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1 Introduction
In his famous papers on the mathematical theory of communication [77], considered
a foundation of modern information theory, Shannon introduced the entropy power
inequality. This inequality is very easy to describe. The main concept in it is the
notion of entropy.

Given a random vector X in Rd, d ≥ 1 with probability density f(x), let

H(X) = H(f) = −
∫
Rd
f(x) log f(x) dx (1.1)

denote its entropy functional (or Shannon’s entropy). The entropy power is then
defined by

N(X) = N(f) = exp

(
2

d
H(X)

)
. (1.2)

The entropy power is built to be linear at Gaussian random vectors. Indeed, let
Zσ = N (0, σId) denote the d-dimensional Gaussian random vector having mean
vector 0 and covariance matrix σId, where Id is the identity matrix. The probability
density of Zσ equals

Mσ(x) =
1

(2πσ)d/2
exp

(
−|x|

2

2σ

)
, (1.3)

and N(Zσ) = 2πeσ.
Shannon’s entropy power inequality (EPI) gives a lower bound on the entropy

power of the sum of two independent random variables X, Y in Rd with densities

N(X + Y ) ≥ N(X) +N(Y ), (1.4)

with equality if and only X and Y are Gaussian random vectors with proportional
covariance matrices.

In [77], Shannon gave a semi-formal proof of (1.4), using a variational argument
(cf [77], Appendix 6). The first rigorous proof of (1.4) was obtained ten years later
by Stam [78] in one dimension. Then, Stam’s proof was simplified and extended to
dimension d > 1 by Blachman. It was 1965, and many other proofs and extensions
followed [40, 55, 56, 75, 84, 92].

In 1985 Costa [40] proposed a stronger version of EPI (1.4), valid for the case in
which Y = Zt, a Gaussian random vector independent of X. In this case

N(X + Zt) ≥ (1− t)N(X) + tN(X + Z1), 0 ≤ t ≤ 1 (1.5)

or, equivalently, N(X + Zt), is concave in t, i.e.

d2

dt2
N(X + Zt) ≤ 0. (1.6)
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Note that equality to zero in (1.6) holds if and only if X is a Gaussian random
variable, X = N(0, σId). In this case, considering that Zσ and Zt are independent
each other, and Gaussian densities are stable under convolution, N(Zσ + Zt) =
N(Zσ+t) = σ + t, which implies

d2

dt2
N(Zσ + Zt) = 0. (1.7)

The novelty in Stam’s proof [78] was to use the heat equation and its solution to
connect Shannon entropy (1.1) with Fisher information. For a given random vector
X in Rd with a smooth density f(x), its Fisher information is defined as

I(X) = I(f) =

∫
{f>0}

|∇f(x)|2

f(x)
dx. (1.8)

The main reason is that Fisher information, which is of quadratic nature, is more
treatable to give bounds on I(X+Y ), where X and Y are independent random vec-
tors. Indeed, a reasonably simple and direct proof allows to prove Blachman–Stam
inequality [20, 46, 78]. This inequality takes the name exactly from the original
papers in which Stam and Blachman gave a rigorous proof of entropy power in-
equality. It gives a lower bound on the reciprocal of Fisher information of the sum
of independent random vectors with (smooth) densities

1

I(X + Y )
≥ 1

I(X)
+

1

I(Y )
, (1.9)

still with equality if and only X and Y are Gaussian random vectors with propor-
tional covariance matrices.

Hence, the heat equation started to be used as a powerful instrument to obtain
mathematical inequalities in sharp form in the years between the late fifties to mid
sixties. In addition to the pioneering paper by Stam [78], an interesting application
of this idea can be found in a paper by Linnik [63]. Stam [78] was motivated by the
finding of a rigorous proof of Shannon’s entropy power inequality [77], while Linnik
[63] used the information measures of Shannon and Fisher in a proof of the central
limit theorem of probability theory. However, at the same time in which Blachman
[20] presented his proof, still by resorting massively to properties of the linear diffu-
sion equation, similar computations were presented by McKean [69], in connection
with the problem of convergence to equilibrium for Kac’s caricature of a Maxwell
gas. Motivated by proving that for some kinetic system the subsequent derivatives
of entropy alternate in sign, he evaluated these derivatives in correspondence to the
one-dimensional solution of the heat equation up to the third one, by obtaining sharp
inequalities between the second and the first derivative (the Fisher information). It
is now clear that these results were very close to obtain the logarithmic Sobolev
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inequality, proven by Gross ten years later [53], and to show the concavity property
of entropy power, proven by Costa twenty years later [40]. Indeed, McKean ideas
have been used by Villani to give an alternative proof of the concavity property [91],
and by the present author to obtain an improved version of the logarithmic Sobolev
inequality [82].

The huge potentialities of the use of the heat equation to prove inequalities have
been rediscovered in more recent times by Carlen, Lieb and Loss [29], that first
introduced a Lyapunov functional of solutions to the heat equation which allows to
prove Young’s inequality and its converse for functions of one variable. Later on,
Bennett Carbery Christ and Tao [18] were able to extend the result in [29] to general
functions. Other very closely-related works can be found in papers of Bennett and
Bez [16], Borell [27], Barthe and Cordero-Erausquin [11] and Barthe-Huet [12]. In
particular, Young’s inequality and its converse have been proven by Bennett and
Bez [16] by showing that a suitable functional of the convolution of powers to the
solution to the heat the heat equation exhibits monotonicity properties.

As often happens, however, the seminal ideas of Stam [20, 78] remained confined
within the framework of information theory, where, however, functional inequalities
gained a lot of interest, in reason of their connections with properties of Shannon’s
and Rényi’s entropies [47]. A notable exception to this confinement is a recent
paper by Gardner [52], that clarifies the relationship between the Brunn-Minkowski
inequality and other inequalities in geometry and analysis. In [52], clear connections
between the entropy power inequality of information theory and Young’s inequality
and others are described in details, together with an exhaustive list of references.

As far as the classical Young’s inequality is concerned, the original proof of the
sharp form is due to Beckner [14] and Brascamp and Lieb [28]. In [28] Brascamp
and Lieb also proved the sharp form of Young inequality also in the so-called reverse
case. A different proof of this sharp reverse Young inequality was subsequently done
by Barthe [10]. In their recent paper, Young’s inequality has been seen in a different
light by Bennett and Bez [16] (cf. also [15, 18, 29]). In this paper, Young’s inequality
is derived by looking at the monotonicity properties of a suitable functional of the
convolution of powers to the solution to the heat equation. In this respect, the
arguments of [16] are close to the ones presented in systematic form in [84].

The connections of the sharp form of Young’s inequality with the Prékopa–
Leindler inequality has been enlightened by Brascamp and Lieb [28]. Then, the
connection of Young’s inequality with Shannon’s entropy power inequality has been
noticed by Lieb [61].

Most proofs in these papers are based on properties of the solution to the heat
equation. Indeed, it is now clear that diffusion equations, linear and nonlinear,
constitute a useful tool to obtain inequalities in sharp form [84, 49]. In these notes,
we aim in giving a self-contained presentation of this topic.
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2 Learning from kinetic theory

2.1 The radiative transfer and Jensen’s inequality

The Boltzmann equation is the most famous kinetic model, both due to its important
current applications, and for historical reasons. For this model, Boltzmann [26]
proved his celebrated H-theorem about the increase of entropy, which represented
the first analytical proof ever of the second principle of thermodynamics. In reason
of binary collisions between molecules, the gas density is shown to relax towards
the Maxwellian equilibrium, a Gaussian density of type (1.3). Equilibria are indeed
important in kinetic theory, as the following example shows.

Consider the radiative transfer equation [36, 34]. In the three-dimensional phys-
ical space it reads(

∂f

∂t
+ v · ∇xf

)
(x, v, t) = σ

(∫
Ω

f(x,w, t) dw −m(Ω)f(x, v, t)

)
. (2.1)

The unknown is the non-negative specific radiation intensity f(x, v, t) which depends
on position x ∈ R3, velocity v ∈ Ω and time t ∈ R+. In general, Ω is a convex
subset of R3 of finite measure m(Ω). The right-hand of equation (2.1) describes the
relaxation process, which in this case is a linear operator. Dropping the dependence
on the spatial variable x, we can investigate the relaxation process, here driven by
the equation

∂f(v, t)

∂t
= σ

(∫
Ω

f(w, t) dw −m(Ω)f(v, t)

)
. (2.2)

Taking the integral over Ω on both sides of (2.2) shows that the mass of the solution
is preserved in time, ∫

Ω

f(w, t) dw =

∫
Ω

f0(w) dw, (2.3)

so that the relaxation operator can be equivalently written as

∂f(v, t)

∂t
= σ

(∫
Ω

f0(w) dw −m(Ω)f(v, t)

)
. (2.4)

Thanks to (2.4), it is then immediate to obtain the stationary solution, which ap-
pears to be the unique constant function in Ω of mass equal to the mass of the initial
distribution

f∞(v) =
1

m(Ω)

∫
Ω

f0(w) dw.

Equation (2.2) can be easily solved to give, for v ∈ Ω,

f(v, t) = f0(v)e−σ̄t +
(
1− e−σ̄t

) 1

m(Ω)

∫
Ω

f0(v) dv. (2.5)
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where we set
σ̄ = m(Ω)σ.

Formula (2.5) shows convergence of the solution towards the steady state as time
tends to infinity.

It is remarkable that the relaxation process produces the monotonicity of convex
functionals of the solution. Given a convex (smooth) function Φ, let HΦ(f) denote
the Lyapunov functional

HΦ(f) =

∫
Ω

Φ(f(v)) dv. (2.6)

To evaluate the time evolution of HΦ let us make use of the radiative transfer
equation (2.2). We obtain

dHφ(f(t))

dt
=

∫
Ω

Φ′(f(v, t))
∂f(v, t)

∂t
dv

= σ

∫
Ω

Φ′(f(v, t))

[∫
Ω

f(w, t) dw −m(Ω)f(v, t)

]
dv

= σ

∫
Ω

dw

∫
Ω

dv Φ′(f(v, t)) [f(w, t)− f(v, t)] = −IΦ(f(t)).

Exchanging v and w (respectively w and v) in the double integral, we can write IΦ

in the equivalent form

IΦ(f(t)) = σ

∫
Ω

dw

∫
Ω

dv Φ′(f(v, t)) [f(v, t)− f(w, t)]

= σ

∫
Ω

dv

∫
Ω

dw Φ′(f(w, t)) [f(w, t)− f(v, t)] .

Using both expressions for IΦ, we finally obtain

IΦ(f(t)) =
σ

2

∫
Ω

dw

∫
Ω

dv [Φ′(f(v, t))− Φ′(f(w, t))] [f(v, t)− f(w, t)] ≥ 0.

In fact, the integrand is non-negative as a consequence of the convexity of Φ. More-
over, IΦ(f(t)) = 0 if and only if f(v, t) is constant on Ω.

Since IΦ ≥ 0,
HΦ(f(t)) ≥ HΦ(f∞).

In particular,∫
Ω

Φ(f0(v)) dv ≥
∫

Ω

Φ(f∞(v)) dv =

∫
Ω

Φ

(
1

m(Ω)

∫
Ω

f0(w) dw

)
dv.
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Since f∞(v) is constant on Ω, while f0(v) is arbitrary, we proved that, given a convex
function Φ,

Φ

(
1

m(Ω)

∫
Ω

f0(w) dw

)
≤ 1

m(Ω)

∫
Ω

Φ(f0(v)) dv. (2.7)

The study of the time evolution of the Lyapunov functional (2.6) along the solution
to the radiative transfer equation gives a new physical interpretation of Jensen’s
inequality [50].

This property is crucial. While theoretical inequality have a universal validity,
some of them also present a physical nature, in that they are deeply linked to
some relaxation process. This is well understood in kinetic theory, where Shannon’s
entropy is linked to the Boltzmann and related kinetic equations [80, 81].

2.2 The BGK model and relative entropies

Our second example is concerned with the Bhatnagar-Gross-Krook (BGK) model
of gas dynamics, which is a simplified version of the Boltzmann equation [19]. The
initial value problem for the space homogeneous version describes relaxation of the
probability density f(x, t) with x ∈ Rd, towards the Gaussian density (1.3)

∂f(x, t)

∂t
= µ (Mσ(x)− f(x, t)) , (2.8)

where µ is a relaxation parameter. By fixing f(x, t = 0) = ϕ(x), where ϕ(x) is a
probability density with a certain number of moments bounded, it is immediate to
recover the solution to (2.8), which results to be a linear combination of the initial
and of the Gaussian densities

f(x, t) = ϕ(x)e−µt +Mσ(x)
(
1− e−µt

)
. (2.9)

Hence, in particular, f(x, t) is a probability density for all t ≥ 0. Rewriting (2.9) as

f(x, t)−Mσ(x) = (ϕ(x)−Mσ(x)) e−µt (2.10)

then shows convergence of the solution toMσ in all norms ‖·‖ such that the difference
‖ϕ−Mσ‖ is bounded.

Let Φ(r), r ≥ 0 be a convex function such that Φ′(1) = 0. Then, for any t > 0

d

dt

∫
Rd

Φ

(
f(x, t)

Mσ(x)

)
Mσ(x) dx =

∫
Rd

Φ′
(
f(x, t)

Mσ(x)

)
∂f(x, t)

∂t
dx =

µ

∫
Rd

Φ′
(
f(x, t)

Mσ(x)

)
(Mσ(x)− f(x, t)) dx =
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−µ
∫
Rd

[
Φ′
(
f(x, t)

Mσ(x)

)
− Φ′(1)

] (
f(x, t)

Mσ(x)
− 1

)
Mσ(x) dx ≤ 0.

Therefore the quantity
∫

Φ(f(t)/Mσ)Mσ is decreasing towards zero, which implies∫
Rd

Φ

(
ϕ(x)

Mσ(x)

)
Mσ(x) dx ≥ 0 (2.11)

Equation (2.8) is a particular case of a relaxation process towards a general proba-
bility density g(x) > 0, given by

∂f(x, t)

∂t
= µ (g(x)− f(x, t)) , (2.12)

with solution
f(x, t) = ϕ(x)e−µt + g(x)

(
1− e−µt

)
. (2.13)

Repeating step-by-step the previous reasoning, one concludes with the inequality∫
Rd

Φ

(
f(x)

g(x)

)
g(x) dx ≥ 0, (2.14)

valid for any pair of probability densities, and convex function Φ satisfying Φ′(1) = 0.
The quantity in (2.14) is usually known with the name of relative Φ-entropy [1]. The
choice Φ(r) = r log r − r + 1 gives rise to the relative Shannon’s entropy

H(f |g) =

∫
Rd
f(x) log

f(x)

g(x)
dx. (2.15)

Let g = Mσ. Then, if
∫
|x|2f(x) ≤

∫
|x|2Mσ one has∫

Rd
f(x) logMσ dx = −d

2
log 2πσ

∫
Rd
f(x) dx− 1

2σ

∫
Rd
|x|2f(x) dx ≥

−d
2

log 2πσ

∫
Rd
Mσ(x) dx− 1

2σ

∫
Rd
|x|2Mσ(x) dx.

Under this condition

0 ≤ H(f |Mσ) =

∫
Rd
f(x) log f(x) dx−

∫
Rd
f(x) logMσ(x) dx ≤∫

Rd
f(x) log f(x) dx−

∫
Rd
Mσ(x) logMσ(x) dx,

or, what is the same
H(f) ≤ H(Mσ) (2.16)

whenever ∫
Rd
|x|2f(x) dx ≤

∫
Rd
|x|2Mσ(x) dx.

This result is known under the name of Gibbs lemma. We will be back on this result
later on Section 5.2.1.
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2.3 Fokker-Planck equation and Gaussian densities

The Fokker-Planck equation is a partial differential equation describing the time
evolution of a density function f(v, t), where v ∈ Rd, d ≥ 1 and t ≥ 0, departing
from a nonnegative initial density ϕ(v). The standard assumptions on ϕ(v) is that
it possesses finite mass ρ, mean velocity u and temperature θ, where for any given
density g(v)

ρ =

∫
Rd
g(v) dv (2.17)

is the mass density,

u =
1

ρ

∫
Rd
vg(v) dv (2.18)

is the mean velocity, and θ is the temperature defined by

θ =
1

nρ

∫
Rd
|v − u|2g(v) dv. (2.19)

The Fokker-Planck equation appears in many different contexts. It was originally
derived for the distribution function of a Brownian particle in a fluid [35], and is
applicable in a more general form to a plasma [37]. In normal form, the Fokker-
Planck equation reads

∂f

∂t
= JFP (f)(v, t) = σ∆f(v, t) +∇ · (vf(v, t)). (2.20)

The Fokker-Planck operator JFP has the usual conservation property of mass, and∫
logfJFP (f) dv < 0, which guarantees the increasing in time of Shannon’s entropy

(1.1). If the initial condition ϕ(v) is a probability density, the equilibrium solution is
the Maxwellian density (1.3). Indeed, the stationary solution (of mass 1) of equation
(2.20) satisfies the equation in divergence form

JFP (f)(v) = ∇ · (σ∇f(v) + vf(v)) = 0.

Since
σ∇f(v) + vf(v) = f(v)∇

(
σ log f(v)− |v|

2

2

)
,

on the set f(v) > 0

log f(v)− |v|
2

2σ
= 0,

which implies f(v) = cMσ(v), with c constant. Then c = 1 fixes the mass equal to
one.

Given a probability density h(x), x ∈ Rd, we define its Fourier transform f̂(ξ),
ξ ∈ Rd by

ĥ(ξ) =

∫
Rd
e−i ξ·xh(x) dx.
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In terms of Fourier transform, the Fokker-Planck equation reads

∂f̂

∂t
= ĴFP (f̂)(ξ, t) = −σ|ξ|2f̂(ξ, t)− ξ · ∇f̂(ξ, t). (2.21)

Thus the Fourier transform of the stationary solution (of mass 1) of equation (2.21)
satisfies

ĴFP (f̂)(ξ) = −σ|ξ|2f̂(ξ)− ξ · ∇f̂(ξ) = 0,

Since
σ|ξ|2f̂(ξ) + ξ · ∇f̂(ξ) = f̂(ξ) ξ ·

(
σξ +∇ log |f̂(ξ)|

)
,

on the set ξ f̂(ξ) 6= 0

log |f̂(ξ)| − σ|ξ|2

2
= 0,

which implies, by fixing the mass of f(v) equal to one

f̂(ξ) = M̂σ(ξ) = exp

{
−σ |ξ|

2

2

}
. (2.22)

Hence, by means of the study of the stationary solution of the Fokker–Planck equa-
tion, we can conclude that the Gaussian density (1.3) has an explicit Fourier trans-
form, given by (2.22).

3 Some facts about the linear diffusion equation

3.1 Scaling and convergence

We begin by recalling some properties of the solution to the heat equation in Rd,
d ≥ 1

∂u(x, t)

∂t
= κ∆u(x, t), (3.1)

where κ > 0 is the (constant) diffusion coefficient. In the rest of the paper, for
the sake of simplicity we will assume that the initial datum is a probability density
function f(x), so that f(x) ≥ 0, and∫

Rd
f(x) dx = 1. (3.2)

This assumption will not affect the generality of the results that follow. The solution
to equation (3.1) is given by the function u(x, t) = f ∗M2κt(x), convolution of the
initial datum with the fundamental solution M2κt, where Mσ(x), for σ > 0, denotes
the Gaussian density in Rd of mean 0 and variance dσ

13



The easiest way to recover the solution to the initial value problem for equation
(3.1) is to resort to Fourier transform. In fact, by passing to Fourier transform in
(3.1) we obtain

∂û(ξ, t)

∂t
= −κ|ξ|2û(ξ, t), (3.3)

that can be easily integrated by separation of variables to give, for every t ≥ 0

û(ξ, t) = f̂(ξ) exp{−κ|ξ|2t}. (3.4)

Hence, owing to the result of Section 2.3, the Fourier transform of the solution is
found to coincide with the product of the Fourier transforms of the initial datum
f̂ and the the Fourier transform M̂2κt of the Gaussian density (1.3) of mean zero
and variance 2κdt, usually known as fundamental or source-type solution, namely
the convolution product specified above. Hence, in terms of random vectors, the
solution u(x, t) to the heat equation (3.1) coincides with the density function of the
sum of two independent random vectors X + Z2κt, where X has density f(x) and
Z2κt is the Gaussian random vector with density given by (1.3), with σ = 2κt.

It is important to remark that formula (3.4) admits a simple generalization.
Even if somewhat unusual, we will briefly introduce it, since it is closely related to
the original proof of the entropy power inequality given by Stam [78]. Consider the
heat equation (3.1) with a time-dependent diffusion coefficient κ(t) = µ′(t), where
µ(t) is an increasing function such that µ(0) = 0 (the classical case corresponds to
µ(t) = κt). Then, equation (3.3) can be integrated as well by separation of variables,
and the corresponding solution is

û(ξ, t) = f̂(ξ) exp{−µ(t)|ξ|2}. (3.5)

Hence, in terms of random vectors, the solution u(x, t) to the heat equation (3.1)
with a time-dependent coefficient of diffusion κ(t) = µ′(t), where µ(t) is increasing
from µ(0) = 0, coincides with the density function of the sum of two independent
random vectors X + Z2µ(t), where X has density f(x) and Z2µ(t) is the Gaussian
random vector with density given by (1.3), with σ = 2µ(t). We do not insist more
on this standard result.

Maybe not so well-known is that we can make use of formula (3.4) to control the
large–time behaviour of the solution to equation (3.1) in various norms. To this aim,
let us consider a family of metrics that has been introduced in the paper [51] to study
the trend to equilibrium of solutions to the space homogeneous Boltzmann equation
for Maxwell molecules, and subsequently applied to a variety of problems related
to kinetic models of Maxwell type. For a more detailed description, we address the
interested reader to the lecture notes [33].

