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Abstract
We discuss the grazing collision limit of certain kinetic models of

Bose-Einstein particles obtained from a suitable modi�cation of the one-
dimensional Kac caricature of a Maxwellian gas without cut-o�. We re-
cover in the limit a nonlinear Fokker-Planck equation which presents many
similarities with the one introduced by Kaniadakis and Quarati in [14].
In order to do so, we perform a study of the moments of the solution.
Moreover, as is typical in Maxwell models, we make an essential use of
the Fourier version of the equation.
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1 Introduction
The quantum dynamics of many body systems is often modelled by a nonlinear
Boltzmann equation which exhibits a gas-particle-like collision behavior. The
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application of quantum assumptions to molecular encounters leads to some di-
vergences from the classical kinetic theory [6] and despite their formal analogies
the Boltzmann equation for classical and quantum kinetic theory present very
di�erent features. The interest in the quantum framework of the Boltzmann
equation has increased noticeably in the recent years. Although the quantum
Boltzmann equation, for a single specie of particles, is valid for a gas of fermi-
ons as well as for a gas of bosons, blow up of the solution in �nite time can
occur only in the bosonic case at low temperature. As a consequence the quan-
tum Boltzmann equation for a gas of bosons represents the most challenging
case both mathematically and numerically. In particular this equation has been
successfully used for computing non-equilibrium situations where Bose-Einstein
condensate occurs. From Chapman and Cowling [6] one can learn that the Boltz-
mann Bose-Einstein equation (BBE) is established by imposing that, when the
mean distance between neighboring molecules is comparable with the size of the
quantum wave �elds with which molecules are surrounded, a state of congestion
results. For a gas composed of Bose-Einstein identical particles, according to
quantum theory, the presence of a like particle in the velocity-range dv increases
the probability that a particle will enter that range; the presence of f(v)dv par-
ticles per unit volume increases this probability in the ratio 1 + δf(v). This
fundamental assumption yields the Boltzmann Bose-Einstein equation

∂f

∂t
= QQBE(f)(t, v), t ∈ R+, v ∈ R3, (1)

where

QQBE(f)(t, v) =
∫

R3×S2
B(v − v∗, ω)

(
f ′f ′∗(1 + δf)(1 + δf∗)

− ff∗(1 + δf ′)(1 + δf ′∗)
)
dv∗dω,

(2)

where as usual we denoted

f = f(v), f∗ = f(v∗), f ′ = f(v′), f ′∗ = f(v′∗),

and the pairs (v, v∗) (respectively (v′, v′∗)) are the post- (respectively pre-) col-
lision velocities in a elastic binary collision. In (2) B(z, ω) is the collision kernel
which is a nonnegative Borel function of |z|, | < z, ω > | only

B(z, ω) = B

(
|z|, < z, ω >

|z|
)

, (z, ω) ∈ R3 × S2. (3)

The solutions f(v, t) are velocity distribution functions (i.e., the density func-
tions of particle number), δ = (h/m)3/g, h is the Planck's constant, m and g
are the mass and the �statistical weight� of a particle (see [18] for details).

For a non relativistic particle, by setting v(p) = p/m, the collision operator
QQBE can be rewritten in general form as follows [23, 24]

QQBE(f)(t, p) =
∫

R9
W (p, p∗, p′, p′∗)

(
f ′f ′∗(1 + δf)(1 + δf∗)

− ff∗(1 + δf ′)(1 + δf ′∗)
)
dp∗dp′dp′∗

(4)

where W is a nonnegative measure called transition rate, which is of the form

W (p, p∗, p′, p′∗) = Ω(p, p∗, p′, p′∗)δ(p, +p∗−p′−p′∗)δ(E(p)+E(p∗)−E(p′)−E(p′∗)),
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where δ represents the Dirac measure and E(p) is the energy of the particle. The
quantity Wdp′dp′∗ is the probability for the initial state (p, p∗) to scatter and
become a �nal state of two particles whose momenta lie in a small region dp′dp′∗.
The function Ω is directly related to the di�erential cross section (see (3)), a
quantity that is intrinsic to the colliding particles and the kind of interaction
between them. The collision operator (4) is simpli�ed by assuming a boson
distribution which only depends on the total energy e = E(p). In this last case
f = f(e, t) is the boson density in energy space.

