
IR

kr−2(x)(k′(x))2 dx.

This concludes the proof of the lemma. The cases of equality are easily found
resorting to the following argument. Equality follows if, after application of
Jensen’s inequality, there is equality in (35). On the other hand, for any convex
function ϕ and unit measure dµ on the set Ω, equality in Jensen’s inequality

ϕ(

∫
Ω

f dµ) ≤
∫
Ω

ϕ(f) dµ

holds true if and only if f is constant, so that

f =

∫
Ω

f dµ.

In our case, this means that there is equality if and only if the function

a
f ′(x− y)

f(x− y)
+ b

g′(y)

g(y)

does not depend on y. If this is the case, taking the derivative with respect to
y, and using the identity

d

dy

(
f ′(x− y)

f(x− y)

)
= − d

dx

(
f ′(x− y)

f(x− y)

)
,

we conclude that f and g have to satisfy

a
d2

dx2
log f(x− y) = b

d2

dy2
log g(y). (36)

Note that (36) can be verified if and only if the functions on both sides are
constant. Thus, there is equality if and only if

log f(x) = b1x
2 + c1x+ d1, log g(x) = b2x

2 + c2x+ d2. (37)

By coupling (37) with (36), we obtain that there is equality in (34) if and only
if f and g are gaussian densities, of variances ca and cb, respectively, for any
given positive constant c.

The case r = 1 has been treated in Blachman [6], as part of his proof of
the entropy power inequality (5). In this case

I(f) =

∫
IR

(f ′(x))2

f(x)
dx (38)

denotes the Fisher information of the probability density f , and inequality
(34) becomes

(a+ b)2I(f ∗ g) ≤ a2I(f) + b2I(g).
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We remark that the validity of (34) is not restricted to probability density
functions. Indeed, it continues to hold for nonnegative functions of any given
mass.

Let us apply the result of Lemma 3 to control the sign of the right-hand
side in formula (31). If we choose a2 = αp/p′, b2 = βq/q′ in (34), then the
coefficient of the term on the left-hand side of inequality (34) assumes the
value

a2 + b2 + 2abr = α
p

p′
+ β

q

q′
+ 2
√
αβ

√
pq

p′q′
r.

Let us introduce, for any given r > 1 the function

Γ (α, β) = (α+ β)(r − 1)−
(
α
p

p′
+ β

q

q′
+ 2
√
αβ

√
pq

p′q′
r

)
. (39)

It is clear that, as soon as for some values of α, β the function Γ (α, β) ≤ 0, the
expression on the right-hand side of (31) is nonnegative, and the functional
Ψu,v(t) is increasing. In order to check its sign, consider that the function Γ is
jointly convex, and it is such that, for any positive constant c

Γ (cα, cβ) = cΓ (α, β).

Therefore, if a point (α = α0, β = β0) is an extremal point, also the point
(cα0, cβ0) is an extremal point, and Γ admits the half-line β0α = α0β of
extremals. Since

∂Γ

∂α
= r − 1− p

p′
−
√
α

β

√
pq

p′q′
r,

by adding and subtracting the quantity pr/q′ we obtain

∂Γ

∂α
= r +

p

q′
r − 1− p

p′
−
√
α

β

√
pq

p′q′
r +

p

q′
r =

pr

(
1

p
− 1

q′

)
− p

(
1

p
+

1

p′

)
−
√
α

β

√
pq

p′q′
r +

p

q′
r.

Since
1

p
− 1

q′
=

1

q
− 1

p′
=

1

r
, (40)

one obtains
∂Γ

∂α
= −

√
α

β

√
pq

p′q′
r +

p

q′
r = 0

if the point (α, β) belong to the half-line

β =
p

q′
· p
′

q
α. (41)

Same result is obtained if we impose the vanishing of the partial derivative of
Γ with respect to β. On the other hand, thanks to identity (40)

Γ

(
q′

p
,
p′

q

)
=

(
q′

p
+
p′

q

)
(r − 1)− q′

p′
− p′

q′
− 2r =
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q′r

(
1

p
− 1

q′

)
+ p′r

(
1

q
− 1

p′

)
− q′ − p′ = 0.

Hence, along the line (41), in view of lemma 3 the functional Φu,v(t) is increas-
ing with respect to t. Proceeding as in Section 2, namely by scaling u(x, t) and
v(x, t) as in (17), we conclude that the functional will keep its maximum value
as time goes to infinity, and

lim
t→∞

Φu,v(t) =

(∫
IR

u(x) dx

)1/p(∫
IR

v(x) dx

)1/q

C(p, q, r), (42)

where

C(p, q, r) =

(∫
IR

(
Mq′/p(x)1/p ∗Mp′/q(x)1/q

)r
dx.

)1/r

. (43)

Using that the convolution of Gaussian functions is a Gaussian function, Mα ∗
Mβ = Mα+β , we compute(∫

IR

(
M1/p
α ∗M1/q

β

)r
dx.

)1/r

=

[
pα

α1/p

qβ

β1/q

(pα+ qβ)1/r

r1/r(pα+ qβ)

]1/2
.

The choice α = q′/p, β = p′/q gives

C(p, q, r) = (ApAqAr′)
1/2

,

where Am is defined by (2). This concludes the proof of the first part of
Theorem 2.

The case in which 1/p+ 1/q = 1 + 1/r, but 0 < p, q, r < 1 can be treated
likewise. In this case the dual exponents p′, q′, r′ are negative, and formula
(31) takes the form

1

r

d

dt

∫
IR

hr(t) dx = −
[
−(α+ β)(1− r)

∫
IR

hr−2(t) (hx(t))
2
dx+

αp

|p′|

∫
IR

hr−1(t)A(u1/p, v1/q)(t) dx+
βq

|q′|

∫
IR

hr−1(t)B(u1/p, v1/q)(t) dx

]
(44)

To control the sign of the quantity into square brackets, we introduce now the
function

Γ̃ (α, β) = (α+ β)(1− r)−
(
α
p

|p′|
+ β

q

|q′|
+ 2
√
αβ

√
pq

|p′||q′|
r

)
. (45)

In this case
∂Γ

∂α
= 1− r +

p

p′
+

√
α

β

√
pq

|p′||q′|
r.

By adding and subtracting the quantity pr/q′ we obtain as before

∂Γ

∂α
=

√
α

β

√
pq

|p′||q′|
r +

p

q′
r = 0
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if the point (α, β) belong to the half-line

β =
p

|q′|
· |p
′|
q
α. (46)

This choice however implies that the right-hand side in (44) is non positive, and
the functional Ψu,v(t) decreases. This leads to the reverse Young’s inequality
(3).

4 Conclusions

In this paper we presented a new proof of the sharp form of Young’s inequality
for convolutions, as well as and its reverse form. For the sake of simplicity,
this proof has been done in dimension n = 1. Looking at the details of the
computations, it appears evident that the proof still holds in dimension n >
1, since the computations in higher dimension do not affect the constants
in formulas (31) and (34), which are at the basis of the whole procedure.
The main difference relays in the fact that the Gaussian functions are n-
dimensional Gaussians, which lead to the additional presence of the exponent
n in the sharp constant. Hence Theorem 2 leads to the sharp inequality (1) in
any dimension, without any additional (if not computational) difficulty. Also,
both Young’s inequality and its reverse form are here derived by a unique
well understandable physical principle, in the form of time monotonicity of a
Lyapunov functional.
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