Given s > 0 and two random vectors X1, X2 in Rd with probability distributions
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f1 and f2, their Fourier based distance ds(X1, X2) is given by the quantity

ds(X1, X2) = ds(f1, f2) := sup
ξ∈Rd

∣∣∣f̂1(ξ)− f̂2(ξ)
∣∣∣

|ξ|s
.

The distance is finite, provided that X1 and X2 have the same moments up to order
[s], where, if s /∈ N, [s] denotes the entire part of s, or up to order s − 1 if s ∈ N.
Moreover ds is an ideal metric. Its main properties are the following

1. Let X1, X2, X3, with X3 independent of the pair X1, X2 be random vectors
with probability distributions f1, f2, f3. Then

ds(X1 +X3, X2 +X3) = ds(f1 ∗ f3, f2 ∗ f3) ≤ ds(f1, f2) = ds(X1, X2);

2. Define for a given nonnegative constant a the mass-preserving dilation in Rd

fa(x) =
1

ad
f
( v
a

)
. (3.6)

Then, given two random vectors X1, X2 with probability distributions f1 and
f2, for any nonnegative constant a

ds(aX1, aX2) = ds(f1,a, f2,a) ≤ as ds(f1, f2) = as ds(X1, X2).

Dilations of functions will be considered often in this work. In particular, the prop-
erty of invariance under dilation will be essential in the proof of many results. The
following definition clarifies this concept.

Definition 1. For a given probability density f(x), x ∈ Rd, let G(f) denote a
functional acting on f . We will say that G is invariant under dilation if, for any
positive constant a

G(fa) = G(f), (3.7)

where fa is defined as in (3.6).

Define, for t > 0

U(x, t) =
(√

1 + 2κt
)d

u(x
√

1 + 2κt, t). (3.8)

Then, U(x, t) is a mass-preserving time-dependent dilation of the solution u(x, t),
so that ∫

Rd
U(x, t) dx =

∫
Rd
u(x, t) dx = 1. (3.9)
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Then formula (3.4) implies that, for all t ≥ 0

Û(ξ, t) = û

(
ξ√

1 + 2κt
, t

)
= f̂

(
ξ√

1 + 2κt

)
exp

{
−|ξ|

2

2

2κt

1 + 2κt

}
. (3.10)

On the other hand, if M(x) = M1(x) denotes the Gaussian density defined in (1.3)
corresponding to σ = 1, for each t > 0 we have the identity

M̂(ξ) = exp

{
−|ξ|

2

2

}
= M̂

(
ξ√

1 + 2κt

)
exp

{
−|ξ|

2

2

2κt

1 + 2κt

}
. (3.11)

Therefore

|Û(ξ, t)− M̂(ξ)| =
∣∣∣∣f̂ ( ξ√

1 + 2κt

)
− M̂

(
ξ√

1 + 2κt

)∣∣∣∣ exp

{
−|ξ|

2

2

2κt

1 + 2κt

}
.

Let us suppose now that the distance ds(f,M) between the initial datum and the
Gaussian M is bounded for some s > 0. We remark that the distance is certainly
bounded for s ≤ 1 since both f and M are probability densities. In this case, for
any positive constant a and for any ξ 6= 0, property 2 of the Fourier based distance
implies

∣∣∣f̂ (aξ)− M̂ (aξ)
∣∣∣ =

∣∣∣f̂ (aξ)− M̂ (aξ)
∣∣∣

|ξ|s
· |ξ|s ≤ ds(f,M) as|ξ|s. (3.12)

If now a = 1/
√

1 + 2κt we obtain the bound

|Û(ξ, t)− M̂(ξ)| ≤
(

1√
1 + 2κt

)s
ds(f,M) |ξ|s exp

{
−|ξ|

2

2

2κt

1 + 2κt

}
. (3.13)

The bound (3.13) can be directly applied to evaluate convergence of U(x, t) toM(x)
as t → ∞ in various norms. As main example, let us consider the L2 norm. In
Fourier variables, for any given t > 0∫

Rd
|Û(ξ, t)− M̂(ξ)|2 dξ ≤ ds(f,M)2

∫
Rd

(
|ξ|√

1 + 2κt

)2s

exp

{
−|ξ|2 2κt

1 + 2κt

}
dξ =(

1

2κt

)s(
1 + 2κt

2κt

)n/2
ds(f,M)2

∫
Rd
|η|2s exp

{
−|η|2

}
dη.

(3.14)
Thus, since the integral

z(s) =

∫
Rd
|η|2s exp

{
−|η|2

}
dη (3.15)
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is finite for eaxch s > 0, we have convergence of U(x, t) to M(x) in L2(Rd) at the
rate 1/ts. Note that the same bound holds true (with a different constant) if we are
looking for a bound, by formula (3.13), of the quantity∫

Rd
|ξ|2p|Û(ξ, t)− M̂(ξ)|2 dξ.

In conclusion we prove

Proposition 2. Let the initial datum f for the heat equation (3.1) be a probability
density such that, for some s ≥ 1 the Fourier based distance ds(f,M) is finite. Then,
there is convergence of the scaled solution U(x, t) defined by (7.36) to the Gaussian
M(x) at the rate Cs,p/ts in any Sobolev space Hp, with p ≥ 0. The constant Cs,p
depends on ds(f,M), κ and z(s+ p).

Remark 3. It is remarkable that the rate of convergence in any Sobolev space Hp,
with p ≥ 0 depends only on the values of the moments of the initial datum f .
More moments of the initial datum coincide with moments of the same order of
the Gaussian density M , more rapid is convergence to equilibrium. Hence, the rate
of convergence does not depend on the regularity of the initial datum. This fact
has been noticed in [54], in connection with the central limit theorem of probability
theory (cf. also [13] for recent results and references).

A second important remark is concerned with a particular property of the fun-
damental solutions to the heat equation (3.1). Since the fundamental solutions are
Gaussian probability densities, they are closed under the operation of convolution
[59], namely

Mσ1 ∗Mσ2(x) = Mσ1+σ2(x).

Hence, if we consider at time t > 0 the convolution of n powers of the fundamental
solutions of heat equations with diffusion coefficients κj, j = 1, 2, . . . , n, we obtain

Mα1
2κ1t
∗Mα2

2κ2t
∗ · · · ∗Mαn

2κnt =

n∏
j=1

(4πκjt)
−αjd/2

(
4π
κj
αj
t

)d/2
M2tκ1/α1 ∗M2tκ2/α2 ∗ · · · ∗M2tκn/αn =

n∏
j=1

(4πκjt)
−αjd/2

(
4π
κj
αj
t

)d/2
M2Σt,

where

Σ =
n∑
j=1

κj
αj
.
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In the expression above the time-dependent quantity in front of the exponential is
given by

φ(t) = t−
d
2

∑n
j=1 αj+

1
2

(n−1).

Therefore, if the exponents αj are such that

n∑
j=1

αj = n− 1, (3.16)

independently of the values of the diffusion coefficients κj, φ(t) = 1, and

Mα1
2κ1t
∗Mα2

2κ2t
∗ · · · ∗Mαn

2κnt = Σ1 exp
{
−|x|2/4Σt

}
,

where Σ1 denotes the constant

Σ1 =

(
κj
αj

)n/2
Σ−d/2

n∏
j=1

(κj)
−αjd/2 .

Consequently, independently of the values of the diffusion coefficients κj, if the
exponents αj satisfy condition (3.16), for every x ∈ Rd

d

dt
Mα1

2κ1t
∗Mα2

2κ2t
∗ · · · ∗Mαn

2κnt ≥ 0. (3.17)

This property is obviously restricted to a set of positive constants αj satisfying (6.1).
Note moreover that for a single fundamental solution condition (6.1) implies α1 = 0,
so that property (3.17) becomes trivial.

Let us finally recall the evolution equation for a power of the solution to the heat
equation. If α > 0 is a positive constant, and u(x, t) solves (3.1), then uα(x, t) solves

∂uα(x, t)

∂t
= κ

[
∆uα(x, t) + α(1− α)uα(x, t)|∇ log u(x, t)|2

]
. (3.18)

Equation (3.18) is particularly adapted to work with convolutions of powers. Note
that equation (3.18) connects in a natural way dual exponents. In fact, if α = 1/p,
with p > 1, equation (3.18) takes the form

∂u1/p(x, t)

∂t
= κ

[
∆u1/p(x, t) +

1

pp′
u1/p(x, t)|∇ log u(x, t)|2

]
,

where 1/p+ 1/p′ = 1.
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3.2 Convex and other functionals

Let f(x) be a probability density on Rd, and let u(x, t) = f ∗M2κt be the solution to
the heat equation (3.1). Let Φ(r) be a convex function, and let G denote the convex
functional

G(f) =

∫
Rd

Φ(f(x)) dx. (3.19)

Then, since Mσ, σ > 0, is a probability density function, Jensen’s inequality implies

Φ(f ∗Mσ)(x) = Φ

(∫
Rd
f(x− y)Mσ(y) dy

)
≤
∫
Rd

Φ(f(x− y))Mσ(y) dy,

so that

G(f ∗Mσ) =

∫
Rd

Φ(f ∗Mσ)(x) dx ≤
∫
Rd

Φ(f)(x) dx = G(f). (3.20)

Owing to the same argument, we obtain that G(f ∗Mσ) ≤ G(Mσ). Moreover, since
for δ < σ Mσ = Mδ ∗Mσ−δ, G(u(x, t)) is a decreasing function of t.

Shannon’s entropy is obtained by choosing Φ(r) = −r log r, which is concave.
Therefore, Shannon’s entropy is increasing along the solution to the heat equation.
In addition, since H(Mσ) = n

2
log(2πσe), at time t

H(u(t)) ≥ H(M2κt) =
n

2
log(4πκte).

This shows that H(u(t)) diverges with time.
The precise growth of Shannon’s entropy along the solution to the heat equation

is given by the so-called DeBruijn’s identity [69, 42]).

d

dt
H(u(t)) = κI(u(t)) = κ

∫
{u(t)>0}

|∇u(x, t)|2

u(x, t)
dx > 0. (3.21)

In (3.21) I(u(t)) defines as usual the Fisher information of the probability density
u(x, t). The proof of equality (3.21) is left as exercise. It follows simply integrating
by parts, and using the smoothness of the solution of the heat equation. Details can
be found in [69, 80].

Also, Fisher information I(u(t)) is decreasing in time. Let us prove it for d = 1.
Indeed, for any given σ > 0 Cauchy–Schwarz inequality implies∫

R
f ′(x− y)Mσ(y) dy ≤

[∫
R

f ′(x− y)2

f(x− y)
Mσ(y) dy

]1/2 [∫
R
f(x− y)Mσ(y) dy

]1/2

.

Hence
1

u(x, t)

(
∂u(x, t)

∂x

)2

≤
∫
R

f ′(x− y)2

f(x− y)
M2κt(y) dy,
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and integration over R leads at once to I(u(t)) ≤ I(f). Using once more that for
δ < σ Mσ = Mδ ∗Mσ−δ, we conclude that I(u(x, t)) is a decreasing function of t.
Exchanging the roles of f and Mσ we also have that I(u(t)) ≤ I(Mσ). The same
properties hold in dimension d > 1. The precise decay of Fisher information can be
evaluated as well. We will postpone it to Section 5.2.

3.3 Two examples

3.3.1 Maximizing entropy under constraints

An example will clarify the importance of functionals which are invariant under
dilation invariance to get inequalities. Given a solution to the heat equation (3.1),
with initial datum the probability density f(x) with finite Shannon’s entropy, we
showed in Section 3.2 that the time derivative of its Shannon’s entropy H(u(t)) is
non-negative and it converges to infinity as time goes to infinity. This time behavior
is consequence of the fact that Shannon’s entropy is a functional that is not dilation
invariant

H(ua) = H(u)− d log a. (3.22)

It is easily checked that the second moment of a probability density function scales
according to

E(ua) =

∫
Rd
|x|2ua(x) dx =

1

a2
E(u). (3.23)

Hence, if the initial probability density in the heat equation has bounded second
moment, a dilation invariant functional of u(x, t) is obtained by coupling Shannon’s
entropy of u(x, t) with the logarithm of the second moment of u(x, t)

Γ(t) = Γ(u(t)) = H(u(t))− d

2
logE(u(t)). (3.24)

Following [84], let us compute the time derivative of Γ(t). We obtain

d

dt
Γ(t) = κ

(
I(u(t))− d2

E(u(t))

)
, (3.25)

which is a direct consequence of DeBruijn’s identity (3.21), and of the time evolution
of the second moment of the solution to the heat equation,

d

dt
E(u(t)) =

d

dt

∫
Rd
|x|2u(x, t) dx = 2κd

∫
Rd
u(x, t) dx = 2κd.

The right-hand side of (3.25) is nonnegative. This can be easily shown by an argu-
ment which is often used in this type of proofs, and goes back probably to Mckean
[69]. It holds

0 ≤
∫
Rd

∣∣∣∣∇u(x, t)

u(x, t)
+ x

d

E(u(x, t))

∣∣∣∣2 u(x, t) dx =
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I(u(t)) +
d2

E(u(t))2

∫
Rd
|x|2u(x, t) dx+ 2

d

E(u(t))

∫
Rd
x · ∇u(x, t) dx =

I(u(t)) +
d2

E(u(t))
− 2

d2

E(u(t))
= I(u(t))− d2

E(u(t))
. (3.26)

Note that, since u(x, t) is the (smooth) solution to the heat equation (3.1), equality
to zero in (3.26) holds if and only if

∇u(x)

u(x)
+ x

d

E(u(x))
= 0

for all x ∈ Rd. This condition can be rewritten as

∇
(

log u(x) +
d

E(u(x))

x2

2

)
= 0 (3.27)

which identifies the probability density u(x, t) as a Gaussian density in Rd. By (8.17),
this also shows that, among all densities with finite variance, Fisher’s information
takes its minimum value in correspondence to the Gaussian density (1.3), where
σ = E(u)/d.

Thus, unless the initial value f is a Gaussian density, the functional Γ(t) is
monotone increasing, and it will reach its (eventual) maximum value as time t→∞.
The computation of the limit value uses in a substantial way the dilation invariance
of Γ. In fact, at each time t > 0, the value of Γ(t) does not change if we substitute
u(x, t) with U(x, t) defined by (7.36).

Thanks to Proposition 2,

lim
t→∞

U(x, t) = M(x)

in any Sobolev space Hp(Rd). Therefore, passing to the limit one obtains

Γ(0) = H(f)− d

2
logE(f) ≤ H(M)− d

2
logE(M) =

d

2
log

2πe

d
. (3.28)

This inequality holds for all probability density functions with bounded second mo-
ment, and does not require that the second moment of f equals the second moment
of the Gaussian density.

This relatively simple example contains the main ingredients we will use to obtain
inequalities in sharp form: monotonicity of a functional of solutions to the heat
equation coupled with the dilation invariance property.
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3.3.2 Hölder’s inequality revisited

We show now that Hölder’s inequality can be viewed as a consequence of the time
monotonicity of a suitable Lyapunov functional of the solution to the heat equation
[16, 29]. For the sake of simplicity, we will present the proof in dimension d = 1.
The corresponding higher-dimensional inequality can be deduced as well by making
use of standard properties of the Gaussian function.

Hölder’s inequality for integrals states that, if p, q > 1 are such that 1/p+1/q = 1∫
R
|f(x)g(x)| dx ≤

(∫
R
|f(x)|p dx

)1/p(∫
R
|g(x)|q dx

)1/q

. (3.29)

Moreover, there is equality in (3.29) if and only f and g are such that there exist
positive real numbers a and b such that afp(x) = bgq(x) almost everywhere. Hölder’s
inequality can be proven in many ways, for example resorting to Young’s inequality
for constants, which states that, if 1/p+ 1/q = 1

cd ≤ cp

p
+
dq

q
, (3.30)

for all nonnegative c and d, where equality is achieved if and only if cp = dq.
Without loss of generality, one can assume that the functions f, g in (3.29) are

nonnegative. A different way to achieve inequality (3.29) is contained into the
following

Theorem 4. Let Φ(u(t), v(t)) be the functional

Φ(t) = Φ(u(t), v(t)) =

∫
R
u(x, t)1/pv(x, t)1/q dx, (3.31)

where 1/p+1/q = 1, and u(x, t) and v(x, t), t > 0, are solutions to the heat equation
(3.1) corresponding to the initial values u(x) ∈ L1(R) (respectively v(x) ∈ L1(R)).
Then Φ(u(t), v(t)) is increasing in time from

Φ(u(t = 0), v(t = 0)) =

∫
R
u(x)1/pv(x)1/q dx,

to

lim
t→∞

Φ(u(t), v(t)) =

(∫
R
u(x) dx)

)1/p (∫
R
v(x) dx

)1/q

.

Proof. Without loss of generality, let us fix κ = 1 in equation (3.1). It is immediate
to verify that the functional Φ(u(t), v(t)) is invariant with respect to dilation (3.6)
(applied to both u and v with the same constant a). Moreover, the condition
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u(x), v(x) ∈ L1(R) is enough to ensure that Φ(u(t), v(t)) ∈ L1(R) at any time t ≥ 0.
Indeed, inequality (3.30) implies

u(x, t)1/pv(x, t)1/q ≤ 1

p
u(x, t) +

1

q
v(x, t),

where, since u(x, t) and v(x, t) are solution to the heat equation,∫
R
u(x, t) dx =

∫
R
u(x) dx,

∫
R
v(x, t) dx =

∫
R
v(x) dx.

Let us first proceed in a formal way. However, by resorting to the smoothness
properties of the solution to the heat equation, all mathematical details can be
rigorously justified.

Let us evaluate the time derivative of Φ(t). It holds

d

dt
Φ(t) =

∫
R

[
(u(x, t)1/p)tv(x, t)1/q + u(x, t)1/p(v(x, t)1/q)t

]
dx =

∫
R

[
1

p
u1/p−1v1/quxx +

1

q
u1/pv1/q−1vxx

]
dx =∫

R

[
1

p
u−1/qv1/quxx +

1

q
u1/pv−1/pvxx

]
dx.

Integrating by parts we end up with

d

dt
Φ(u(t), v(t)) =

1

pq

∫
R
u1/pv1/q

[(ux
u

)2

− 2
ux
u

vx
v

+
(vx
v

)2
]
dx =

1

pq

∫
R
u1/p(x, t)v1/q(x, t)

(
ux(x, t)

u(x, t)
− vx(x, t)

v(x, t)

)2

dx ≥ 0.

Hence the functional Φ(u(t), v(t)) is increasing in time. Note that the time derivative
of the functional is equal to zero if and only if, for every t > 0

ux(x, t)

u(x, t)
− vx(x, t)

v(x, t)
= 0

for all points x ∈ R. This condition can be rewritten as

d

dx
log

u(x, t)

v(x, t)
= 0.

Consequently Φ′(t) = 0 if and only if

u(x, t) = c v(x, t) (3.32)

23



for some positive constant c. Thus, unless condition (3.32) is verified almost every-
where at time t = 0, the functional Φ(t) is monotone increasing, and it will reach its
eventual maximum value as time t→∞. Once again, the computation of the limit
value uses in a substantial way the scaling invariance of Φ. In fact, at each time
t > 0, the value of Φ(u(t), v(t)) does not change if we substitute u(x, t) and v(x, t)
with U(x, t) and V (x, t) defined by

U(x, t) =
√

1 + 2t u(x
√

1 + 2t, t)

V (x, t) =
√

1 + 2t v(x
√

1 + 2t, t).

By proposition 2

lim
t→∞

U(x, t) = M(x)

∫
R
u(x) dx lim

t→∞
V (x, t) = M(x)

∫
R
v(x) dx,

Therefore, passing to the limit one obtains

lim
t→∞

Φ(u(t), v(t)) = lim
t→∞

Φ(U(t), V (t)) =(∫
R
u(x) dx

)1/p(∫
R
v(x) dx

)1/q ∫
R
M1(x)1/pM1(x)1/q dx =(∫

R
u(x) dx

)1/p(∫
R
v(x) dx

)1/q ∫
R
M1(x) dx =(∫

R
u(x) dx

)1/p(∫
R
v(x) dx

)1/q

.

Since
lim
t→0+

Φ(u(t), v(t)) =

∫
R
u(x)1/pv(x)1/q dx,

the monotonicity of the functional Φ(t) implies the inequality∫
R
u(x)1/pv(x)1/q dx ≤

(∫
R
u(x) dx

)1/p(∫
R
v(x) dx

)1/q

,

with equality if and only if (3.32) is verified at time t = 0, that is

u(x) = cv(x), (3.33)

for some positive constant c. Setting f = u1/p and g = v1/q proves both Hölder
inequality (3.29) and the equality cases.

Despite its apparent complexity, this way of proof is based on a solid physical
argument, namely the monotonicity in time of a Lyapunov functional of the solution
to the heat equation. This gives a clear indication that many inequalities reflect the
physical principle of the tendency of a system to move towards the state of maximum
entropy.
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4 Blachman–Stam inequality
Blachman-Stam inequality is concerned with the behavior of the Fisher information
with respect to convolutions [78, 20]. Historically, it was the key argument to prove
Shannon’s entropy power inequality. It is very instructive to give a proof, since
it makes evident that the quadratic nature of Fisher’s information plays a funda-
mental role in proofs. In what follow, we present a natural extension of the original
Blachman-Stam inequality that applies to any power of convolution. We will present
a one-dimensional proof of this inequality, that the interested reader can without
essential difficulties extend to any dimension d > 1.

4.1 Fisher information bounds

To start with, we need the following definition. Given two (smooth) probability
densities f and g on R, let us define

I(f |g)(x) =

∫
R

(fx(x− y))2

f(x− y)
g(y) dy. (4.1)

It is evident that the Fisher information of the density f coincides with the integral
of I(f |g)(x) for any choice of the probability density g

I(f) =

∫
R
I(f |g)(x) dx. (4.2)

Then, the following Lemma holds.