Together with the Boltzmann description given by the collision operators
(2)-(4), other kinetic models for Bose-Einstein particles have been introduced
so far. In particular, a related model described by means of Fokker-Planck type
non linear operators has been proposed by Kompaneets [16] to describe the
evolution of the radiation distribution f(x, t) in a homogeneous plasma when
radiation interacts with matter via Compton scattering

QK(f)(t, ρ) =
1
ρ2

∂

∂ρ

[
ρ4

(
∂f

∂ρ
+ f + f2

)]
, ρ ∈ (0, +∞) (5)

In that context the coordinate ρ represents a momentum coordinate, ρ = |p|.
More precisely, an equation which includes (5) as a particular case is obtained
in [16] as a leading term for the corresponding Boltzmann equation under the
crucial assumption that the scattering cross section is of the classical Thomson
type (see [11] for details).

The fundamental assumption which leads to the correction in the Boltzmann
collision operator (2), namely the fact that the presence of f(v)dv particles per
unit volume increases the probability that a particle will enter the velocity range
dv in the ratio 1 + δf(v), has been recently used by Kaniadakis and Quarati
[14, 13] to propose a correction to the drift term of the Fokker-Planck equation
in presence of quantum indistinguishable particles, bosons or fermions. In their
model, the collision operator (2) is substituted by

QFP (f)(t, v) = ∇ · [∇f + vf(1 + δf)] . (6)

Maybe the most remarkable di�erence between the kinetic operators (2) and
(6) is that, while the former is such that mass, momentum and energy are colli-
sion invariant, the latter does not admit the energy as collision invariant. This
suggests that the operator (6) would not result directly through an asymptotic
procedure from the Bose-Einstein collision operator (2), but instead from some
linearized version, where only the mass is preserved under the collision mecha-
nism.

For a mathematical analysis of the quantum Boltzmann equation in the
space homogeneous isotropic case we refer to [9, 10, 11, 18, 19]. We remark that
already the issue of giving mathematical sense to the collision operator is highly
nontrivial (particularly if positive measure solutions are allowed, as required
by a careful analysis of the equilibrium states). All the mathematical results,
however, require very strong cut-o� assumptions on the cross-section [11, 18].

Also, accurate numerical discretization of the quantum Boltzmann equation,
which maintain the basic analytical and physical features of the continuous
problem, namely, mass and energy conservation, entropy growth and equilibrium
distributions have been introduced recently in [2, 20]. Related works [17, 21, 22]
in which fast methods for Boltzmann equations were derived using di�erent

3



techniques like multipole methods, multigrid methods and spectral methods,
are relevant to quote.

At the Fokker-Planck level, the qualitative analysis of the Kompaneets equa-
tion described by the operator (5) has been exhaustively studied in [8], while
the numerical simulation has been done by Buet and Cordier [3]. To our knowl-
edge, the mathematical study of the Fokker-Planck equation (6) introduced by
Kaniadakis and Quarati [14] has been done only very recently [5], where the
one-dimensional version of (6) has been studied.

In the case of the quantum Boltzmann equation the asymptotic equivalence
between the binary collision operators (2), (4) and the Fokker-Planck type op-
erators (5) and (6) is unknown. This is not the case for the classical binary
collisions in a elastic gas, where the asymptotic equivalence between the Boltz-
mann and the Fokker-Planck-Landau equations has been proven rigorously in
a series of papers by Villani [26, 27] by means of the so-called grazing collision
asymptotics.