Lemma 5. Let f(x) and g(x) be probability density functions such that both I(f |g)
and I(g|f) are well defined. Then, for all positive constants a, b and r > 0

(
a2 + b2 + 2abr

) ∫
R
(f ∗ g)r−2 ((f ∗ g)x)

2 dx ≤

a2

∫
R
(f ∗ g)r−1I(f |g) dx+ b2

∫
R
(f ∗ g)r−1I(g|f) dx. (4.3)

Moreover, there is equality in (1.8) if and only if, for any positive constant c and
constants γ1, γ2, f and g are Gaussian densities, f(x) = Mca(x − γ1) and g(x) =
Mcb(x− γ2).

Proof. The proof follows along the same lines of the proof of inequality (1.9), given
by Blachman [20]. First of all, to easily justify computations, let us prove the lemma
by considering smooth functions f and g. This can be easily done by considering,
for some t > 0, f ∗M2t and g ∗M2t, solutions to the heat equation (3.1). Then the
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proof for general f and g will follow owing to the convexity properties of I(f |g) and
I(g|f) [64]. Let

k(x) = f ∗ g(x).

Then, for any pair of positive constants a, b the derivative of the convolution can be
written in the following form

k′(x) =
a

a+ b

∫
R
f ′(x− y)g(y) dy +

b

a+ b

∫
R
f(x− y)g′(y) dy.

Therefore

(a+ b)
k′(x)

k(x)
= a

∫
R

f ′(x− y)

f(x− y)

f(x− y)g(y)

k(x)
dy + b

∫
R

g′(y)

g(y)

f(x− y)g(y)

k(x)
dy =

∫
R

(
a
f ′(x− y)

f(x− y)
+ b

g′(y)

g(y)

)
dµx(y),

where we denoted
dµx(y) =

f(x− y)g(y)

k(x)
dy.

Note that, for every x ∈ R, dµx is a unit measure on R. Consequently, by Jensen’s
inequality

(a+ b)2

[
k′(x)

k(x)

]2

=

[∫
R

(
a
f ′(x− y)

f(x− y)
+ b

g′(y)

g(y)

)
dµx(y)

]2

≤

∫
R

(
a
f ′(x− y)

f(x− y)
+ b

g′(y)

g(y)

)2

dµx(y). (4.4)

Hence, for every constant r > 0

(a+ b)2

∫
R
kr(x)

[
k′(x)

k(x)

]2

dx ≤

∫
R
kr(x)

∫
R

(
a
f ′(x− y)

f(x− y)
+ b

g′(y)

g(y)

)2
f(x− y)g(y)

k(x)
dy dx =∫

R
kr−1(x)

[
a2

∫
R

(f ′(x− y))2

f(x− y)
g(y) dy + b2

∫
R

(g′(y))2

g(y)
f(x− y) dy

]
dx+

2ab

∫
R
kr−1(x)

∫
R
f ′(x− y)g′(y) dy dx.

On the other hand, ∫
R
f ′(x− y)g′(y) dy = k′′(x),
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so that ∫
R
kr−1(x)

∫
R
f ′(x− y)g′(y) dy dx =∫

R
kr−1(x)k′′(x) dx = −(r − 1)

∫
R
kr−2(x)(k′(x))2 dx.

This concludes the proof of the lemma. The cases of equality are easily found
resorting to the following argument. Equality follows if, after application of Jensen’s
inequality, there is equality in (4.4). On the other hand, for any convex function ϕ
and unit measure dµ on the set Ω, equality in Jensen’s inequality

ϕ(

∫
Ω

f dµ) ≤
∫

Ω

ϕ(f) dµ

holds true if and only if f is constant, so that

f =

∫
Ω

f dµ.

In our case, this means that there is equality if and only if the function

a
f ′(x− y)

f(x− y)
+ b

g′(y)

g(y)

does not depend on y. If this is the case, taking the derivative with respect to y,
and using the identity

d

dy

(
f ′(x− y)

f(x− y)

)
= − d

dx

(
f ′(x− y)

f(x− y)

)
,

we conclude that f and g have to satisfy

a
d2

dx2
log f(x− y) = b

d2

dy2
log g(y). (4.5)

Note that (4.5) can be verified if and only if the functions on both sides are constant.
Thus, there is equality if and only if

log f(x) = b1x
2 + c1x+ d1, log g(x) = b2x

2 + c2x+ d2. (4.6)

By coupling (4.6) with (4.5), we obtain that there is equality in (1.8) if and only
if f and g are gaussian densities, of variances ca and cb, respectively, for any given
positive constant c.
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If r = 1 using (4.2) into inequality (4.3) gives the classical result by Blachman
and Stam about Fisher information of convolution. Let a, b be positive constants.
Then

(a2 + b2)I(f ∗ g) ≤ a2I(f) + b2I(g). (4.7)

The classical Blachman–Stam inequality easily follows from (4.7). Indeed, inequality
(4.7) is equivalent to

I(f ∗ g) ≤ γ2I(f) + (1− γ)2I(g),

where 0 ≤ γ = a/(a+ b) ≤ 1. Optimizing over γ implies inequality (1.9).
Remark 6. Note that inequality (4.3) continues to hold even if the functions f and
g are not density functions. Indeed, inequality (4.3) is invariant respect to the sub-
stitution of f with Af , and g with Bg, for any pair of positive constants A,B.

5 Shannon’s entropy power inequality

5.1 The proof of Stam and Blachman

The original proof of the entropy power inequality (1.4), given by Stam [78] and
concluded by Blachman [20] makes an essential use both of the solution to the heat
equation, and of the inequality (4.7) proven in the previous section. We write this
proof by using the notations of Section 3. Let us fix the dimension d = 1. Let
X and Y be independent random variables with probability densities f and g, and
denote by f(t) and g(t) the densities of X+Zν(t) (respectively X+Zµ(t)), namely the
convolutions of f and g with Gaussian probability densities having variances ν(t)
and µ(t) respectively, where both ν(t) and µ(t) are increasing in time from ν(0) = 0
(respectively µ(0) = 0). We suppose that the Gaussian variables Zν(t) and Zν(t) are
independent from each other. Thanks to formula (3.5) f(t) and g(t) are recognized
as solutions to the heat equation with a time-dependent coefficient, and initial data
f and g.

Now, consider the functional

V(t) =
exp{2H(f(t))}+ exp{2H(g(t))}

exp{2H(r(t))}
, (5.1)

with r(t) = f(t) ∗ g(t). It is evident that this functional is invariant under dilation.
Moreover

V(0) =
N(f) +N(g)

N(r)
.

Let us differentiate with respect to time. We obtain

dV(t)

dt
exp{2H(r(t))} = ν ′(t)I(f(t)) exp{2H(f(t))}+ µ′(t)I(g(t)) exp{2H(g(t))}−
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I(r(t)) [ν ′(t) + µ′(t)] [exp{2H(f(t))}+ exp{2H(g(t))}] .

Let us choose the functions ν(t) and µ(t) so that

ν ′(t) = exp{2H(f(t))}, µ′(t) = exp{2H(g(t))}.

For this choice of ν(t) and µ(t), applying inequality (4.7) with

a = exp{2H(f(t))}, b = exp{2H(g(t))},

it follows
dV(t)

dt
≥ 0.

By Lemma 5 the derivative is equal to zero if and only if both f(t) and g(t) are
Gaussian densities. But then f and g have to be Gaussian and the derivative
is identically zero for all t. In other words V(t) is either strictly increasing or a
constant. Since V(t) is continuous from the right in t = 0, we have

V(0) =
N(f) +N(g)

N(r)
≤ lim

t→∞
V(t).

To conclude the proof it remains to show that the limit is equal to 1. Here I report
exactly the concluding argument of Stam [78], using the same words.

It is clear that
lim
t→∞

ν(t) = lim
t→∞

µ(t) =∞.

The fact that limt→∞ V(t) exists and is equal to 1 can be proved easily, making use
of the fact that f(t), g(t) and r(t) become more and more Gaussians.

Remark 7. While we know that the result is correct, the argument become more and
more Gaussians is not rigorous and the proof of the validity of the entropy power
inequality can not be claimed on this basis. Some years later, Blachman completed
the proof by resorting to a variant of the property of invariance under dilation given
in Definition 1.

In order to prove that limt→∞ V(t) = 1, Blachman used the scaling property of
Shannon’s entropy we gave in (3.22). Let us define

F (x, t) =
√
ν(t)f(x

√
ν(t), t); G(x, t) =

√
µ(t)f(x

√
µ(t), t)

and
R(x, t) =

√
ν(t) + µ(t)r(x

√
ν(t) + µ(t), t).

Then, by (3.22)
H(f(t)) = H(F (t)) + log

√
ν(t),
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which gives
N(f(t)) = ν(t)N(F (t)),

Same expression for g(t) and r(t). On the other hand, even if proved it when
ν(t) = κt, it is clear that Proposition 2 applies any time the function ν(t) tends to
infinity as time goes to infinity, like in the present case. Hence

lim
t→∞

N(F (t)) = 2πe,

and the same limit value is found for N(G(t)) and N(R(t)). This implies

lim
t→∞
V(t) = lim

t→∞

ν(t)N(F (t)) + µ(t)N(G(t))

(ν(t) + µ(t))N(R(t))
= 1.

This concludes the proof.
Remark 8. A careful reading of the arguments used in the proof indicates that we can
use the same arguments in dimension d > 1. This has been done by Blachman in [20].
We will postpone to Section 6.4 a different proof of the entropy power inequality, fully
based on a functional which is invariant under dilation, that simplifies noticeably
the original proof.

5.2 The concavity of entropy power

The entropy power inequality proven in the previous section has a lot of interesting
consequences. Among others, one of these consequences has been noticed by Costa
[40], who named it emphconcavity property of entropy power.

Let X be a random vector with a (smooth) density function f(x), x ∈ Rd, and
let us denote by f(x, t) the solution to the Cauchy problem for the heat equation
(3.1) with diffusion constant κ = 1, posed in the whole space and such that f(x, t =
0) = f(x). As discussed in Section 3, f(x, t) is the density of the random variable
X + Z2t. Given the entropy power N(X + Z2t), where N is defined as in (1.2), we
shall now prove that N(X + Z2t) is concave with respect to time

d2

dt2
N(X + Z2t) ≤ 0. (5.2)

The proof of concavity then requires to evaluate, for any time t > 0, two time
derivatives of the entropy power of f(x, t). The first derivative of the entropy power
is easily evaluated resorting to DeBruijn’s identity (3.21) which connects Shannon’s
entropy functional with the Fisher information of a random variable with density
Using identity (3.21) we get

d

dt
N(f(t)) =

2

d
exp

{
2

d
H(f(t))

}
d

dt
H(f(t)) =
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2

d
exp

{
2

d
H(f(t))

}
I(f(t)).

Hence
d2

dt2
N(f(t)) =

2

d

d

dt

[
exp

{
2

d
H(f(t))

}
I(f(t))

]
.

Let us set
Υ(f) = exp

{
2

d
H(f)

}
I(f). (5.3)

Then, the concavity of entropy power can be rephrased as the decreasing in time
property of the functional Υ(f(t)) along the solution to the heat equation. If

−J(f(t)) =
dI(f(t))

dt
, (5.4)

denotes the derivative of Fisher information along the solution to the heat equation,
we obtain

d

dt
Υ(f(t)) = exp

{
2

d
H(f(t))

}(
dI(f(t))

dt
+

2

d
I(f(t))2

)
=

exp

{
2

d
H(f(t))

}(
−J(f(t)) +

2

d
I(f(t))2

)
.

Hence, Υ(f(t)) is non increasing if and only if

J(f(t)) ≥ 2

d
I(f(t))2. (5.5)

It is interesting to remark that, aiming in proving the old conjecture that subsequent
derivatives of Boltzmann’s H-functional, evaluated on the solution to heat equation,
alternate in sign, the functional J(f(t)) was first considered by McKean [69]. Indeed,
in one space dimension, inequality (5.5) is essentially due to him. Let us repeat his
highlighting idea. In the one dimensional case one has

I(f) =

∫
R

f ′(x)2

f(x)
dx,

while
J(f) = 2

(∫
R

f ′′(x)2

f(x)
dx− 1

3

∫
R

f ′(x)4

f(x)3
dx

)
. (5.6)

McKean observed that J(f) is positive. In fact, resorting to integration by parts,
J(f) can be rewritten as

J(f) = 2

∫
R

(
f ′′(x)

f(x)
− f ′(x)2

f(x)2

)2

f(x) dx ≥ 0. (5.7)
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Having this formula in mind, consider that, for any constant λ > 0

0 ≤ 2

∫
R

(
f ′′(x)

f(x)
− f ′(x)2

f(x)2
+ λ

)2

f(x) dx =

J(f) + 2λ2 + 4λ

∫
R

(
f ′′(x)− f ′(x)2

f(x)

)
dx = J(f) + 2λ2 − 4λI(f).

Choosing λ = I(f) shows (5.5) for d = 1.
Note that equality in (5.5) holds if and only if f is a Gaussian density. In fact,

the condition
f ′′(x)

f(x)
− f ′(x)2

f(x)2
+ λ = 0,

can be rewritten as
d2

dx2
log f(x) = −λ,

which corresponds to
log f(x) = −λx2 + bx+ c. (5.8)

Joining condition (5.8) with the fact that f(x) has to be a probability density, we
conclude.

The argument of McKean was used by Villani [91] to obtain (5.5) for d > 1. In
the general d-dimensional situation, Villani proved the formula

J(f) = 2
d∑

i,j=1

∫
Rd

[
∂2

∂vi∂vj
log f

]2

f dx =

2
d∑

i,j=1

∫
Rd

[
1

f

∂2

∂vi∂vj
− 1

f 2

∂f

∂vi

∂f

∂vj

]2

f dx. (5.9)

By means of (5.9), the nonnegative quantity

A(λ) =
d∑

i,j=1

∫
Rd

[
1

f

∂2

∂vi∂vj
− 1

f 2

∂f

∂vi

∂f

∂vj
+ λδij

]2

f dx,

with the choice λ = I(f)/d, allows to recover inequality (5.5) for d > 1. This proves
the concavity property of entropy power.

To enlighten the consequences of the concavity of entropy power, consider that
the functional Υ(f) is invariant under dilation (cf. Definition 1). In fact, Shannon’s
entropy is such that,

H(fa) = H(f)− d log a,
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while Fisher’s information satisfies

I(fa) =

∫
Rd

|∇fa(x)|2

fa(x)
dx = a2

∫
Rd

|∇f(x)|2

f(x)
dx = a2I(f).

Therefore, for any constant a > 0

Υ(f(t)) = Υ (fa(t)) . (5.10)

Thanks to Proposition 2 we can identify the long-time behavior of the functional
Υ(f(t)). Unless the initial value f(x) in the heat equation is a Gaussian function, the
functional Υ(f(t)) is monotone decreasing, and it will reach its eventual minimum
value as time t → ∞. Grace to the invariance under dilation property, at each
time t > 0, the value of Υ(f(t)) does not change if we scale the argument f(x, t)
according to (7.36), namely

f(x, t)→ F (x, t) =
(√

1 + 2t
)d

f(x
√

1 + 2t, t),

which is such that the initial value f(x) is left unchanged. On the other hand,
Proposition 2 implies

lim
t→∞

F (x, t) = M(x)

Moreover, the limit value of Υ(f(t)) does not change if we consider a dilation of the
limit Gaussian function in order to have a variance different from one. Therefore,
passing to the limit one obtains, for any σ > 0, the inequality

Υ(f) ≥ Υ(Mσ),

or, what is the same

exp

{
2

d
H(f)

}
I(f) ≥ exp

{
2

d
H(Mσ)

}
I(Mσ). (5.11)

5.2.1 The logarithmic Sobolev inequality

Inequality (5.11) has various important consequences. First, let us rewrite it in the
form

I(f)

I(Mσ)
≥ exp

{
−2

d
(H(f)−H(Mσ))

}
. (5.12)

Since
I(Mσ) =

d

σ
,

while
H(Mσ) =

d

2
log 2πσ +

d

2
,
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using that e−x ≥ 1− x, we obtain from (5.12)∫
Rd
f(x) log f(x) dx+ d+

d

2
log 2πσ ≤ σ

2

∫
Rd

|∇f(x)|2

f(x)
dx. (5.13)

Inequality (5.13) is nothing but the logarithmic Sobolev inequality by Gross [53],
written in an equivalent form.

Consider now the case in which the probability density f(x) of the random vector
X is such that the second moment of X is bounded. Then, for any σ such that

σ ≥ 1

n

∫
Rd
|x|2f(x) dx,

it holds

−H(f) +H(Mσ) =

∫
Rd
f(x) log f(x) dx−

∫
Rd
Mσ(x) logMσ(x) dx =

∫
Rd
f(x) log

f(x)

Mσ(x)
dx+

1

2σ

∫
Rd
|x|2 (Mσ(x)− f(x)) dx ≥∫

Rd
f(x) log

f(x)

Mσ(x)
dx.

By the Csiszar-Kullback inequality [58]

2

∫
Rd
f(x) log

f(x)

Mσ(x)
dx ≥ ‖f −Mσ‖2

L1 . (5.14)

By expanding the right-hand side of inequality (5.12) up to the second order, we
end up with the inequality

σ

2

∫
Rd

|∇f(x)|2

f(x)
dx−

∫
Rd
f(x) log f(x) dx+ d+

d

2
log 2πσ ≥ d2

8
‖f −Mσ‖4

L1 . (5.15)

The right-hand side of (5.15) improves the logarithmic Sobolev inequality when the
density function involved into inequality (5.12) has bounded second moment, and
it is different from a Gaussian density. In this case, it is possible to quantify the
positivity of the difference between the right and left sides of (5.12) in terms of the
distance of the density f(x) from the manifold of the Gaussian densities, with a
precise estimate of this distance in terms of the L1-norm.
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5.2.2 Nash’s inequality revisited

A second interesting consequence of the concavity of entropy power is a new proof
of Nash’s inequality [70]. To this aim, note that the right-hand side of inequality
(5.11), thanks to the invariance under dilation property of Υ(f), does not depend
of σ. The choice

σ = σ̄ = (2πe)−1, (5.16)

gives
I(Mσ̄) = 2πed,

and
H(Mσ̄) = 0.

Thus, substituting the value σ = σ̄ in (8.24) we obtain the inequality

exp

{
2

d
H(f)

}
I(f) ≥ 2πed. (5.17)

Inequality (5.17) is know in information theory with the name of Isoperimetric
Inequality for Entropies (cf. [47] for a different proof).

The case in which f(x) ≥ 0 is a nonnegative function of mass different from 1,
leads to a modified inequality. Let us set

µ =

∫
Rd
f(x) dx 6= 1

Then, the function φ(x) = f(x)/µ is a probability density, which satisfies (5.17).
Therefore

I(µφ) = µ I(φ) ≥ µ I(Mσ) exp

{
2

d
H(Mσ)

}
exp

{
−2

d
H(φ)

}
=

µ I(Mσ) exp

{
2

d
(H(Mσ)− log µ)

}
exp

{
−2

d
(H(φ)− log µ)

}
=

µ I(Mσ) exp

{
2

d

1

µ
H(µMσ)

}
exp

{
−2

d

1

µ
H(µφ)

}
. (5.18)

In (5.18) we used the identity

H(µφ) = µH(φ)− µ log µ.

Setting now σ = σ̄, as given by (5.16), we conclude with the inequality

I(f) ≥ 2πed ‖f‖L1 exp

{
− 2

d‖f‖L1

[H(f)− ‖f‖L1 log ‖f‖L1 ]

}
, (5.19)
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which clearly holds for any integrable function f(x) ≥ 0.
Given a probability density function g(x), let us set f(x) = g2(x). In this case

H(f) = H(g2) = −
∫
Rd
g2(x) log g2(x) dx = −2

∫
Rd

(g(x) log g(x)) g(x) dx.

Since the function h(r) = r log r is convex, and ‖g‖L1 = 1, Jensen’s inequality
implies

−H(g2) ≥ 2

∫
Rd
g2(x) dx log

∫
Rd
g2(x) dx. (5.20)

Using (5.20) into (5.19) gives

I(g2) ≥ 2πed

∫
Rd
g2(x) dx e

2
d

log
∫
Rd g

2(x) dx = 2πed

(∫
Rd
g2(x) dx

)1+2/d

. (5.21)

Using the identity

I(g2) = 4

∫
Rd
|∇g(x)|2 dx

we obtain from (5.21) the classical Nash’s inequality in sharp form(∫
Rd
g2(x) dx

)1+2/d

≤ 2

πed

∫
Rd
|∇g(x)|2 dx (5.22)

Inequality (5.22) clearly holds for all probability density functions g(x). Note that,
if ‖g‖L1 6= 1, (5.22) implies(∫

Rd
g2(x) dx

)1+2/d

≤ 2

πed

(∫
Rd
|g(x) dx

)4/d ∫
Rd
|∇g(x)|2 dx. (5.23)

The constant 2/(πed) in (5.23) is sharp.

5.3 Dembo’s proof of the concavity property

In a short note [46], Dembo showed that the concavity of entropy power is a direct
consequence of Blachman–Stam inequality (1.9). The idea is very simple. If we
write the Blachman–Stam inequality for the random vector X + Z2t, we obtain

1

I(X + Z2t)
≥ 1

I(X)
+

1

I(Z2t)
=

1

I(X)
+

2t

d
.

Indeed, for a Gaussian vector Zσ, I(Zσ) = d/σ. Hence, for each τ > 0 we obtain
the inequality

1

τ

[
1

I(X + Z2t+2τ )
− 1

I(X + Z2t)

]
≥ 2

d
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Passing to the limit as τ → 0, we finally obtain

d

dτ

1

I(X + Z2t+2τ )
= − 1

I(X + Z2t)2

dI(X + Z2t+2τ )

dτ
= − 1

I(f(t))2
J(f(t)) ≥ 2

d
,

which, grace to definition (5.4) coincides with (5.5).
The same idea can be applied starting from the entropy power inequality applied

to the random vector X + Z2t. In this case, since by definition N(Zσ) = 2πeσ,

N(X + Z2t) ≥ N(X) +N(Z2t) = N(X) + 2πe2t.

Hence for each τ > 0 we have

1

τ
[N(X + Z2t+2τ )−N(X + Z2t)] ≥ 4πe.

Passing to the limit as τ → 0, we finally obtain

d

dτ
N(X + Z2t+2τ ) = N(X + Z2t)I(X + Z2t)

2

d
≥ 4πe.

Thus, we obtain the isoperimetric inequality for entropies we obtained in (5.17).

Remark 9. It is important to outline that this idea allows to prove the isoperimetric
inequality without resorting to second-order derivatives in time of Shannon’s entropy
evaluated on the solution to the heat equation. In other words, inequality (5.17)
and its consequences (including the logarithmic Sobolev inequality) follows from the
entropy power inequality. On the other hand, the entropy power inequality is a
consequence of Blachman–Stam inequality, which is self-contained. Hence, the log-
arithmic Sobolev inequality can be proven without resorting to the entropy-entropy
method used in [1].

6 Inequalities for convolutions
The purpose of this section is to present various results concerned with the mono-
tonicity in time of the convolution of powers of solutions to the heat equation. The
main reason behind this investigation is that many functional inequalities can be
viewed as the consequence of the tendency of various Lyapunov functionals defined
in terms of powers of the solution to the heat equation to reach their extremal values
as time tends to infinity. The discovery of a Lyapunov functional which allows to
prove Young inequality and its converse [16], is only one of the possible application
of this idea (cf. also [82, 83, 84] for a connection of these results with information
theory). While the inequalities are not new, and some of the results we present have
been obtained before, what is new is the approach to the problem, which takes into

37



account the information-theoretical meaning of inequalities for convolutions, and
consequently allows to obtain clean and relatively simple new proofs.

The prototype of these monotonous in time convolutions is as follows. Let n be
an integer, and let αj, j = 1, . . . , n, be positive real numbers such that

n∑
j=1

αj = n− 1. (6.1)

Let fj(x), j = 1, . . . , n, be non-negative functions on Rd, d ≥ 1, such that fj ∈
L1(Rd). For any given j, j = 1, . . . , n, we denote by uj(x, t) the solution to the heat
equation (3.1) with the diffusion coefficients κj

∂uj(x, t)

∂t
= κj∆uj(x, t),

such that
lim
t→0+

uj(x, t) = fj(x).

We consider the n-th convolution

w(x, t) = uα1
1 ∗ uα2

2 ∗ · · · ∗ uαnn (x, t). (6.2)

where, as usual the n-th convolution of the functions gj(x) ∈ L1(Rd), j = 1, 2, . . . , n
reads

g1 ∗ g2 ∗ · · · ∗ gn(x) =∫
(Rd)n−1

g1(x− x1) · · · gn−1(xn−2 − xn−1)gn(xn−1) dx1dx2 · · · dxn−1.

Then, a natural question arises. Can we fix the diffusion coefficients in the heat
equation in such a way that w(x, t) behaves monotonically in time? Note that the
choice of condition (6.1) is forced by the fact that we want that the monotonicity
of w(x, t), t > 0 has to hold at least if uj(x, t) is the fundamental solution to the
heat equation, j = 1, 2, . . . , n. In this case, in fact, computations are explicit, and,
provided condition (6.1) is satisfied, w(x, t) is increasing in time independently of
the choice of the diffusion coefficients (cf. Section 3, where this property has been
explicitly obtained). In the general case, however, the monotonicity in time of the
n-th convolution can be proven under more restrictive assumptions both on the
numbers αj, and only for a unique choice of the diffusion coefficients κj (cf. Lemma
10).

The interest in the monotonicity of the convolution of powers of solutions to the
heat equation is linked to its consequences. Indeed, the discovery of the monotonicity
of w(x, t) for a special choice of the diffusion coefficients translates immediately to
the proof of an inequality for convolutions in sharp form. Let n be an integer, and let

38



pj, j = 1, . . . , n, be real numbers such that 1 ≤ pj ≤ +∞ and
∑n

j=1 p
−1
j = n−1. Let

fj(x), j = 1, . . . , n, be functions on Rd, d ≥ 1, such that fj ∈ Lpj(Rd). In Theorem
13 we will show that the monotonicity of w(x, t) implies the following inequality for
convolutions:

sup
x
|f1 ∗ f2 ∗ · · · ∗ fn| ≤

n∏
j=1

Cd
pj
‖fj‖pj . (6.3)

In (6.3), the constant Cp which defines the sharp constant is given by

C2
p =

p1/p

p′1/p′
, (6.4)

where primes always denote dual exponents, 1/p + 1/p′ = 1. Also, the expression
of the best constant in (6.3), in the case in which the functions fj are probability
density functions, is obtained by assuming that the functions fj are suitable Gaus-
sian densities [62]. This expression naturally appears in this monotonicity approach
by considering that for large times the solution to the heat equation behaves as the
self-similar Gaussian profile.

Note that inequality (6.3) implies∣∣∣∣∫ f1(x1)f2(x1 − x2) · · · fn(xn−1) dx1dx2 · · · dxn−1

∣∣∣∣ ≤ n∏
j=1

Cd
pj
‖fj‖pj , (6.5)

which is a particular case of the general inequalities obtained by Brascamp and Lieb
[28], which are nowadays known as the Brascamp–Lieb inequalities.

Inequality (6.3) is closely related to the monotonicity property of the functional
given by L∞-norm of the n-th convolution w(x, t). Naturally one could ask if a
similar property holds for the Lr-norm of w(x, t), where r ≥ 0. Also in this case, the
monotonicity in time can be proven under suitable assumptions both on the numbers
αj, and only for a unique choice of the diffusion coefficients κj. The study of the
monotonicity in time of ‖w(t)‖r is connected with the classical Young’s inequality
in sharp form (r > 1), or with its reverse form (r < 1).

Last, the limiting cases r → 1 and r → 0 lead to the monotonicity in time of
Shannon’s entropy and of the Renyi entropy of order 0 [42]. The monotonicity here
leads to the entropy power inequality of Shannon [77], and to the Prékopa–Leindler
inequality [60, 72, 73], respectively.

Therefore, all these well-known functional inequalities can be seen into a unified
framework, as consequences of the monotonicity in time of the n-convolution of
powers of solutions to the heat equation.
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6.1 The monotonicity of convolutions

Let n be an integer, and let pj, j = 1, . . . , n, be real numbers such that

1 ≤ pj ≤ +∞;
n∑
j=1

1

pj
= n− 1. (6.6)

Let fj(x), j = 1, . . . , n, be non-negative functions on Rd, d ≥ 1, such that fj ∈
L1(Rd). For any given j, j = 1, . . . , n, we denote by uj(x, t) the solution to the heat
equation (3.1) with the diffusion coefficients κj

∂uj(x, t)

∂t
= κj∆uj(x, t), (6.7)

such that
lim
t→0+

uj(x, t) = fj(x). (6.8)

The following Lemma shows that there is a (unique) choice of the diffusion coeffi-
cients in the heat equation such that w(x, t) behaves monotonically in time.

Lemma 10. Let w(x, t) be the n-th convolution

w(x, t) = u
1/p1
1 ∗ u1/p2

2 ∗ · · · ∗ u1/pn
n (x, t) (6.9)

where the functions uj(x, t), j = 1, 2, . . . , n, are solutions to the heat equation corre-
sponding to the initial values 0 ≤ fj(x) ∈ L1(Rd). Then, if for each j the exponents
pj satisfy conditions (6.6) and the diffusion coefficients are given by κj = (pjp

′
j)
−1,

w(x, t) is monotonically increasing in time from

w(x, t = 0) = f
1/p1
1 ∗ f 1/p2

2 ∗ · · · ∗ f 1/pn
n (x).

Moreover, w(x, t) remains constant in time if and only if fj(x), j = 1, 2, . . . , n, is a
multiple of a Gaussian density of variance dκj.

Proof. For the sake of simplicity, we will prove the Lemma for d = 1. As the proof
shows, however, analogous computations can be done in higher dimension.

Since
∑n

j=1 p
−1
j = n− 1, Hölder inequality implies that∣∣∣∣∫ f1(x1)1/p1 · · · fn(xn−1)1/pn dx1dx2 · · · dxn−1

∣∣∣∣ ≤ n∏
j=1

(∫
R
|fj(x)| dx

)1/pj

.

Hence, also

f
1/p1
1 ∗ f 1/p2

2 ∗ · · · ∗ f 1/pn
n (x) ≤

n∏
j=1

(∫
R
|fj(x)| dx

)1/pj

, (6.10)
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and, since the right-hand side of (6.10) depends only on the L1-norms of the func-
tions, which are preserved by the heat equation, the function w(x, t) is bounded for
all subsequent times t > 0. Also, using basic considerations on the heat equation, it
is sufficient to prove the increasing property of w(t) for very smooth initial data fj,
j = 1, 2, . . . , n, with fast decay at infinity. This will enable us to have the central
limit property. In order not to worry about derivatives of logarithms, which will
often appear in the proof, we may also impose that | d

dx
log fj(x)| ≤ C(1 + |x|2) for

some positive constant C. The general case will follow by density [64].
For a given x ∈ R, let us evaluate the time derivative of the n-th convolution

w(x, t). We obtain

∂w(x, t)

∂t
=

(
n∑
j=1

κj

)
∂2w(x, t)

∂x2
+

n∑
j=1

κj
pjp′j

Rj(x, t), (6.11)

where, for j = 1, 2, . . . , n

Rj(x) =

∫
u1(x− x1)1/p1 · · ·un(xn−1)1/pn

∣∣∣∣∂ log uj
∂x

(xj−1 − xj)
∣∣∣∣2 dx1 · · · dxn−1

(6.12)
Indeed,

∂w

∂t
=
∂u

1/p1
1

∂t
∗ u1/p2

2 ∗ · · · ∗ u1/pn
n + u

1/p1
1 ∗ ∂u

1/p2
2

∂t
∗ · · · ∗ u1/pn

n + . . .

+u
1/p1
1 ∗ u1/p2

2 ∗ · · · ∗ ∂u
1/pn
n

∂t
,

and the time derivative of each term on the right-hand side can be evaluated by
considering that the functions uj(x, t), j = 1, 2, . . . , n satisfy the heat equation (6.7)
(with diffusion coefficients κj, j = 1, 2, . . . , n). Hence

∂u
1/p1
1

∂t
∗ u1/p2

2 ∗ · · · ∗ u1/pn
n = κ1

∂2u
1/p1
1

∂x2
∗ u1/p2

2 ∗ · · · ∗ u1/pn
n +

κ1

p1p′1

(∣∣∣∣∂ log u1

∂x

∣∣∣∣2 u1/p1
1

)
∗ u1/p2

2 ∗ · · · ∗ u1/pn
n =

κ1
∂2w

∂x2
+

κ1

p1p′1

(∣∣∣∣∂ log u1

∂x

∣∣∣∣2 u1/p1
1

)
∗ u1/p2

2 ∗ · · · ∗ u1/pn
n . (6.13)

An analogous formula holds for the other indexes j ≥ 2. Note that in (6.13) we used
the convolution property

∂2

∂x2
f ∗ g(x) =

∫
f ′′(x− y)g(y) dy =

∫
f ′(x− y)g′(y) dy =

∫
f(x− y)g′′(y) dy.

(6.14)
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By property (6.14), it holds that, for each pair of indexes (i, j) with i, j = 1, 2, . . . , n,
with x0 = x and xn = 0

(f1 ∗ f2 ∗ · · · ∗ fn)′′ =∫
f1(x− x1) . . . fn(xn−1)(log fi(xi−1 − xi))′(log fj(xj−1 − xj))′ dx1 . . . dxn−1.

Hence, if we take a set of positive constants ai,j’s, i, j = 1, 2, . . . , n, such that∑
i 6=j ai,j = 1, we can express the second derivative of a convolution as

(f1 ∗ f2 ∗ · · · ∗ fn)′′ =
∑
i 6=j

ai,j

∫
f1(x− x1) . . . fn(xn−1)·

·(log fi(xi−1 − xi))′(log fj(xj−1 − xj))′ dx1 . . . dxn−1.

This shows that, for any set of positive values ai,j such that
∑

i 6=j ai,j = 1, with
x0 = x and xn = 0, one has

∂2w

∂x2
=
∑
i 6=j

ai,j
pipj

∫
u

1/p1
1 (x− x1) . . . u1/pn

n (xn−1)·

·(log ui(xi−1 − xi))′(log uj(xj−1 − xj))′ dx1 . . . dxn−1. (6.15)

Finally, by setting, for j = 1, 2, . . . , n

Lj = (log uj(xj−1 − xj))′, (6.16)

we can rewrite (6.11) in the following way:

∂w(x, t)

∂t
=

∫
u

1/p1
1 (x− x1) . . . u1/pn

n (xn−1)·

(
n∑
j=1

κj
pjp′j

L2
j +

n∑
l=1

κl
∑
i 6=j

ai,j
pipj

LiLj

)
dx1 . . . dxn−1. (6.17)

The sign of the time derivative of w(x, t) depends on the quantity

L(u1, · · ·un) =
n∑
j=1

κj
pjp′j

L2
j +

n∑
l=1

κl
∑
i 6=j

ai,j
pipj

LiLj. (6.18)

Let us set the coefficient of diffusion κj = (pjp
′
j)
−1, and define Qj = Lj/pj, for

j = 1, 2, . . . n. Then

L =
n∑
j=1

(
1

p′j

)2

Q2
j +

n∑
l=1

1

plp′l

∑
i 6=j

ai,jQiQj. (6.19)
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Now, recall that
n∑
j=1

1

pj
= n− 1

implies that, for all j = 1, 2, . . . n

1

pj
=
∑
i 6=j

1

p′i
.

Consequently
n∑
l=1

1

plp′l
=
∑
i 6=j

1

p′ip
′
j

.

Therefore

L =
n∑
j=1

(
1

p′j

)2

Q2
j +

∑
i 6=j

1

p′ip
′
j

∑
i 6=j

ai,jQiQj. (6.20)

If we now choose, for i 6= j

ai,j =
(p′ip

′
j)
−1∑

i 6=j(p
′
ip
′
j)
−1
, (6.21)

which is such that
∑

i 6=j ai,j = 1, we end up with

L =
n∑
j=1

(
1

p′j

)2

Q2
j +

∑
i 6=j

1

p′ip
′
j

QiQj =

(
n∑
j=1

Qj

p′j

)2

≥ 0. (6.22)

The previous argument shows that the time derivative of w(x, t) can be made non-
negative by suitably choosing the diffusion coefficients κj, j = 1, 2, . . . n.

Recalling the definition of Qj (respectively Lj), equality to zero in (6.22) holds
if and only if

1

p1p′1
(log u1(x− x1))′ +

n−1∑
j=2

1

pjp′j
(log uj(xj−1 − xj))′ +

1

pnp′n
(log un(xn−1))′ = 0.

(6.23)
As each variable xi appears as argument of a pair of functions only, it holds that,
for every j = 1, 2, . . . , n− 1

1

pjp′j

∂

∂xj
(log uj(xj−1 − xj))′ +

1

pj+1p′j+1

∂

∂xj
(log uj+1(xj − xj+1))′ = 0. (6.24)

In (6.24) we set x0 = x and xn = 0. On the other hand, since

(log uj(xj−1 − xj))′ =
∂

∂xj−1

log uj(xj−1 − xj) = − ∂

∂xj
log uj(xj−1 − xj),
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equation (6.24) coincides with

1

pjp′j

∂2

∂x2
j−1

log uj(xj−1 − xj) =
1

pj+1p′j+1

∂2

∂x2
j

log uj+1(xj − xj+1). (6.25)

Note that (6.25) can be verified if and only if the functions on both sides are constant.
Thus, there is equality in (6.25) if and only if

log uj(x) = cκjx
2 + c1x+ d1, log uj+1(x) = cκjx

2 + c2x+ d2.

The integrability of the function uj then implies that the constant c has to be neg-
ative, c = −C, where C > 0. Hence, there is equality in (6.25) if and only if uj and
uj+1 are multiple of Gaussian densities, of variances C(pjp

′
j)
−1 and C(pj+1p

′
j+1)−1,

respectively, for any given positive constant C. Therefore, equality in (6.22) holds
if and only if each function uj(x), j = 1, 2, . . . , n is a multiple of a Gaussian density
of variance C(pjp

′
j)
−1.

Finally, with this choice of the diffusion coefficients, for every x ∈ R and t1 < t2,

u
1/p1
1 ∗ u1/p2

2 ∗ · · · ∗ u1/pn
n (x, t1) < u

1/p1
1 ∗ u1/p2

2 ∗ · · · ∗ u1/pn
n (x, t2), (6.26)

unless all initial data are multiple of Gaussian densities with the right variances.
Clearly, (6.26) is equivalent to say that the n-th convolution w(x, t) is monotone
increasing. An identical proof holds in higher dimension. This concludes the proof
of the Lemma.

Remark 11. The result of Lemma 10 remains true if each diffusion coefficient kj is
multiplied by a positive constant D. In this case, equality holds if the functions fj
are Gaussian functions with variances Ddkj.

Remark 12. As already specified in the introduction, our quantity w(x, t) is related to
a particular geometric Brascamp–Lieb inequality. Results concerning more general
Brascamp–Lieb inequalities that are related to Lemma 10 have been obtained by
Bennett, Carbery, Christ and Tao in [18]. This clearly indicates that the proof of
Lemma 10 presented here could be extended to cover more general situations.

Lemma 10 has important consequences. Indeed, let us introduce the functional

Ψ(t) = sup
x
w(x, t) = sup

x
u

1/p1
1 ∗ u1/p2

2 ∗ · · · ∗ u1/pn
n (x, t). (6.27)

It is a simple exercise to verify that, in view of conditions (6.6) on the constants pj,
the functional Ψ(t) is dilation invariant. In reason of this property we prove:

Theorem 13. Let Ψ(t) be the functional (6.27), where the functions uj(x, t), j =
1, 2, . . . , n, are solutions to the heat equation corresponding to the initial values 0 ≤
fj(x) ∈ L1(Rd), d ≥ 1. Then, if for each j the exponents pj satisfy conditions (6.6)
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and the diffusion coefficients are given by κj = (pjp
′
j)
−1, or by a multiple of them,

Ψ(t) is increasing in time from

Ψ(0) = sup
x
f

1/p1
1 ∗ f 1/p2

2 ∗ · · · ∗ f 1/pn
n (x)

to the limit value

lim
t→∞

Ψ(t) =
n∏
j=1

Cd
pj

(∫
Rd
|fj(x)| dx

)1/pj

. (6.28)

The constants Cpj in (6.28) are defined as in (6.4).
Moreover, Ψ(0) = limt→∞Ψ(t) if and only if fj(x), j = 1, 2, . . . , n, is a multiple

of a Gaussian density of variance cdκj, with c > 0.

Proof. Thanks to Lemma 10 we know that the functional Ψ(t) is monotonically
increasing from Ψ(t = 0), unless the initial densities are Gaussian functions with
the right variances. To conclude the proof, it remains to show that the functional
Ψ(t) converges towards the limit value (6.28) as time converges to infinity. The
computation of the limit value uses in a substantial way the scaling invariance of Ψ.
In fact, thanks to the dilation invariance, at each time t > 0, the value of Ψ(t) does
not change if we scale each function uj(x), j = 1, 2, . . . , n, according to (7.36)

uj(x, t)→ Uj(x, t) =
(√

1 + 2t
)d

u(x
√

1 + 2t, t).

Let us choose, as in Lemma 10 smooth initial values rapidly decreasing at infinity.
Then, Proposition 2 implies that, for j = 1, 2, . . . , n

lim
t→∞

Uj(x, t) = Mκj(x)

∫
Rd
fj(x) dx (6.29)

at least in L1(Rd). Therefore, passing to the limit one obtains

lim
t→∞

Ψ(t) =
n∏
j=1

(∫
Rd
|fj(x)| dx

)1/pj

sup
x
M1/p1

κ1
∗M1/p2

κ2
∗ · · · ∗M1/pn

κn (x). (6.30)

Owing to the identity

M1/pj
κj

(x) = Cd
pj

(2π)(2p′j/d)−1

M1/p′j
, (6.31)

and recalling that
∑n

j=1(p′j)
−1 = 1, we obtain

M1/p1
κ1
∗M1/p2

κ2
∗ · · · ∗M1/pn

κn (x) =
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(2π)−d/2
n∏
j=1

Cd
pj
M1(x) =

n∏
j=1

Cd
pj

exp{−|x|2/2}.

This implies (6.28), and concludes the proof of the inequality for well chosen initial
data. Then, the general case of the theorem follows by standard density arguments.

Remark 14. Theorem 13 is related to the monotonicity in time of a dilation invariant
functional whose components are solutions to the heat equation. Therefore, the main
importance of the theorem is to highlight the existence of a new Lyapunov functional
related to the heat equation. This result, however, can be rephrased to give a new
proof of known inequalities in sharp form. Let us set, in Theorem 13

gj(x) = fj(x)1/pj ,

for j = 1, 2, . . . , n. Then, it holds

sup
x
g1 ∗ g2 ∗ · · · ∗ gn(x) ≤

n∏
j=1

Cd
pj

n∏
j=1

‖gj‖pj . (6.32)

Moreover, since

sup
x
g1 ∗ g2 ∗ · · · ∗ gn(x) ≥

∫
g1(−x1)g2(x1 − x2) . . . gn(xn−1) dx1 . . . dxn−1,

inequality (6.32) implies, under the same conditions on the constants pj,∫
g1(x1)g2(x1 − x2) . . . gn(xn−1) dx1 . . . dxn−1 ≤

n∏
j=1

Cd
pj

n∏
j=1

‖gj‖pj . (6.33)

Inequality (6.33) is a particular case of the inequalities obtained by Brascamp and
Lieb [28] by a different method.
Remark 15. Clearly, the proof of Theorem 13 still holds when n = 2. In this case,
however, the diffusion coefficients κj, j = 1, 2 coincide. In fact, when n = 2, the
condition (6.6) reduces to

1 ≤ pj ≤ +∞;
1

p1

+
1

p2

= 1,

so that p1 and p2 are dual exponents. Consequently p′1 = p2 and p′2 = p1, which
imply κ1 = κ2 = κ = (p1p2)−1. But in this case the definition (6.4) of the constant
Cp implies Cp1 = 1/Cp2 , and the limit (6.28) takes the value

lim
t→∞

Ψ(t) =

(∫
Rd
|f1(x)| dx

)1/p1 (∫
Rd
|f2(x)| dx

)1/p2

. (6.34)

Note that in this case inequality (6.33) reduces simply to the classical Hölder in-
equality.
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Remark 16. As noticed by Brascamp and Lieb [28], Theorem 13 contains as special
case the best possible improvement to Young’s inequality. If n = 3 (6.33) reads∫

R2d

f(x)g(x− y)h(y)dx dy ≤ (CpCqCs)
d‖f‖Lp‖g‖Lq‖h‖Ls , (6.35)

where 1 ≤ p, q, s ≤ ∞, 1/p + 1/q + 1/s = 2, and equality holds when f, g, h are
suitable Gaussian functions. Choosing

h(y) = (f ∗ g(y))r−1

leads to an equivalent form of (6.35)

‖f ∗ g‖Lr ≤ (CpCqCr′)
d‖f‖Lp‖g‖Lq , (6.36)

namely the standard form of Young’s inequality [14, 28].
Also, repeated applications of (6.36) give

‖g1 ∗ g2 ∗ · · · ∗ gn‖r ≤ Cd
r′

n∏
j=1

Cd
pj
‖gj‖pj , (6.37)

where 1 ≤ pj ≤ ∞ and
∑n

j=1 1/pj = n− 1 + 1/r.

6.2 Young inequality and its reverse

Theorem 13 shows the monotonicity in time of the L∞-norm of the n-th convolution
of type (6.27), as well as its convergence towards an explicitly computable limit
value (in terms of the initial data). The key point in getting this result was the
dilation property of the functional Ψ(t).

To get a similar result for the Lr-norm of the n-th convolution w(x, t), r > 0,
and to obtain the (eventual) limit value, we need that the dilation property still
holds for ‖w(t)‖r. By applying the same scaling uj(x) → Vj(x) = adV (ax) to each
function uj(x) in (6.2) we get

V α1
1 ∗ V α2

2 ∗ · · · ∗ V αn
n (x) = adγuα1

1 ∗ uα2
2 ∗ · · · ∗ uαnn (ax) = adγw(ax),

where

γ =
n∑
j=1

αj − n+ 1

Hence ∫
Rd

(V α1
1 ∗ V α2

2 ∗ · · · ∗ V αn
n (x))r dx =

∫
Rd
adrγwr(ax) dx,
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and dilation invariance occurs if and only if rγ = 1, that is

α1 + α2 + · · ·+ αn = n− 1 +
1

r
. (6.38)

By analogy with condition (6.6), we will satisfy condition (6.38) in two separate
cases. The first refers to fix, for j = 1, . . . , n, positive real numbers pj and r such
that

pj < 1, r < 1;
n∑
j=1

1

pj
= n− 1 +

1

r
. (6.39)

The second refers to fix, for j = 1, . . . , n, positive real numbers pj and r such that

1 < pj ≤ ∞, 1 < r ≤ ∞;
n∑
j=1

1

pj
= n− 1 +

1

r
. (6.40)

In the following, we will analyze the time behaviour of ‖w(t)‖r in the case (6.39).
Then, the result for the case (6.40) will follow by the same line of proof.

Condition (6.39) implies that p′j < 0 for all j = 1, 2, . . . , n, and

1

pj
=
∑
i 6=j

1

p′i
+

1

r
.

Making use of the proof of Lemma 10, let us set, for j = 1, 2, . . . , n, the (positive)
coefficients of diffusion

κj =
1

pj|p′j|
. (6.41)

Then, by means of elementary computations we obtain

n∑
l=1

κl =
n∑
l=1

1

pl|p′l|
=
∑
i 6=j

1

p′i|p′j|
+

1

r|r′|
. (6.42)

Since the real numbers pj now satisfy condition (6.39), the quantity (6.18) considered
in Lemma 10, with the same choice (6.21) of the coefficients ai,j takes the form

L = −

(
n∑
j=1

Qj

p′j

)2

+
1

r|r′|
∑
i 6=j

ai,jQiQj. (6.43)

It is evident that in this case we cannot expect that L has a definite sign. However,
using expression (6.43) into (6.17) we obtain

∂w(x, t)

∂t
=

∫
u

1/p1
1 (x− x1) . . . u1/pn

n (xn−1)L(u1, · · ·un) dx1 · · · dxn−1 =

48



−
∫
u

1/p1
1 (x− x1) . . . u1/pn

n (xn−1)

(
n∑
j=1

Qj

p′j

)2

dx1 · · · dxn−1 +
1

r|r′|
∂2w

∂x2
. (6.44)

In fact, by formula (6.15)∫
u

1/p1
1 (x− x1) . . . u1/pn

n (xn−1)
∑
i 6=j

ai,jQiQj dx1 · · · dxn−1 =

∫
u

1/p1
1 (x− x1) . . . u1/pn

n (xn−1)
∑
i 6=j

ai,j
pipj

LiLj dx1 · · · dxn−1 =
∂2w

∂x2
.

Consequently, thanks to (6.44)

d

dt

∫
wr(x, t) dx = r

∫
wr−1(x, t)

∂w(x, t)

∂t
dx =

1

|r′|

∫
wr−1∂

2w

∂x2
dx+

−r
∫
wr−1

∫
u

1/p1
1 (x− x1) . . . u1/pn

n (xn−1)

(
n∑
j=1

Qj

p′j

)2

dx1 · · · dxn−1 dx =

−r
∫
wr−1 dx

∫
u

1/p1
1 (x− x1) . . . u1/pn

n (xn−1)

(
n∑
j=1

Qj

p′j

)2

dx1 · · · dxn−1+

(1− r)2

r

∫
wr−2

(
∂w

∂x

)2

dx (6.45)

Surprisingly, the expression on (6.45) has a sign. This is consequence of the following
Lemma, which generalizes a similar result that dates back to Blachman [20]. In case
of convolution of two functions, analogous result has been obtained recently in [82].
For the sake of simplicity, we will present the proof in dimension d = 1.

Lemma 17. Let w(x) be the (smooth) n-th convolution defined by (6.27). Then,
for any set of positive constants pj and r, and positive constants λj, j = 1, 2, . . . , n
such that

∑n
j=1 λj = 1 it holds

∫
wr−2

(
∂w

∂x

)2

≤
∫
wr−1(x)

∫
u

1/p1
1 (x− x1) . . . u1/pn

n (xn−1)

(
n∑
j=1

λj
pj
Lj

)2

. (6.46)

Moreover, equality in (6.46) holds if and only if any function uj, j = 1, 2, . . . , n is
multiple of a Gaussian function of variance λj/pj.
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Proof. By property (6.14), if we take a set of positive constants λj, j = 1, 2, . . . , n
such that

∑n
j=1 λj = 1 we can express the first derivative of w(x) as

w′(x) =

∫
u

1/p1
1 (x− x1) . . . u1/pn

n (xn−1)
n∑
j=1

λj
pj
Ljdx1 . . . dxn−1,

where Lj is defined as in (6.16). Therefore, by denoting

dµx(x1, . . . , xn−1) =
u

1/p1
1 (x− x1) . . . u

1/pn
n (xn−1)

w(x)
dx1 · · · dxn, (6.47)

we obtain
w′(x)

w(x)
=

∫ n∑
j=1

λj
pj
Ljdµx(x1, . . . , xn−1).

Note that, for any x ∈ R the measure dµ defined in (6.47) is a unit measure on
Rn−1, ∫

Rn−1

dµx(x1, x2, · · ·xn−1) = 1.

Jensen’s inequality then gives(
w′(x)

w(x)

)2

≤
∫ ( n∑

j=1

λj
pj
Lj

)2

dµx(x1, . . . , xn−1). (6.48)

Multiplying both sides of (6.48) by wr(x), and integrating over x proves the Lemma.
Note that, since equality in Jensen’s inequality holds if and only if the argument

is constant, equality in (6.48) holds if and only if
n∑
j=1

λj
pj
Lj = const.

Hence, the reasoning of the last part of Lemma 10 can be repeated to show that
there is equality in (6.46) if and only if any function uj, j = 1, 2, . . . , n is multiple
of a Gaussian function of variance λj/pj.

Let us return to formula (6.45). Conditions (6.39) imply that
n∑
j=1

1

|p′j|
=

1

|r′|
.

Hence
r

1− r

n∑
j=1

1

|p′j|
= 1.
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Choosing then

λj =
r

1− r
1

|p′j|
,

we obtain that (6.46) reads∫
wr−2

(
∂w

∂x

)2

dx ≤ r2

(1− r)2

∫
wr−1(x) dx·

·
∫
u

1/p1
1 (x− x1) . . . u1/pn

n (xn−1)

(
n∑
j=1

1

p′j
Qj

)2

dx1 · · · dxn. (6.49)

This shows that the quantity in (6.45) is negative. Hence, we proved that, if the
positive constants pj and r satisfy conditions (6.39), the functional

Λ(t) = ‖w(t)‖r =

(∫
(u

1/p1
1 ∗ u1/p2

2 ∗ · · · ∗ u1/pn
n )r(x, t) dx

)1/r

(6.50)

is monotone decreasing. Since we know that, in view of conditions (6.39) on the
constants pj, the functional Λ(t) is dilation invariant, we proved:

Theorem 18. Let Λ(t) be the functional (6.50), where the functions uj(x, t), j =
1, 2, . . . , n, are solutions to the heat equation corresponding to the initial values 0 ≤
fj(x) ∈ L1(Rd), d ≥ 1. Then, if for each j the exponents pj satisfy conditions (6.39)
and the diffusion coefficients are given by κj = (pj|p′j|)−1, Λ(t) is decreasing in time
from

Λ(0) =

(∫ (
f

1/p1
1 ∗ f 1/p2

2 ∗ · · · ∗ f 1/pn
n (x)

)r
dx

)1/r

to the limit value

lim
t→∞

Λ(t) = Cd
r′

n∏
j=1

Cd
pj

(∫
Rd
|fj(x)| dx

)1/pj

. (6.51)

The constants Cpj in (6.28) are defined by

C2
p =

p1/p

|p′|1/p′
, (6.52)

Moreover, Λ(0) = limt→∞ Λ(t) if and only if fj(x), j = 1, 2, . . . , n, is a multiple of
a Gaussian density of variance dκj.
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Proof. We know that the functional Λ(t) is monotonically decreasing from Λ(t =
0), unless the initial densities are Gaussian functions with the right variances. In
addition, Λ(t) is dilation invariant. As in Theorem 13, let us scale each function
uj(x), j = 1, 2, . . . , n, according to (7.36). Therefore, by the central limit property,
passing to the limit one obtains

lim
t→∞

Λ(t) =
n∏
j=1

(∫
Rd
|fj(x)| dx

)1/pj ∥∥M1/p1
κ1
∗M1/p2

κ2
∗ · · · ∗M1/pn

κn

∥∥
r
. (6.53)

The value of the integral can be evaluated by using formula (6.31) of Theorem 13,
with the additional difficulty to evaluate the norm of a Gaussian in Lr. Thanks to
condition (6.39) we obtain

∥∥M1/p1
κ1
∗M1/p2

κ2
∗ · · · ∗M1/pn

κn

∥∥
r

= Cd
r′

n∏
j=1

Cd
pj
.

This concludes the proof of the theorem.

The computations leading to Theorem 18 can be repeated step-by-step in the
case in which the pj’s and r satisfy condition (6.40). In this case, however, the sign
of L changes, and we obtain

Theorem 19. Let Λ(t) be the functional (6.50), where the functions uj(x, t), j =
1, 2, . . . , n, are solutions to the heat equation corresponding to the initial values 0 ≤
fj(x) ∈ L1(Rd), d ≥ 1. Then, if for each j the exponents pj satisfy conditions (6.40)
and the diffusion coefficients are given by κj = (pjp

′
j)
−1, Λ(t) is increasing in time

from

Λ(0) =

(∫ (
f

1/p1
1 ∗ f 1/p2

2 ∗ · · · ∗ f 1/pn
n (x)

)r
dx

)1/r

to the limit value

lim
t→∞

Λ(t) = Cd
r′

n∏
j=1

Cd
pj

(∫
Rd
|fj(x)| dx

)1/pj

. (6.54)

The constants Cpj in (6.28) are defined by (6.4). Moreover, Λ(0) = limt→∞ Λ(t) if
and only if fj(x), j = 1, 2, . . . , n, is a multiple of a Gaussian density of variance
dκj.

Remark 20. The monotonicity property of the functional Λ(t) defined by (6.50) have
been noticed first by Bennett and Bez [16] by means of a different approach. Con-
sequently, the results of both Theorems 18 and 19 also follow from their arguments.
We note, however, that the dilation invariance property of Λ(t), which is at the basis
of the direct proof of the Theorems, has not explicitly taken into account before.
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Remark 21. Theorems 18 and 19 show the monotonicity properties of the Lr-norm
of the n-th convolution of powers of solutions to the heat equation. As discussed at
the end of Theorem 13, apart from its intrinsic physical interest, this monotonicity
can be rephrased in the form of inequalities for convolutions in sharp form. In
particular, when n = 2, Theorem 18 contains the sharp form of Young inequality in
the so-called reverse case

‖f ∗ g‖r ≥ (CpCqCr′)
d‖f‖p‖g‖q, (6.55)

where 0 < p, q, r < 1 while 1/p+ 1/q = 1 + 1/r, and Cp is defined by (6.52).

Remark 22. A particular case of Theorem 19 implies Babenko’s inequality [3] (cf.
also Beckner [14]):

‖Ff‖p′ ≤ Cd
p‖f‖p, (6.56)

where Cp is defined as in (6.4), p′ is an even integer p′ = 2, 4, 6, . . . , and Ff denotes
the Fourier transform of f . Here the Fourier transform is defined for integrable
functions by

Ff(ξ) =

∫
Rd

exp {−2πix · ξ} f(x) dx

Inequality (6.56) follows by choosing in Theorem 19 r = 2 and 1/pj = 1/p =
(2n−1)/2n, j = 1, 2, . . . , n, which are such that condition (6.40) is satisfied. In this
case, in fact, by setting fj = f 2n/(2n−1), for j = 1, 2, . . . , n, we obtain that f satisfies
the inequality ∫ ( f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸

n

)2 dx

1/2

≤ Cdn
p ‖f‖np .

Since

F

 f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
n

 = (Ff)n ,

by Plancherel’s identity we conclude that(∫
(Ff)2n dξ

)1/(2n)

≤ Cd
p‖f‖p. (6.57)

We remark that, as explicitly mentioned in [16], the monotonicity of the quantity
in (6.57) also follows from the results in [18] (cf. also [16]). A further inside into
Haussdorff–Young inequality, with an interesting discussion about the behavior in
time of ‖Fu1/p(t)‖p′ can be found in [17].
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6.3 Monotonicity and Prékopa–Leindler inequality

The analysis of the preceding section shows the monotonicity properties of the Lr
norm of the n-th convolution of powers of the solutions to the heat equation. In
particular Theorem 13 covers the L∞ case, while Theorem 18 (respectively Theorem
19) cover the case r < 1 (respectively r > 1). Two limit cases remain to be examined,
namely the cases r → 0 and r → 1. Here we will briefly discuss the first case, leaving
the second to the next section.

Given a set of positive constants qj, j = 1, 2, . . . , n, such that
∑n

j=1 1/qj = 1,
and a constant N � 1, we choose in Theorem 18

pj =
qj
N
, r =

1

N − (n− 1)
. (6.58)

Then, if N ≥ maxj qj + n, conditions (6.39) are satisfied and the monotonicity of
Λ(t)r is guaranteed. On the other hand, if (6.58) holds, one can write

w(x)r =
(
u
N/q1
1 ∗ uN/q22 ∗ · · · ∗ uN/qnn (x, t)

)1/(N−n+1)

=

(∫ (
u1(x− x1)1/q1 · · ·un(xn−1)1/qn

)N
dx1 · · · dxn−1

)1/(N−n+1)

. (6.59)

We can render the dependence of Λ(t)r on N explicit by setting∫
w(x)r dx = ΥN(t),

where

ΥN(t) =

(∫ (
u1(x− x1)1/q1 · · ·un(xn−1)1/qn

)N
dx1 · · · dxn−1

)1/(N−n+1)

. (6.60)

By Theorem 18, ΥN(t) is monotonically decreasing in time for all values of N ≥
maxj qj + n, provided the coefficients of diffusion are the correct ones. Moreover,
note that, for any given N , the coefficients of diffusions κj depend on it, and

κNj =
N(N − qj)

q2
j

.

On the other hand, Theorem 18 remains true if we multiply all coefficients of diffusion
by the same constant. Therefore, without affecting the monotonicity of ΥN(t) we
can fix the coefficients of diffusion equal to

κ̃Nj =
N(N − qj)

N2

1

q2
j

=
1

q2
j

− 1

Nqj
. (6.61)
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By letting N → ∞, the coefficients of diffusion κ̃Nj tend to the values κ̃∞j = 1/q2
j .

Consequently, recalling expression (6.59), for each t > 0, as N → ∞ we have
pointwise convergence of w(x, t)r(N), and

lim
N→∞

w(x, t)r(N) = ess supx1,...,xn−1
u1(x− x1, t)

1/q1 · · ·un(xn−1, t)
1/qn dx, (6.62)

where now uj(x, t), for j = 1, 2 . . . , n is solution to the heat equation (3.1) with
diffusion coefficient 1/q2

j .
Suppose now that the initial data fj(x) in the heat equation are bounded and

have bounded support. Then, they are bounded from above by multiples of some
Gaussian functions, that is, for j = 1, 2, . . . , n

fj(x) ≤ AjM2σj(x),

where Aj and σj are suitable positive constants. In this case, the solution to the
heat equation with diffusion coefficient κ̃Nj satisfies the bound

uj(x, t) = fj ∗M2κ̃Nj t
(x) ≤ AjM2(σj+κ̃Nj t)

. (6.63)

Consequently,

w(x, t)r ≤

(
n∏
j=1

A
pj
j M

p1
2κ1t
∗Mp2

2κ2t
∗ · · · ∗Mpn

2κnt

)r

,

where the constants pj and r are given as in (6.58), and

κjt = σj +

(
1

q2
j

− 1

Nqj

)
t.

Then, we easily obtain that, for sufficiently large N ,

wr(x, t) ≤ C1(t)M2C2(t)(x),

where the positive functions C1(t) and C2(t) do not depend on N . By the dominated
convergence theorem it follows that

lim
N→∞

ΥN(t) = Υ(t),

where
Υ(t) =

∫
ess supx1,...,xn−1

u1(x− x1)1/q1 · · ·un(xn−1)1/qn dx. (6.64)

Moreover, Υ(t) is monotonically decreasing in time if the coefficients of diffusion in
the heat equations are given by κj = 1/q2

j . Since the functional Υ(t) is invariant
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under dilation, we can pass to the limit to find the lower bound. By the same
argument of the proof of Theorem 13, we conclude that the limit value is obtained
by setting

uj(x) =

∫
fj(x) dxM1/q2j

.

Explicit computations then show that

lim
t→∞

Υ(t) =
n∏
j=1

q
d/qj
j

(∫
fj(x) dx.

)1/qj

(6.65)

The choice fj(x) = gj(qjx) then implies∫
Rd
fj(x)1/qj dx = q

−d/qj
j

(∫
Rd
gj(x)1/qj dx

)1/qj

.

The case of general data follows by a density argument. We conclude with the
following

Theorem 23. Let Υ(t) denote the functional (6.64) where the functions uj(x, t),
j = 1, 2, . . . , n, are solutions to the heat equation corresponding to the initial values
0 ≤ fj(x) ∈ L1(Rd), d ≥ 1. Then, if exponents qj satisfy

∑n
j=1 q

−1
j = 1, and the

diffusion coefficients are given by κj = q−2
j , Υ(t) is decreasing in time from

Υ(0) =

∫
ess supx1,...,xn−1

f1(q1(x− x1))1/q1 · · · fn(qn(xn−1))1/qn dx

to the limit value

lim
t→∞

Υ(t) =
n∏
j=1

(∫
Rd
|fj(x)| dx

)1/qj

. (6.66)

Moreover, Υ(0) = limt→∞Υ(t) if and only if fj(x), j = 1, 2, . . . , n, is a multiple of
a Gaussian density of variance dκj.

Remark 24. If n = 2 the monotonicity of the functional Υ proven in Theorem 23
implies the classical Prékopa–Leindler inequality. In this case, in fact one obtains
the Prékopa–Leindler theorem [60, 72, 73] that reads

‖h‖1 ≥ ‖f‖λ1‖g‖1−λ
1 ,

where

h(x|f, g) = ess supyf
(
x− y
λ

)λ
g

(
y

1− λ

)1−λ

.

The derivation of Prékopa–Leindler inequality from the Young’s inequality has been
obtained by Brascamp and Lieb [28]. Our result, however, enlightens a new meaning
of this inequality, that is viewed as a consequence of the monotonicity of a Lyapunov
functional of the convolution of two powers of the solution to the heat equation.
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Remark 25. Theorem 23 is a corollary of the general result of Theorem 18. However,
a direct proof of monotonicity could be possible by looking at the functional (6.64)
directly.

6.4 Another proof of entropy power inequality

As noticed by Lieb [61], the entropy power inequality (1.4) can also be proven as a
limit case of the Young inequality in the sharp form (6.36), by letting the parameters
p, q and r tend to one. This result can be obtained as follows. Let 0 < a < 1 denote
a fixed constant. For a given (small) positive χ, let us consider Young’s inequality
(6.36) with

r = 1 + χ, p =
1 + χ

1 + aχ
, q =

1 + χ

1 + (1− a)χ
, (6.67)

which are such that
1

r
+ 1 =

1

p
+

1

q
.

Note that, as χ→ 0, p, q, r → 1. Let f, g, h be smooth probability densities, and let
us define z(χ) = ‖h‖1+χ. Then z(0) = 1, and thanks to the identity

z(χ) = exp

{
1

1 + χ
log

∫
Rd
h1+χ dx

}
,

one evaluates straightforwardly

z′(χ) = z(χ)

[
− 1

(1 + χ)2
log

∫
h1+χ +

1

1 + χ

∫
h1+χ log h∫
h1+χ

]
. (6.68)

Hence,

z′(0) =

∫
Rd
h log h dx = −H(h).

Owing to the smoothness of f ∗ g, we can expand ‖f ∗ g‖1+χ in Taylor’s series of χ
up to order one, to obtain

‖f ∗ g‖1+χ = 1−H(f ∗ g)χ+ o1(χ), (6.69)

where o1(χ) is such that o1(χ)/χ → 0 as χ → 0. Analogous computations for the
function

ω(χ) = exp

{
d log(CpCqCr′) +

1

p
log

∫
Rd
fp dx+

1

q
log

∫
Rd
gq dx

}
where p and q are defined in (6.67), allow to conclude that

ω′(0) =
d

2
(a log a+ (1− a) log(1− a))− (1− a)H(f)− aH(g). (6.70)
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Therefore, expanding again in Taylor’s series of χ, we obtain

ω(χ) = 1 +

(
d

2
(a log a+ (1− a) log(1− a))− (1− a)H(f)− aH(g)

)
χ+ o2(χ),

(6.71)
where again o2(χ)/χ → 0 as χ → 0. It is interesting to remark that the sharp
constant (CpCqCr′)

d furnishes an important contribution to formula (6.69). This
contribution can be derived straightforwardly using the identity

d

dχ

(
1

p

)
= − d

dχ

(
1

p′

)
.

This gives

d

dχ
logC2

p =
d

dχ

(
1

p
log p− 1

p′
log p′

)
=

(
−2 + log

p

p′

)
d

dχ

(
1

p

)
=

(−2 + log(p− 1))
d

dχ

(
1

p

)
=

1− a
(1 + χ)2

(
2− log

(1− a)χ

1 + aχ

)
,

and

d

dχ
log(CpCqCr′)

2 =
1

(1 + χ)2

(
(1− a) log

1− a
1 + aχ

+ a log
a

1 + (1− a)χ

)
.

In conclusion we have the following [61]:

Lemma 26. Let the probability densities f(x) and g(x) x ∈ Rd possess bounded
Shannon’s entropy functional. Then, for any positive constant 0 < a < 1 the follow-
ing inequality holds

H(f ∗ g) ≥ (1− a)H(f) + aH(g)− d

2
(a log a+ (1− a) log(1− a)) . (6.72)

Proof. The proof is a direct consequence of the sharp Young inequality (6.36). With
our notations, Young inequality can be rephrased as z(χ) − ω(χ) ≤ 0. Using ex-
pansions (6.69) and (6.71), and letting χ → 0, inequality (6.72) follows for smooth
densities. A standard density argument then concludes the proof.

Shannon’s entropy power inequality then follows by maximizing the right-hand
side of inequality (6.72). A simple computation shows that the right-hand side, say
A(a,H(f), H(g)) attains the maximum when

a = ā =
exp {2 (H(g)−H(f)) /d}

1 + exp {2 (H(g)−H(f)) /d}
, (6.73)
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and, for a = ā

A(ā, H(f), H(g)) =
d

2
log {exp (2H(f)/d) + exp (2H(g)/d)} . (6.74)

With analogous computations, Shannon’s entropy-power inequality can be easily
extended to a convolution of n probability densities by means of Theorem 19.

While the result of Lieb [61] outlines an interesting connection between Young’s
inequality and the entropy power inequality, the proof of EPI via Young’s inequality
does not contain any connection with our idea about monotonicity properties of
Lyapunov functionals for the solution to the heat equation. Indeed, a much simpler
direct proof is available by making use of this idea. For the moment, let us fix the
dimension equal to 1.

Let as usual w(x, t) denote the n-th convolution

w(x, t) = u1 ∗ u2 ∗ · · · ∗ un(x, t), (6.75)

where the functions uj(x, t), j = 1, 2, . . . , n, are solutions to the heat equations, with
coefficients of diffusion κj, corresponding to the initial probability densities 0 ≤ fj(x)
with bounded Shannon’s entropy. It is important to note that, in view of the closure
property of the Gaussian density (1.3) with respect to convolutions, w(x, t) itself
satisfies the heat equation (3.1) with coefficient of diffusion κ =

∑n
j=1 κj. For any

set of positive values γj, j = 1, 2, . . . , n, such that
∑n

j=1 γj = 1, we introduce the
functional

Φ(t) = H(w(t))−
n∑
j=1

γjH(uj(t)). (6.76)

Let fα be the scaled function defined as in (8.3). Since, for α > 0

H(fα) = H(f)− logα,

the functional Φ(t) is dilation invariant. Given t > 0, let us evaluate the time
derivative of Φ(t). We obtain

d

dt
H(w(t)) = κI(w(t))−

n∑
j=1

γjκjI(uj(t)), (6.77)

where as usual I(f) is the Fisher information of the density f , defined in (1.8). By
setting in Lemma 17 r = 1 and pj = 1, j = 1, 2, . . . , n, which satisfy conditions
(6.40), inequality (6.46) assumes the form

I(w) ≤
∫
dx

∫
u1(x− x1) . . . un(xn−1)

(
n∑
j=1

λjLj

)2

=
n∑
j=1

λ2
jI(uj). (6.78)
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Formula (6.78) follows simply owing to the definition of Lj, and applying Fubini’s
theorem. The proof of (6.78) in the case of the convolution of two functions goes back
to Blachman [20], and it is contained into Lemma 5, with r = 1. Thanks to (6.78),
by setting the constants γj = kj/k, we have at once that these constants satisfy the
condition

∑n
j=1 γj = 1, and that the sign of the derivative (6.77), consequent to this

choice, is negative, unless the functions uj are Gaussian. Since the functional Φ(t)
is dilation invariant, we can pass to the limit t→∞ obtaining

lim
t→∞

Φ(t) = H(Mκ)−
n∑
j=1

κj
κ
H(Mκj). (6.79)

Since
H(Mσ) =

1

2
log 2πσ,

we obtain from (6.79)

lim
t→∞

Φ(t) = −1

2

n∑
j=1

κj
κ

log
κj
κ
. (6.80)

Clearly, the same result holds in dimension d ≥ 1. Hence we proved the following:

Theorem 27. Let γj ≥ 0, j = 1, 2, . . . , n be such that
∑n

j=1 γj = 1, and let Φ(t) be
the functional (6.76), where the functions uj(x, t), j = 1, 2, . . . , n, are solutions to
the heat equation corresponding to the initial probability densities fj(x) ∈ L1(Rd),
d ≥ 1. Then, if the diffusion coefficients κj = Cγj, j = 1, 2, . . . , n and C > 0, Φ(t)
is decreasing in time from

Φ(0) = H(f1 ∗ f2 ∗ · · · ∗ fn)−
n∑
j=1

γjH(fj)

to the limit value

lim
t→∞

Φ(t) = −d
2

n∑
j=1

γj log γj. (6.81)

Moreover, Φ(0) = limt→∞Φ(t) if and only if fj(x), j = 1, 2, . . . , n, is a Gaussian
density of variance dκj.

Theorem 27 shows the monotonicity of a dilation invariant functional linked to
the Shannon’s entropy of a n-th convolution of probability density functions. A
direct consequence of this monotonicity is the entropy power inequality. Indeed,
the monotonicity of Φ(t) implies that, for any choice of the constants γj, with∑n

j=1 γj = 1

H(f1 ∗ f2 ∗ · · · ∗ fn) ≥
n∑
j=1

γjH(uj(t))−
d

2

n∑
j=1

γj log γj. (6.82)
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Inequality (6.82) generalizes to n functions the result of Lemma 26. Shannon’s
entropy power inequality then follows by maximizing the right-hand side of (6.82)
over the sequence γj.

7 Further information inequalities
In this section we prove some recent generalizations of information inequalities,
which follows by considering into the classical entropy power inequality density
functions of particular type. The interest in this type of results is due to the fact
that, while there are many proof of the entropy power inequality, to quantify the
gap in this inequality is very difficult. In the rest of this section, we refer to the
recent papers [85, 87]. The main interest here is to investigate about bounds for
convolutions for the functional

J(X) = J(f) =
d∑

i,j=1

∫
{f>0}

[∂ij(log f)]2 f dx =

d∑
i,j=1

∫
{f>0}

[
∂ijf

f
− ∂if∂jf

f 2

]2

f dx.

(7.1)

We remark that, given a random vector X in Rd, d ≥ 1, the functional J(X) is
well-defined for a smooth, rapidly decaying probability density f(x) such that log f
has growth at most polynomial at infinity. As proven in Section 5.2 (cf. also Villani
in [91]), J(X) is related to Fisher information by the relationship

J(X + Z2t) = −2
d

dt
I(X + Z2t). (7.2)

7.1 Log-concave functions and scores

We recall that a function f on Rd is log-concave if it is of the form

f(x) = exp {−Φ(x)} , (7.3)

for some convex function Φ : Rd → R ∪ {+∞}. A prime example is the Gaussian
density, where Φ(x) is quadratic in x. Further, log-concave distributions include
Gamma distributions with shape parameter at least one, Beta(α, β) distributions
with α, β ≥ 1, Weibull distributions with shape parameter at least one, Gumbel, lo-
gistic and Laplace densities (see, for example, Marshall and Olkin [68]). Log-concave
functions have a number of properties that are desirable for modelling. Marginal
distributions, convolutions and product measures of log-concave distributions and
densities are again log-concave (cf. for example, Dharmadhikari and Joag-Dev [48]).
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A main consequence of log-concavity, which is at the basis of most computations
in this paper, is the following. Consider the heat equation (3.1) in Rd, d ≥ 1. If
Mσ(x) denotes the Gaussian density defined as in (1.3), the solution at time t to the
heat equation (3.1) coincides with u = f ∗M2κt.

Assume that the initial datum f(x) is a non-negative, log-concave integrable
function. Then, at each subsequent time t > 0, the solution u(·, t) to the heat
equation, convolution of the log-concave functions f and the Gaussian density M2κt

defined in (1.3), is a non-negative integrable log-concave function. In other words,
the heat equation propagates log-concavity. This simple remark, allows to proof
things by using smooth functions with fast decay at infinity.

It is interesting to notice that the expressions of Shannon’s entropy H, Fisher
information I and the functional J defined in (7.1) take a very simple form if evalu-
ated in correspondence to log-concave densities f , when written as in (7.3). In this
case, if X is a random vector in Rd with density f , these functionals can be easily
recognized as moments of Φ(X) or of its derivatives. It is immediate to reckon that
Shannon’s entropy H coincides with

H(f) =

∫
Rd

Φ(x)f(x) dx. (7.4)

The Fisher information I reads

I(f) =

∫
Rd
|∇Φ(x)|2f(x) dx =

n∑
i=1

∫
Rd
|∂iΦ(x)|2f(x) dx, (7.5)

and, last, J takes the form

J(f) =
d∑

i,j=1

∫
Rd
|∂ijΦ(x)|2f(x) dx. (7.6)

Thus, the functionals are well-defined in terms of the convex function Φ character-
izing the log-concave function f .

For the log-concave Gaussian density (1.3)

Φ(x) =
|x|2

2σ
+
d

2
log 2πσ,

which implies, for i, j = 1, 2, . . . , d

∂iΦ(x) =
xi
σ
, ∂ijΦ(x) =

1

σ
δij,

where, as usual, δij is the Kronecker delta.
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According to the standard definition, given a random vector X in Rd distributed
with with absolutely continuous probability density function f(x)

ρ(X) =
∇f(X)

f(X)
, (7.7)

denotes the (almost everywhere defined) score function of the random variable [44]
(cf. also [67] for further details). The score has zero mean, and its variance is just
the Fisher information. For log-concave densities, which are expressed in the form
(7.3)

ρ(X) = −∇Φ(X) (7.8)

In view of definition (7.1) and (7.7) one can think to introduce the concept of second-
order score of a random vector X in Rd, defined by the symmetric Hessian matrix
H(X) of − log f(X), with elements

Ψij(X) =
∂if∂jf(X)

f 2(X)
− ∂ijf(X)

f(X)
. (7.9)

Then, as the Fisher information coincides the second moment of the score function,
the functional J(X) in (7.1) is expressed by the moment of the trace of the product
matrix H(X) · H(X). For a log-concave function, the element Ψi,j of the Hessian
matrix H(X) defining the second-order score function takes the simple expression

Ψij(X) = ∂ijΦ(X). (7.10)

Note that a Gaussian vector Mσ is uniquely defined by a linear score function
ρ(Mσ) = Mσ/σ and by a constant second-order score matrix H(Mσ) = Id/σ.

7.1.1 The one-dimensional case

For the moment, let us fix d = 1. In the rest of this section, we will only consider
smooth log-concave probability densities f(x) (cf. definition (7.3)) such that Φ(x) =
− log f(x) has growth at most polynomial at infinity. In order not to worry about
derivatives of logarithms, which will often appear in the proof, we may also impose
that

|Φ(i)(x)/Φ(x)| ≤ C(1 + |x|2), i = 1, 2 (7.11)

for some positive constant C. The general case will easily follow by a density ar-
gument [64]. If the convex function Φ satisfies (7.11), one can easily justify that,
if

k(x) = f ∗ g(x).

denoted the convolution product of the probability densities f and g, k(i)(x) =
(f ∗ g)(i)(x) = (f (i) ∗ g)(x), i = 1, 2.
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Let i = 1. For any given ε > 0 we have

k(x+ ε)− k(x)

ε
=

∫
R

f(x+ ε− y)− f(x− y)

ε
g(y) dy.

Note that, by the dominated convergence theorem, the right-hand side converges to
(f ′ ∗ g)(x) as ε→ 0 if f is a Lipschitz function, for which it suffices to show that |f ′|
is bounded. Since f(x) = e−Φ(x), |f ′(x)| = |Φ′(x)|e−Φ(x). Then, if x is sufficiently
large, Φ(x) > 0 and Φ(x)→∞ as x→ +∞ by the convexity of Φ and the fact that
f is a probability density. Thus we have Φ(x) ≥ Dx for some positive number D
and all sufficiently large x. Therefore we have

|f ′(x)| ≤ |Φ′(x)|e−Dx ≤ C(1 + |x|2)|Φ(x)|e−Dx,

where the last inequality follows by the assumption on Φ. By the fact that Φ has
growth at most polynomial at infinity, we have |f ′(x)| → 0 as x → +∞. By the
same method we can prove that |f ′(x)| → 0 as x→ −∞ as well, which means that
|f ′| is bounded. A similar argument then applies to the second-order derivative of
k(x).

The main argument here is due to Blachman [20], who proved in this way in-
equality (4.7). Since the result that follows constitute a generalization of this result,
we give the complete proof. Since for any pair of positive constants a, b we have the
identity

(a+ b)k′(x) = a

∫
R
f ′(x− y)g(y) dy + b

∫
R
f(x− y)g′(y) dy,

dividing by k(x) > 0 we obtain

(a+ b)
k′(x)

k(x)
=

∫
R

(
a
f ′(x− y)

f(x− y)
+ b

g′(y)

g(y)

)
dµx(y).

We denoted
dµx(y) =

f(x− y)g(y)

k(x)
dy.

Note that, for every x ∈ R, dµx is a probability measure on R. Consequently, by
Jensen’s inequality

(a+ b)2

(
k′(x)

k(x)

)2

≤
∫
R

(
a
f ′(x− y)

f(x− y)
+ b

g′(y)

g(y)

)2

dµx(y). (7.12)

On the other hand, by analogous argument, for any pair of positive constants a, b
we have the identity

(a+ b)2k′′(x) = a2

∫
R
f ′′(x− y)g(y) dy+
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b2

∫
R
f(x− y)g′′(y) dy + 2ab

∫
R
f ′(x− y)g′(y) dy.

Thus, dividing again by k(x) > 0 we obtain

(a+ b)2k
′′(x)

k(x)
=

∫
R

(
a2f

′′(x− y)

f(x− y)
+

b2 g
′′(y)

g(y)
+ 2ab

f ′(x− y)

f(x− y)

g′(y)

g(y)

)
dµx(y).

(7.13)

If we subtract identity (7.13) from inequality (7.12) we conclude with the inequality

(a+ b)2

[(
k′(x)

k(x)

)2

− k′′(x)

k(x)

]
= −(a+ b)2(log k(x))′′ ≤

−
∫
R

{
a2(log f(x− y))′′ + b2(log g(y))′′

}
dµx(y).

(7.14)

It is important to note that, since the functions f, g (and consequently k) are log-
concave, both sides of inequality (7.14) are non-negative. Therefore, taking the
square in (7.14), and using once more Jensen’s inequality we end up with the in-
equality

(a+ b)4 [(log k(x))′′]
2 ≤∫

R

{
a2(log f(x− y))′′ + b2(log g(y))′′

}2
dµx(y).

(7.15)

Multiplying both sides of (6.48) by k(x), and integrating over R yields the inequality

(a+ b)4J(k) ≤ a4J(f) + b4J(g) + 2a2b2I(f)I(g).

Indeed, in one dimension, definition (7.1) of the functional J(·) reduces to

J(f) =

∫
{f>0}

[log f(x))′′]
2
f(x) dx. (7.16)

Moreover ∫
dx

∫
dy log f(x− y))′′(log g(y))′′f(x− y)g(y) =∫

dx

∫
dy

(
(f ′(x− y)

f(x− y)

)2(
g′(y)

g(y)

)2

f(x− y)g(y) =

I(f)I(g),

where I(f) (respectively I(g)) denotes the Fisher information of f (respectively g)

I(f) =

∫
{f>0}

(f ′(x))2

f(x)
dx.
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The cases of equality in (7.12) and (7.15) are easily found resorting to the same
argument used in the proof of Lemma 5. As in Lemma 5, the conclusion is that
there is equality in (7.52) if and only if f and g are Gaussian densities, of variances
ca and cb, respectively, for any given positive constant c. Note moreover that when
f and g are Gaussian densities the coefficient of the probability measure dµx(y) in
the integral appearing in (7.14) is constant, which guarantees equality in (6.48). We
proved

Theorem 28. Let f(x) and g(x) be log-concave probability density functions with
values in R, such that both J(f) and J(g), as given by (7.16) are bounded. Then,
also J(f ∗ g) is bounded, and for any pair of positive constants a, b

J(f ∗ g) ≤ a4

(a+ b)4
J(f) +

b4

(a+ b)4
J(g) + 2

a2b2

(a+ b)4
I(f)I(g). (7.17)

Moreover, there is equality in (7.17) if and only if, up to translation and dilation f
and g are Gaussian densities, f(x) = Ma(x) and g(x) = Mb(x).

Remark 29. The condition of log-concavity enters into the proof of Theorem 28
when we pass from inequality (7.14) to inequality (6.48). Without the condition of
log-concavity, in fact, the left-hand side of (7.14) has no sign, and (6.48) does not
hold true. Of course, this fact does not exclude the possibility that inequality (7.17)
could hold also for other classes of probability densities, but if any, another method
of proof has to be found, or a counterexample is needed.

Theorem 28 allows to prove a new inequality for the functional J , in the form of
the Blachman–Stam inequality (1.9). To this aim, note that, for any pair of positive
constants a, b

2
√
J(f)J(g) ≤ a

b
J(f) +

b

a
J(g).

Moreover, as proven first by Dembo [46], and later on by Villani [91] with a proof
based on McKean ideas [69]

J(f) ≥ I(f)2. (7.18)

The proof of (7.18) is immediate and enlightening. Given the random variable X
distributed with a sufficiently smooth density f(x), consider the (almost everywhere
defined) second-order score variable (cf. definition (7.9))

Ψ(X) =

(
f ′(X)

f(X)

)2

− f ′′(X)

f(X)
. (7.19)

Then, denoting with 〈Y 〉 the mathematical expectation of the random variable Y ,
under condition (7.11) on Φ it holds

I(f) = I(X) = 〈Ψ(X)〉, J(f) = J(X) = 〈Ψ(X)2〉.
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Then, (7.18) coincides with the standard inequality 〈Ψ(X)2〉 ≥ 〈Ψ(X)〉2. Note
moreover that equality in (7.18) holds if and only if Ψ(X) is constant, or, what is
the same, if

d2

dx2
log f(x) = c.

As observed in the proof of Theorem 28 this implies that X is a Gaussian variable.
Grace to inequality (7.18)

2I(f)I(g) ≤ 2
√
J(f)J(g) ≤ a

b
J(f) +

b

a
J(g). (7.20)

Using (7.20) to bound from above the last term in inequality (7.17) we obtain

J(f ∗ g) ≤ a3

(a+ b)3
J(f) +

b3

(a+ b)3
J(g). (7.21)

Optimizing over z = a/(a + b), with z ∈ [0, 1], one finds that the minimum of the
right-hand side is obtained when

z = z̄ =

√
J(g)√

J(f) +
√
J(g)

, (7.22)

Thus we proved

Corollary 30. Let X and Y be independent random variables with log-concave
probability density functions with values in R, such that both J(X) and J(Y ), as
given by (7.16) are bounded. Then

1√
J(X + Y )

≥ 1√
J(X)

+
1√
J(Y )

. (7.23)

Moreover, there is equality if and only if, up to translation and dilation X and Y
are Gaussian variables.

Remark 31. Inequality (7.17) implies in general a stronger inequality in Corollary
30. In fact, to obtain inequality (7.21) we discarded the (non-positive) term

−Ra,b(f, g) =
a2b2

(a+ b)4

(
2I(f)I(g)− a

b
J(f)− b

a
J(g)

)
. (7.24)

By evaluating the value of R(f, g, a, b) in z = z̄, one shows that inequality (7.23) is
improved by the following

1√
J(X + Y )

≥

(
1√
J(X)

+
1√
J(Y )

)
R(X, Y ), (7.25)
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where

1 ≤ R(X, Y ) =

(
1− 2

√
J(X)

√
J(Y )− I(X)I(Y )

(
√
J(X) +

√
J(Y ))2

)−1/2

.

As before, R(X, Y ) = 1 if and only if X and Y are Gaussian random variables.
Note that the non-negative remainder R(f, g, a, b) can be bounded from below

in terms of other expressions. In particular, one of these bounds is particularly
significative. Adding and subtracting to the right-hand side of (7.24) the positive
quantity aI2(f)/b+ bI2(g)/a one obtains the bound

Ra,b(f, g) ≥ a2b2

(a+ b)4

[
a

b
(J(f)− I2(f)) +

b

a
(J(g)− I2(g))

]
. (7.26)

This implies that (7.21) can be improved by the following

J(f ∗ g) ≤ a3

(a+ b)3
J(f) +

b3

(a+ b)3
J(g)+

− a2b2

(a+ b)4

[
a

b
(J(f)− I2(f)) +

b

a
(J(g)− I2(g))

]
.

(7.27)

7.1.2 The general case

With few variants, the proof in the multi-dimensional case follows along the same
lines of the one-dimensional one. Let f(x) and g(x), with x ∈ Rd be multidimen-
sional log-concave functions, and let k(x) = f∗g(x) be their log-concave convolution.
In addition, let us suppose that both f(x) and g(x) are sufficiently smooth and de-
cay at infinity in such a way to justify computations. To simplify notations, given a
function f(x), with x = (x1, x2, . . . , xd) ∈ Rd, n > 1, we denote its partial derivatives
as

fi(x) = ∂if(x), fij(x) = ∂ijf(x).

For any given vector α = (α1, α2, . . . , αn), and positive constants a, b we have the
identity

(a+ b)
d∑
i=1

αi
ki(x)

k(x)
=

∫
Rd

d∑
i=1

αi

(
a
fi(x− y)

f(x− y)
+ b

gi(y)

g(y)

)
dµx(y),

where now, for every x ∈ Rd

dµx(y) =
f(x− y)g(y)

k(x)
dy,
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is a probability measure on Rd. Therefore, by Jensen’s inequality

(a+ b)2

(
d∑
i=1

αi
ki(x)

k(x)

)2

= (a+ b)2

d∑
i,j=1

αiαj
ki
k

kj
k
≤

∫ d∑
i,j=1

αiαj

(
a2fi(x− y)

f(x− y)

fj(x− y)

f(x− y)
+ b2 gi(y)

g(y)

gj(y)

g(y)
+

+2ab
fi(x− y)

f(x− y)

gj(y)

g(y)

)
dµx(y).

(7.28)

Likewise, thanks to the identity

(a+ b)2kij(x)

k(x)
=

∫ (
a2fij(x− y)

f(x− y)
+ b2 gij(y)

g(y)
+

+2ab
fi(x− y)

f(x− y)

gj(y)

g(y)

)
dµx(y),

we have

(a+ b)2

d∑
i,j=1

αiαj
kij(x)

k(x)
=

∫ d∑
i,j=1

αiαj

(
a2fij(x− y)

f(x− y)
+ b2 gij(y)

g(y)
+

+ 2ab
fi(x− y)

f(x− y)

gj(y)

g(y)

)
dµx(y).

(7.29)

Finally, subtracting (7.29) from (7.28), for any given vector α = (α1, α2, . . . , αn),
and positive constants a, b we obtain the inequality

(a+ b)2

d∑
i,j=1

αiαj

(
ki(x)

k(x)

kj(x)

k(x)
− kij(x)

k(x)

)
≤

d∑
i,j=1

αiαj

∫
Rd

[
a2

(
fi(x− y)

f(x− y)

fj(x− y)

f(x− y)
− fij(x− y)

f(x− y)

)
+

b2

(
gi(y)

g(y)

gj(y)

g(y)
− gij(y)

g(y)

)]
dµx(y).

(7.30)

Inequality (7.30) says that, for any d-dimensional row vector α one has

αMα> ≤ αNα>,
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whereM and N are the matrices with elements

mi,j =
ki(x)

k(x)

kj(x)

k(x)
− kij(x)

k(x)
,

and, respectively

nij =

∫
Rd

[
a2

(
fi
f

fj
f
− fij

f

)
(x− y) +

+ b2

(
gi
g

gj
g
− gij

g

)
(y)

]
dµx(y).

Consequently, both the matrix N and the matrix N −M are symmetric positive
semi-definite matrices. Finally, the product matrix (N −M)(N +M) is positive
semi-definite, which implies that its trace is non-negative. Now, in view of classical
properties of the trace of a matrix we obtain

tr(N −M)(N +M) = trNN + trNM− trMN − trMM =

trNN − trMM =
d∑

i,j=1

n2
ij −

d∑
i,j=1

m2
ij ≥ 0.

Finally, applying property (7.28) to (7.30) implies

(a+ b)4

d∑
i,j=1

(
ki(x)

k(x)

kj(x)

k(x)
− kij(x)

k(x)

)2

≤

d∑
i,j=1

{∫
Rd

[
a2

(
fi
f

fj
f
− fij

f

)
(x− y)+

b2

(
gi
g

gj
g
− gij

g

)
(y)

]
dµx(y)

}2

≤

d∑
i,j=1

∫
Rd

[
a2

(
fi
f

fj
f
− fij

f

)
(x− y)+

b2

(
gi
g

gj
g
− gij

g

)
(y)

]2

dµx(y),

(7.31)

where the last inequality in (7.31) follows by Jensen’s inequality. Expanding the
squares, and then proceeding as in the proof of Theorem 28 we easily arrive to
inequality (7.52). Then, the cases of equality are found by the same argument of
the one-dimensional proof. Indeed, inequality (7.30) reduces to an equality if and
only if the two (i, j)-vectors

∫ ∂if∂jf

f
and

∫ ∂ig∂jg

g
are linearly dependent, which is

equivalent to the fact that f and g have proportional covariance matrices. Thus,
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there is equality in (7.28) if and only if f and g are Gaussian densities, of covariance
matrices aC, and bC respectively. Note that this choice guarantees the equality
sign also in (7.31). Further, when f and g are Gaussian densities the coefficient
of the probability measure dµx(y) in the integral appearing in (7.31) is constant,
which guarantees equality in the consequent Jensen’s inequality leading to (7.52).
We conclude with the following

Theorem 32. Let f(x) and g(x) be log-concave probability density functions with
values in Rd, with d > 1, such that both J(f) and J(g), as given by (7.1) are bounded.
Then, J(f ∗ g) is bounded, and for any pair of positive constants a, b

J(f ∗ g) ≤ a4

(a+ b)4
J(f) +

b4

(a+ b)4
J(g) + 2

a2b2

(a+ b)4
H(f, g), (7.32)

where

H(f, g) =
d∑

i,j=1

∫
{f>0}

∂if∂jf

f
dx

∫
{g>0}

∂ig∂jg

g
dx. (7.33)

Moreover, there is equality in (7.32) if and only if f and g are Gaussian densities
with proportional covariance matrices aC and bC respectively.

As for the one-dimensional case, given the random vector X distributed with
density f(x), x ∈ Rd, consider the generic element of the second-order score function
H(X), given by (7.9)

Ψij(X) =
fi(X)

f(X)

fj(X)

f(X)
− fij(X)

f(X)
.

Then, for each pair of i, j we have the identities

〈Ψij(X)〉 =

∫
{f>0}

∂if∂jf

f
dx,

and

〈Ψi,j(X)2〉 =

∫
{f>0}

[
∂ijf

f
− ∂if∂jf

f 2

]2

f dx.

Then, the standard inequality 〈Ψij(X)2〉 ≥ 〈Ψij(X)〉2 gives

J(X) =
d∑

i,j=1

〈Ψij(X)2〉 ≥

d∑
i,j=1

〈Ψij(X)〉2 =
d∑

i,j=1

[∫
{f>0}

∂if∂jf

f
dx

]2

.

(7.34)
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Using the Cauchy-Schwarz inequality, (7.34) gives

H(f, g) =
d∑

i,j=1

∫
{f>0}

∂if∂jf

f
dx

∫
{g>0}

∂ig∂jg

g
dx ≤

[
d∑

i,j=1

(∫
{f>0}

∂if∂jf

f
dx

)2
]1/2

·

·

[
d∑

i,j=1

[∫
{g>0}

∂ig∂jg

g
dx

)2
]1/2

≤
√
J(f)

√
J(g).

(7.35)

Hence, we can proceed as in the proof of Corollary 30 to obtain

Corollary 33. Let X and Y be independent multi-dimensional random variables
with log-concave probability density functions with values in Rd, such that both J(X)
and J(Y ), as given by (7.1) are bounded. Then

1√
J(X + Y )

≥ 1√
J(X)

+
1√
J(Y )

.

Moreover, there is equality if and only if X and Y are Gaussian densities with
proportional covariance matrices.

7.1.3 A strengthened entropy power inequality

In this section, we will study the evolution in time of the functional Λ(t) defined in
(6.76), that is

Λ(t) = Λ(f(t), g(t)) = H(f(t) ∗ g(t))− κH(f(t))− (1− κ)H(g(t)).

Here, κ is a positive constant, with 0 < κ < 1, while f(x, t) (respectively g(x, t))
are the solutions to the heat equation (3.1) with diffusion constant κ (respectively
1 − κ), corresponding to the initial data f and g, log-concave probability densities
in Rd. It is a simple exercise to verify that Λ(t) is dilation invariant. As in the other
cases, this property allows to identify the limit, as t→∞ of the functional Λ(t). If

U(x, t) =
(√

1 + 2t
)d

u(x
√

1 + 2t, t). (7.36)

U(x, t) tends in any Sobolev space towards the limit Gaussian function

lim
t→∞

U(x, t) = Mκ(x)

∫
Rd
f(x) dx = Mκ(x). (7.37)
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and
lim
t→∞

Λ(t) = H(M1)− κH(Mκ)− (1− κ)H(M1−κ) =

−d
2

[κ log κ+ (1− κ) log(1− κ)] .
(7.38)

If we differentiate Λ(t) with respect to time, by the Bruijn’s identity we obtain

Λ′(t) = I(f(t) ∗ g(t))− κ2I(f(t))− (1− κ)2I(g(t)). (7.39)

In view of Blachman-Stam inequality (1.9) [20, 78]

I(f ∗ g) ≤ a2

(a+ b)2
I(f) +

b2

(a+ b)2
I(g), a, b > 0

with equality if and only if f and g are Gaussian densities, Λ′(t) ≤ 0. Hence Λ(t) is
monotonically decreasing in time from Λ(0) to Λ(∞), given by (7.38).

Differentiating again with respect to time, from (7.39) we obtain

Λ′′(t) = −1

2

(
J(f(t) ∗ g(t))− κ3J(f(t))− (1− κ)3J(g(t))

)
. (7.40)

Therefore, by inequality (7.21), if f and g are log-concave, Λ′′(t) ≥ 0, and the
convexity property of Λ(t) follows.

On the other hand, proceeding as in the proof of Corollary 30, we obtain from
inequality (7.32) the bound

J(f(t) ∗ g(t)) ≤ κ3J(f(t)) + (1− κ)3J(g(t))− 2κ2(1− κ)2P (f(t), g(t)), (7.41)

where
P (f, g) =

√
J(f)

√
J(g)−H(f, g) ≥ 0 (7.42)

in view of inequality (7.35). In addition, equality to zero holds if and only if both f
and g are Gaussian densities.

Integrating (7.41) from t to ∞, we obtain for the Fisher information of two
log-concave densities the strengthened inequality

I(f(t)∗g(t)) ≤ κ2I(f(t))− (1−κ)2I(g(t))−κ2(1−κ)2

∫ ∞
t

P (f(s), g(s)) ds. (7.43)

In fact, by the central limit property,

lim
t→∞

[
I(f(t) ∗ g(t))− κ2I(f(t))− (1− κ)2I(g(t))

]
=

I(M1)− κ2I(Mκ)− (1− κ)2I(M1−κ) = 0
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Last, integrating (7.43) from 0 to ∞ we obtain for Shannon’s entropy of the two
log-concave densities the strengthened inequality

H(f ∗g)−κH(f)−(1−κ)H(g)− d
2

[κ log κ+ (1− κ) log(1− κ)] ≥ Pκ(f, g), (7.44)

where
Pκ(f, g) = κ2(1− κ)2

∫ ∞
0

dτ

∫ ∞
τ

P (f(s), g(s)) ds ≥ 0. (7.45)

Choosing now κ = κ̄ as given by (6.73) we end up with inequality

N(X + Y ) ≥ [N(X) +N(Y )]R(X, Y ), (7.46)

where the quantity R(X, Y ) ≥ 1 can be interpreted as a measure of the non-
Gaussianity of the two random vectors X, Y . Indeed, R(X, Y ) = 1 if and only
if both X and Y are Gaussian random vectors. Clearly

R(X, Y ) = exp

{
2

d
Pκ̄(f, g)

}
> 1. (7.47)

Consequently, R(X, Y ) = 1 if and only if both X and Y are Gaussian random
vectors.

Remark 34. In general, the expression of the term R(X, Y ) is very complicated, due
to the fact that it is given in terms of integrals of nonlinear functionals evaluated
along solutions to the heat equations which depart from the densities of X and Y . It
would be certainly interesting to be able to express the term R(X, Y ) (or to bound
it from below) in terms of some distance of X and Y from the space of Gaussian
vectors. This problem is clearly easier in one dimension, where one can use the
remainder as given by inequality (7.27), namely as the sum of the two contributions
of the type J(f)− I2(f). In this case, one would know if, for some distance d(f, g)
between two probability densities f and g and some positive constant C

J(f)− I2(f) ≥ C inf
M∈M

d(f,M),

whereM denotes the space of Gaussian densities.

7.2 More about Fisher information

In this section, we refer to the heat equation with coefficien diffusion κ = 1/2. In
this case, if X is a random vector in Rd, d ≥ 1 with probability density f , the
solution to equation (3.1) coincides with the density function of X + Zt, where Zt
is a Gaussian random vector independent of X. This choice simplifies the compu-
tations that follow. In the previous sections we showed Shannon’s entropy power
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inequality (EPI), that gives a lower bound on Shannon’s entropy power of the sum
of independent random vector X, Y in Rd with densities

N(X + Y ) ≥ N(X) +N(Y ),

with equality if and only X and Y are Gaussian random vectors with proportional
covariance matrices.

Likewise, we showed Blachman–Stam inequality, that gives a lower bound on
the reciprocal of Fisher information of the sum of independent random vectors with
(smooth) densities

1

I(X + Y )
≥ 1

I(X)
+

1

I(Y )
,

still with equality if and only X and Y are Gaussian random vectors with propor-
tional covariance matrices.

In analogy with the definition of entropy power, let us introduce the (normalized)
reciprocal of Fisher information

Ĩ(X) =
d

I(X)
. (7.48)

By construction, since I(Zσ) = d/σ, Ĩ(·) is linear at Gaussian random vectors, with
Ĩ(Zσ) = σ. Moreover, in terms of Ĩ, Blachman–Stam inequality reads

Ĩ(X + Y ) ≥ Ĩ(X) + Ĩ(Y ). (7.49)

Therefore, both the entropy power and the reciprocal of Fisher information Ĩ, as
given by (7.48), share common properties when evaluated on Gaussian random vec-
tors and on sums of independent random vectors.

By pushing further this analogy, in agreement with Costa’s result on entropy
power, in [87] it has been proven that the quantity Ĩ(X + Zt) has the concavity
property

d2

dt2
Ĩ(X + Zt) ≤ 0. (7.50)

Unlike the concavity property of the entropy power, the proof of (7.50) is restricted
to log-concave random vectors. Similarly to (1.6), equality to zero in (7.50) holds if
and only if X is a Gaussian random vector, X = Z1.

The estimates obtained in the proof of (7.50) can be fruitfully employed to study
the third derivative of N(X + Zt). The surprising result is that, at least for log-
concave probability densities, the third derivative has a sign, and

d3

dt3
N(X + Zt) ≥ 0. (7.51)
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Once again, equality to zero in (7.51) holds if and only if X is a Gaussian random
variable, X = N(0, σId). Considering that

d

dt
N(X + Zt) ≥ 0,

the new inequality (7.51) seems to indicate that the subsequent derivatives of N(X+
Zt) alternate in sign, even if a proof of this seems prohibitive.

The concavity property of the reciprocal of Fisher information is a consequence
of the results proven in Section 7.1.2 related to the functional J(X) defined in (7.1).
We rewrite here in a sdifferent form the new inequality (7.32) proven in Theorem
32. Let X and Y are independent random vectors in Rd, such that their probability
densities f and g are log-concave, and J(X), J(Y ) are well defined. For any constant
α, with 0 ≤ α ≤ 1, it holds

J(X + Y ) ≤ α4J(X) + (1− α)4J(Y ) + 2α2(1− α)2H(X, Y ), (7.52)

where H(X, Y ) is defined in (7.42). Note that, in one-dimension H(f, g) = I(f)I(g).
Inequality (7.52) is sharp. Indeed, there is equality if and only if X and Y are
d-dimensional Gaussian vectors with covariance matrices proportional to αId and
(1− α)Id respectively.

Even if inequality (7.52) is restricted to the set of log-concave densities, this set
includes many of the most commonly-encountered parametric families of probability
density functions [68].

Inequality (7.52) implies a Blachman-Stam type inequality for
√
J(·) [85]

1√
J(X + Y )

≥ 1√
J(X)

+
1√
J(Y )

, (7.53)

where, also in this case, equality holds if and only if both X and Y are Gaussian
random vectors.

Inequality (7.53) shows that, at least if applied to log-concave probability den-
sities, the functional 1/

√
J(·) behaves with respect to convolutions like Shannon’s

entropy power and the reciprocal of Fisher information. The fact that these inequal-
ities share a common nature is further clarified by noticing that, when evaluated in
correspondence to the Gaussian vector Zσ,

N(Zσ) = Ĩ(Zσ) =
√
n/J(Zσ) = σ.

In addition to the present results, other inequalities related to Fisher information
in one-dimension have been recently obtained in [38]. In particular, the sign of the
subsequent derivatives of Shannon’s entropy H(X +Zt) up to order four have been
computed explicitly. Since these derivatives alternate in sign, it is conjectured in
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[38] that this property has to hold for all subsequent derivatives. This is an old
conjecture that goes back at least to McKean [69], who investigated derivatives of
Shannon’s entropy up to the order three. Despite the title, however, in [38] the sign
of the subsequent derivatives of the entropy power N(X + Zt) is not investigated.

7.2.1 A concavity property of Fisher information

Let us assume that the random vector X has a log-concave density f(x), x ∈ Rd.
Then, for any t > 0, the random vector X + Zt has a log-concave smooth density
function. Let us evaluate the derivatives of Ĩ(X + Zt), with respect to t, t > 0.
Thanks to (7.2) we obtain

d

dt
Ĩ(X + Zt) = d

J(X + Zt)

I2(X + Zt)
, (7.54)

and
d2

dt2
Ĩ(X + Zt) = d

(
2
J2(X + Zt)

I3(X + Zt)
− K(X + Zt)

I2(X + Zt)

)
. (7.55)

In (7.55) we defined

K(X + Zt) = − d

dt
I(X + Zt). (7.56)

Hence, to prove concavity we need to show that, for log-concave densities

K(X + Zt) ≥ 2
J2(X + Zt)

I(X + Zt)
. (7.57)

Note that
I(Zσ) =

d

σ
, J(Zσ) =

d

σ2
, K(Zσ) = 2

d

σ3
. (7.58)

Consequently, inequality (7.57) is verified with the equality sign in correspondence
to a Gaussian random vector.

Using the second identity in (7.58) into (7.53) it is immediate to recover a lower
bound for K(·). This idea goes back to Dembo [46], and has been presented in
Section 5.3. Let σ, t > 0. By choosing X = W + Zσ and Y = Zt, inequality (7.53)
becomes

1√
J(W + Zσ + Zt)

≥ 1√
J(W + Zσ)

+
t√
d
.

Then, for all t > 0

1

t

(
1√

J(W + Zσ + Zt)
− 1√

J(W + Zσ)

)
≥ 1√

d
,
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and this implies, passing to the limit t→ 0+

1

2

K(W + Zσ)

J3/2(W + Zσ)
≥ 1√

d
,

for any σ > 0. Hence, a direct application of inequality (7.53) shows that K(X+Zt)
is bounded from below, and

K(X + Zt) ≥ 2
J3/2(X + Zt)√

d
. (7.59)

Unfortunately, inequality (7.59) is weaker than (7.57), since it is known that, for all
random vectors X and Zt independent from each other [46, 91]

J(X + Zt) ≥
I2(X + Zt)

d
, (7.60)

and (7.60) implies
J2(X + Zt)

I(X + Zt)
≥ J3/2(X + Zt)√

d
.

To achieve the right result, we will work directly on inequality (7.52). Let us fix
Y = Zt. Then, since for if i 6= j∫

Rd

∂iMt(x)∂jMt(x)

Mt(x)
dx =

∫
Rd

xixj
t2

Mt(x) dx = 0,

one obtains

H(X,Zt) =
d∑
i=1

∫
{f>0}

f 2
i

f
dx

∫
Rd

x2
i

t2
Mt dx = I(X)

1

d
I(Zt) =

1

t
I(X). (7.61)

Hence, using (7.58) and (7.61), inequality (7.52) takes the form

J(X + Zt) ≤ α4J(X) + (1− α)4 d

t2
+ 2α2(1− α)2 1

t
I(X). (7.62)

We observe that the function

Λ(α) = α4J(X) + (1− α)4 d

t2
+ 2α2(1− α)2 1

t
I(X)

is convex in a, 0 ≤ α ≤ 1. This fact follows by evaluating the sign of Λ′′(α), where

1

12
Λ′′(α) = α2J(X) + (α− 1)2 d

t2
+

1

3
[(1− α)2 + 4α(α− 1) + α2]

1

t
I(X).
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Clearly both Λ′′(0) and Λ′′(1) are strictly bigger than zero. Hence, Λ(α) is convex
if, for r = α/(1− α)

r2J(X) +
d

t2
+

1

3
(r2 − 4r + 1)

1

t
I(X) ≥ 0.

Now, (
J(X) +

1

3t
I(X)

)
r2 − 4

3

1

t
I(X)r +

(
d

t2
+

1

3t
I(X)

)
≥

J(X)r2 − 2
I(X)

t
r +

d

t2
≥ 0.

The last inequality follows from (7.60).
The previous computations show that, for any given value of t > 0, there exists

a unique point ᾱ = ᾱ(t) in which the function Λ(α) attains the minimum value. In
correspondence to this optimal value, inequality (7.62) takes the equivalent optimal
form

J(X + Zt) ≤ ᾱ(t)4J(X) + (1− ᾱ(t))4 d

t2
+ 2ᾱ(t)2(1− ᾱ(t))2 1

t
I(X). (7.63)

The evaluation of ᾱ(t) requires to solve a third order equation. However, since we
are interested in the value of the right-hand side of (7.63) for small values of the
variable t, it is enough to evaluate in an exact way the value of ᾱ(t) up to the order
one in t. By substituting

ᾱ(t) = c0 + c1t+ o(t)

in the third order equation Λ′(α) = 0, and equating the coefficients of t at the orders
0 and 1 we obtain

c0 = 1, c1 = − J(x)

I(X)
. (7.64)

Consequently, for t� 1

Λ(ᾱ(t)) = J(X)− 2
J2(X)

I(X)
t+ o(t). (7.65)

Finally, by using expression (7.65) into inequality (7.63) we obtain

1√
J(X + Zσ + Zt)

≥ 1√
J(X + Zσ)− 2J

2(X+Zσ)
I(X+Zσ)

t+ o(t)
=

1√
J(X + Zσ)

+

√
J(X + Zσ)

I(X + Zσ)
t+ o(t),

(7.66)
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which implies, for all σ > 0, the inequality

lim
t→0+

1

t

(
1√

J(X + Zσ + Zt)
− 1√

J(X + Zσ)

)
≥
√
J(X + Zσ)

I(X + Zσ)
. (7.67)

At this point, inequality (7.57) follows from (7.67) simply by evaluating the deriva-
tive of

J(X + Zt) =

(
1√

J(X + Zt)

)−2

.

This gives

K(X + Zt) = − d

dt
J(X + Zt) = − d

dt

(
1√

J(X + Zt)

)−2

=

2 J(X + Zt)
3/2 d

dt

1√
J(X + Zt)

≥ 2
J2(X + Zt)

I(X + Zt)
.

(7.68)

Hence we proved

Theorem 35. Let X be a random vector in Rd, d ≥ 1, such that its probability
density f(x) is log-concave. Then the reciprocal of the Fisher information of X+Zt,
where X and Zt are independent each other, is concave in t, i.e.

d2

dt2
1

I(X + Zt)
≤ 0.

7.2.2 An improvement of Costa’s entropy power inequality

The computations of Section 7.2.1 can be fruitfully used to improve the concavity
property of the entropy power N(X+Zt). To this aim, let us compute the derivatives
in t of N(X+Zt), up to the third order. The first derivative can be easily evaluated
by resorting to de Bruijn identity

d

dt
H(X + Zt) =

1

2
I(X + Zt).

Then, identities (7.2) and (7.56) can be applied to compute the subsequent ones.
By setting X + Zt = Wt one obtains

d

dt
N(Wt) =

1

d
N(Wt)I(Wt), (7.69)

80



and, respectively

d2

dt2
N(Wt) =

1

d
N(Wt)

(
I(Wt)

2

n
− J(Wt)

)
, (7.70)

and
d3

dt3
N(Wt) =

1

d
N(Wt)

(
K(Wt) +

I(Wt)
3

d2
− 3

I(Wt)J(Wt)

d

)
. (7.71)

Note that, by virtue of identities (7.60) and (7.58), the right-hand sides of both
(7.70) and (7.71) vanish if Wt is a Gaussian random vector. Using inequality (7.57)
we get

K(Wt) +
I(Wt)

3

d2
− 3

I(Wt)J(Wt)

d
≥ 2

J2(Wt)

I(Wt)
+
I(Wt)

3

d2
− 3

I(Wt)J(Wt)

d
.

Thus, by setting p = dJ(Wt)/I
2(Wt), the sign of the expression on the right-hand

side of (7.71) will coincide with the sign of the expression

2p2 − 3p+ 1. (7.72)

Since p ≥ 1 in view of the inequality (7.60) [46, 91], 2p2− 3p+ 1 ≥ 0, and the result
follows. Last, the cases of equality coincide with the cases in which there is equality
both in (7.57) and (7.60), namely if and only if Wt is a Gaussian random vector.
We proved

Theorem 36. Let X be a random vector in Rd, d ≥ 1, such that its probability
density f(x) is log-concave. Then the entropy power of X +Zt, where X and Zt are
independent each other, has the derivatives which alternate in sign up to the order
three. In particular N(X + Zt) is concave in t, and

d3

dt3
N(X + Zt) ≥ 0.

8 Nonlinear diffusion equations

8.1 Rényi entropies

Given a probability density f(x), x ∈ Rd, and a positive constant p the Rényi
entropy of order p of f is defined by [47]:

Rp(f) =
1

1− p
log

(∫
IRd
fp(x) dx

)
. (8.1)
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This concept of entropy has been introduced by Rényi in [74] for a discrete proba-
bility measure to generalize the classical logarithmic entropy, by maintaining at the
same time most of its properties. Indeed, the Rényi entropy of order 1, defined as
the limit as p→ 1 of Rp(f) is

lim
p→1
Rp(f) = R(u) = −

∫
IRd
f(x) log f(x) dx. (8.2)

Therefore, the standard (Shannon) entropy of a probability density [77] is included
in the set of Rényi entropies, and it is identified with the Rényi entropy of index
p = 1.

Among other properties, the Rényi entropy (8.1) behaves as the Shannon entropy
(8.2) with respect to the scaling for dilation of the probability density. As usual, for
any given density f(x) and positive constant a, we define the dilation of f by a, as
the mass-preserving scaling

f(x)→ fa(x) = adf (ax) . (8.3)

Then, for any p ≥ 0 it holds

Rp(fa) = Rp(f)− d log a. (8.4)

This characteristic differentiates the Rényi entropy from other generalizations of
the Shannon entropy, which have been introduced later on on the literature. For
example, the Tsallis entropy of order p [88]:

Tp(f) =
1

1− p

∫
IRd

(fp(x)− f(x)) dx, (8.5)

which is extensively used by physicists in statistical mechanics [89], does not satisfy
property (8.4). Property (8.4) is one of the main ingredients to work with the
Rényi entropy functional and to derive from it inequalities in sharp form. Thus,
in our opinion, the definition (8.1) introduced by Rényi represents a very coherent
generalization of the Shannon entropy.

The Shannon entropy is naturally coupled to the heat equation (3.1), as soon as
the initial datum given is assumed to be a probability density. As recently noticed
in [84], the deep link between the Shannon entropy and the heat equation started
to be used as a powerful instrument to obtain mathematical inequalities in sharp
form in the years between the late fifties to mid sixties. To our knowledge, the
first application of this idea can be found in two papers by Linnik [63] and Stam
[78] (cf. also Blachman [20]), published in the same year and concerned with two
apparently disconnected arguments. Stam [78] was motivated by the finding of a
rigorous proof of Shannon’s entropy power inequality [77], while Linnik [63] used the
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information measures of Shannon and Fisher in a proof of the central limit theorem
of probability theory. Also, in the same years, the heat equation has been used in the
context of kinetic theory of rarefied gases by McKean [69] to investigate that large-
time behaviour of Kac caricature of a Maxwell gas. There, various monotonicity
properties of the derivatives of the Shannon entropy along the solution to the heat
equation have been derived.

Likewise, the Rényi entropy od order p is strongly coupled to the nonlinear
diffusion equation of order p posed in the whole Rd

∂v(x, t)

∂t
= κ∆vp(x, t), (8.6)

still with the initial datum which is assumed to be a probability density. This
maybe not so well-known link has been outlined in some recent papers [31, 76],
where various results valid for the Shannon entropy have been shown to hold also
for the Rényi entropies, and applied to the study of the large-time behavior of the
solution to equation (8.6). We aim in this note to highlight this connection.

8.2 Self-similar solutions and Rényi entropies

To start with, let us recall briefly some essential features of the nonlinear diffu-
sion equation (8.6). Existence an uniqueness of the solution of (8.6) to the initial
value problem posed in the whole space is well-known [21, 90], and we address the
interested reader to these references for details. The forthcoming analysis will be
restricted to initial data which are probability densities with finite variance, and it
will include both the case p > 1, usually known as porous medium equation, and the
case p < 1, the fast diffusion equation. In dimension d ≥ 1, the range of exponents
which ensure the boundedness of the second moment of the solution is p > p̄ with
p̄ = d/(d + 2), which contains a part of the so-called fast diffusion range p < 1.
The particular subinterval of p is motivated by the existence of a precise solution,
found by Zel’dovich, Kompaneets and Barenblatt in the fifties (briefly called here
Barenblatt solution) [7, 8, 93], which serves as a model for the asymptotic behavior
of a wide class of solutions with finite second moment. In the case p > 1 (see [21]
for p < 1) the Barenblatt (also called self-similar or generalized Gaussian solution)
departing from x = 0 takes the self-similar form

Mp(x, t) :=
1

tn/µ
M̃p

( x

t1/µ

)
, (8.7)

where
µ = 2 + d(p− 1)

and M̃p(x) is the time-independent function

M̃p(x) =
(
C − λ |x|2

) 1
p−1

+
. (8.8)
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In (8.8) (s)+ = max{s, 0}, λ = 1
2µ

p−1
p
, and the constant C can be chosen to fix the

mass of the source-type Barenblatt solution equal to one.
The solution to equation (8.6) satisfies mass and momentum conservations, so

that ∫
IRd
v(x, t) dx = 1 ;

∫
IRd
x v(x, t) dx = 0 ; t ≥ 0. (8.9)

Hence, without loss of generality, one can always assume that v0(x) is a probability
density of first moment equal to zero. Let us define by E(v(t)) the second moment
of the solution:

E(v(t)) =

∫
IRd
|x|2v(x, t)dx. (8.10)

Then, E(v(t)) increases in time from E0 = E(v0), and its evolution is given by the
nonlinear law

dE(v(t))

dt
= 2d

∫
IRd
vp(x, t) dx ≥ 0, (8.11)

which is not explicitly integrable unless p = 1. The second moment of the solution
to equation (8.6) has an important role in connection with the knowledge of the
large time behavior of the solution. Also, in presence of a finite second moment we
can immediately establish a deep connection between equation (8.6) and the Rényi
entropy of the same order p.

Indeed, let us consider the evolution in time of the Rényi entropy of order p
along the solution of the nonlinear diffusion equation (8.6). Integration by parts
immediately yields

d

dt
Rp(v(·, t)) = Ip(v(·, t)), t > 0, (8.12)

where, for a given probability density f(x)

Ip(f) :=
1∫

IRd
fp dx

∫
{f>0}

|∇fp(x)|2

f(x)
dx. (8.13)

When p → 1, identity (8.12) reduces to DeBruijn’s identity, which connects Shan-
non’s entropy functional with the Fisher information

I(f) =

∫
{f>0}

|∇f(x)|2

f(x)
dx. (8.14)

via the heat equation [20, 31, 78]. Since Ip(f) > 0, identity (8.12) shows that the
Rényi entropy of the solution to equation (8.6) is increasing in time.

Since the energy scales under the dilation (8.4) of f according to

E(fa) =

∫
Rd
|x|2fa(x) dx =

1

a2
E(f),
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if the probability density has bounded second moment, a dilation invariant functional
is obtained by coupling Rényi entropy of f with the logarithm of the second moment
of f

Λp(f) = Rp(f)− d

2
logE(f). (8.15)

Let v(x, t) be a solution to equation (8.6). If we now compute the time derivative
of Λp(v(t)), we obtain

d

dt
Λp(v(t)) = Ip(v(t))− d2

∫
IRd
vp(t) dx

E(v(t))
, (8.16)

which is a direct consequence of both identities (8.11) and (8.12).
The right-hand side of (8.16) is nonnegative. This can be easily shown by an

argument which is often used in this type of proofs, and goes back at least to McKean
[69]. One obtains

0 ≤
∫
{v>0}

(
∇vp(x)

v(x)
+ d x

∫
vp(x)

E(x)

)2
v(x)∫
vp
dx =

Ip(x) + d2

∫
vp

E(x)2

∫
Rd
|x|2v(x) dx+ 2d

∫
vp

E(x)

∫
{v>0}

x · ∇v(x) dx =

Ip(x) + d2

∫
vp

E(x)
− 2d2

∫
vp

E(x)
= Ip(x)− d2

∫
vp

E(x)
. (8.17)

Note that equality to zero in (8.17) holds if and only if, when v(x) > 0

∇vp(x)

v(x)
+ dx

∫
vp

E(x)
= 0.

This condition can be rewritten as

∇
(
vp−1 +

p− 1

2p
|x|2

d
∫
vp

E(x)

)
= 0 (8.18)

which identifies the probability density v(x) as a Barenblatt density in Rd (cf. equa-
tion (8.8)). Also, (8.17) shows that, among all densities with the same second
moment, Fisher information of order p takes its minimum value in correspondence
to a Barenblatt density.

We proved that the functional (8.15) is monotonically increasing in time along
the solution to the nonlinear diffusion. The dilation invariance can now be used to
identify the limit value. The computation of the limit value uses in a substantial
way the scaling invariance property. Indeed, it is well-known that the solution to
equation (8.6) converges towards the self-similar Barenblatt solution (8.8) in L1(Rd)
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at an explicitly computable rate [21, 22, 32, 45]. By definition, the second moment
of the self-similar solution increases in time, and it is infinite as time goes to infinity.
However, by dilation invariance, the value of the functional (8.15) in correspondence
to a Barenblatt function does not depend on its second moment. In other words,
we can scale at each time, without changing the value of the functional, in such a
way to fix a certain value of the second moment of the Barenblatt when time goes
to infinity [83, 84].

The argument we presented is twofold. From one side, it represents a notable
tool to study the large-time behavior of solutions to nonlinear diffusion equations.
From the other side, it allows to find inequalities by means of solutions to these
nonlinear diffusions. Indeed, we proved that, for any probability density function f
with bounded second moment

Rp(f)− d

2
logE(f) ≤ Rp(Bp,σ)− d

2
logE(Bp,σ), (8.19)

where, for σ > 0, we denoted by Bp,σ(x) the Barenblatt density defined in (8.7), of
second moment equal to σ. Clearly (8.19) implies that, under a variance constraint,
the Rényi entropy power of order p is maximized by a Barenblatt type density.

Inequality (8.19) can be rephrased in a slightly different way. Let f(x) be a
probability density function in Rd, and let Np(f) denote the entropy power of f
associated to the Rényi entropy of order p:

Np(f) = exp

{(
2

d
+ p− 1

)
Rp(f)

}
. (8.20)

Then, if p > d/(d+ 2),

Np(f)

E(f)1+d(p−1)/2
≤ Np(Bp,σ)

E(Bp,σ)1+d(p−1)/2
. (8.21)

We note that the definition (8.20) of p-Rényi entropy power, proposed recently in
[76], coincides with the classical definition of Shannon entropy power [77], valid when
p = 1. This definition requires p > (d − 2)/d, in which case 2/d + p − 1 > 0. The
range of the parameter p for which we can introduce our notion of Rényi entropy
power, coincides with the range for which there is mass conservation for the solution
of (8.6) [21]. This range includes the cases in which the Barenblatt has bounded
second moment, since (d− 2)/d < d/(d+ 2). We observe that inequality (8.21) has
been derived by a completely different method in [41, 65, 66].

8.3 The concavity of Rényi entropy power

The physical idea behind the concavity of the Shannon entropy power is clear. If
we evaluate the entropy power in correspondence to a Gaussian density like (1.3),
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we obtain
N (Mσ) = 2πσe.

Hence, the entropy power of the self similar solution to the heat equation, namely a
Gaussian density of variance 2t, is a linear function of time, and its second derivative
(with respect to time) is equal to zero. This property is restricted to Gaussian
densities. Any other solution to the heat equation, different from the self-similar
one, is such that its entropy power is concave.

Having in mind to extend the concavity property to the Rényi entropy power,
and making use of the result of Section 8.2, in which we established a connection of
the Rényi entropy with the solution of the nonlinear diffusion equation, the starting
point for the proof of such a property would be a definition of Rényi entropy power
(of order p) which is consistent with the fact that, when evaluated in correspondence
to the Barenblatt self-similar solution (8.7) to the nonlinear diffusion of order p, the
value of the Rényi entropy power is linear with respect to t. It is a simple exercise
to verify that, owing to definition (8.20), this is true, since

Np(Mp(t)) = Np(M̃p) · t. (8.22)

In [76], starting from definition (8.20), we proved that the Rényi entropy power
of order p has the concavity property when evaluated along the solution to the
nonlinear diffusion (8.6). The precise result is the following:

Theorem 37. ([76]) Let p > (d− 2)/d and let u(·, t) be probability densities in Rd

solving (8.6) for t > 0. Then the p-th Rényi entropy power defined by (8.20) satisfies

d2

dt2
Np(v(·, t)) ≤ 0 (8.23)

Like in the Shannon’s case, inequality (8.23) lieds to sharp isoperimetric inequal-
ities. The (isoperimetric) inequality for the p-th Rényi entropy is contained into the
following

Theorem 38. ([76]) If p > d/(d + 2) every smooth, strictly positive and rapidly
decaying probability density f satisfies

Np(f) Ip(f) ≥ Np(M̃p) Ip(M̃p) = γd,p. (8.24)

We remark that Ip(f) is the generalized Fisher information defined in (8.13).
Once again, it is immediate to show that the product in (8.24) is invariant under
dilation, which allows to reckon explicitly the value of the constant by using the
same argument of Section 8.2. If p > 1 the value of the constant γd,p is

γd,p = dπ
2p

p− 1

 Γ
(
p+1
p

)
Γ
(
d
2

+ p+1
p

)
2/d(

(d+ 2)p− d
2p

) 2+d(p−1)
d(p−1)

. (8.25)
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In the remaining set of the parameter p, that is if d/(d+ 2) < p < 1,

γd,p = dπ
2p

1− p

Γ
(

1
1−p −

d
2

)
Γ
(

1
1−p

)
2/d(

(d+ 2)p− d
2p

) 2+d(p−1)
d(p−1)

. (8.26)

Inequality (8.24) can be rewritten in a form more suitable to functional analysis.
Let f(x) be a probability density in Rd. Then, if p > d/(d+ 2)

∫
Rd

|∇fp(x)|2

f(x)
dx ≥ γd,p

(∫
Rd
fp(x) dx

) 2+2d(p−1)
d(p−1)

. (8.27)

If d > 2, the case p = (d− 1)/d is distinguished from the others, since it leads to

2 + 2d(p− 1)

d(p− 1)
= 0, ν =

1

d
,

and
N1−1/d(f) =

∫
Rd
f 1−1/d(x) dx.

In this case the concavity of N1−1/d along (8.6) has been already known and has a
nice geometric interpretation in terms of transport distances, see [71].

Note that the restriction d > 2 implies (d − 1)/d > d/(d + 2). Hence, for
p = (d− 1)/d we obtain that the probability density f satisfies the inequality∫

Rd

|∇f (d−1)/d(x)|2

f(x)
dx ≥ γd,(d−1)/d. (8.28)

The substitution f = g2∗ , where 2∗ = 2d/(d− 2), yields∫
Rd

|∇f (d−1)/d(x)|2

f(x)
dx =

(
2d− 2

d− 2

)2 ∫
Rd
|∇g(x)|2 dx.

Therefore, for any given function g ≥ 0 such that g(x)2∗ is a probability density in
Rd, with d > 2, we obtain the inequality∫

Rd
|∇g(x)|2 dx ≥

(
d− 2

2d− 2

)2

γd,(d−1)/d. (8.29)

Since

γd,(d−1)/d = dπ
22(d− 1)2

d− 2

(
Γ (d/2)

Γ (d)

)2/d

,
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a simple scaling argument finally shows that, if g(x)2∗ has a mass different from 1,
g satisfies the Sobolev inequality [2], [79]∫

Rd
|∇g(x)|2 dx ≥ Sd

(∫
Rd
g(x)2∗ dx

)2/2∗

, (8.30)

where

Sd = d(d− 2)π

(
Γ (d/2)

Γ (d)

)2/d

is the sharp Sobolev constant. Hence, Sobolev inequality with the sharp constant is
a consequence of the concavity of Rényi entropy power of parameter p = (d− 1)/d,
when d > 2.

In all the other cases, the concavity of Rényi entropy power leads to Gagliardo-
Nirenberg type inequalities with sharp constants, like the ones recently studied by
Del Pino and Dolbeault [45], and Cordero-Erausquin, Nazaret, and Villani, [39] with
different methods.
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