The same asymptotic procedure, in the case of the one-dimensional Kac
equation [12], showed the asymptotic equivalence between Kac collision operator
and the linear Fokker-Planck operator [25]. The method of proof in [25] takes
advantage from the relatively simple structure of Kac equation. Taking this into
account, in order to establish the asymptotic connection between the Boltzmann
equation for Bose Einstein particles and its Fokker-Planck description, we will
introduce a one-dimensional kinetic model in the spirit of Kac caricature of a
Maxwell gas with a singular kernel. Then we will study the grazing collision
limit of the equation, which leads to a Fokker-Planck type equation in which the
drift is of the form of equation (6), but the coe�cient of the (linear) di�usion
term depends on time through the density function. More precisely, the Fokker-
Planck collision operator reads

QFP (f)(t, v) = At(f)
∂2f

∂v2
+ Bt(f)

∂

∂v
(vf(1 + δf)), (7)

where
At(f) =

∫

R
v2f(v, t)(1 + δf(v, t))dv

and
Bt(f) =

∫

R
f(v, t)dv.

The paper is organized as follows. In the next Section we will introduce the
model, together with some simpli�cations (molli�ed model), then in Section 3
we formally show the convergence in the grazing collision limit. We then focus
on a molli�ed model to get rigorous results: in Section 4 we prove existence of
a weak solution, in Section 5 we focus on the moments of the solution and on
some regularity properties. Finally, in Section 6, we will deal with the grazing
collision limit.

2 The Kac caricature of a Bose Einstein gas
The simplest one-dimensional model which maintains almost all physical prop-
erties of the Boltzmann equation for a Bose-Einstein gas can be obtained by
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generalizing Kac caricature of a Maxwell gas to Bose-Einstein particles. This
one-dimensional model reads as follows





∂f

∂t
= QQBE(f)(t, v), t ∈ R+, v ∈ R,

f(0, v) = f0(v),
(8)

where

QQBE(f)(t, v) =
∫ π

2

−π
2

β(θ)
∫

R

(
f ′f ′∗(1 + δf)(1 + δf∗)

− ff∗(1 + δf ′)(1 + δf ′∗)
)
dv∗dθ.

(9)

For the sake of brevity, we used the usual notations

f ≡ f(t, v), f ′ ≡ f(t, v′), f∗ ≡ f(t, v∗), f ′∗ ≡ f(t, v′∗),

The initial datum f0 is a nonnegative measurable function. The pre-collision
velocities (v′, v′∗) are de�ned by the Kac rotation rule [12], which is given by

{
v′ = v cos θ − v∗ sin θ

v′∗ = v sin θ + v∗ cos θ.
(10)

Collisions (10) imply the conservation of the energy at each collision

v2 + v2
∗ = v′2 + v′2∗ . (11)

Let us observe that the system (10) can be reversed so that we can write the
post-collision velocities with respect to the pre-collision ones

{
v = v′ cos θ + v′∗ sin θ

v∗ = −v′ sin θ + v′∗ cos θ.
(12)

The parameter δ in (9) is a positive constant. The choice δ = 0 would lead
us back to standard Kac model, whereas δ negative would lead us to the
Boltzmann-Fermi-Dirac equation, whose features are very di�erent from that
of the Boltzmann-Bose-Einstein equation.

The cross-section β(θ) is a function de�ned over (−π
2 , π

2 ). In the original Kac
equation [12], β(θ) is assumed constant, which implies that collisions spread out
uniformly with respect to the angle θ. Following Desvillettes [7], we will here
assume that the cross-section is suitable to concentrate collisions on the grazing
ones (these collisions are those that are neglected when the cut-o� assumption
is made). This corresponds to satisfy one or more of the following hypotheses

H1 β(θ) is a nonnegative even function.

H2 β(θ) satis�es a non-cuto� assumption on the form

β(θ) ∼ 1
|θ|1+ν

when θ → 0, (13)

with 1 < ν < 2. That is,
∫ π

2

−π
2

β(θ)| sin θ|dθ = +∞
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whereas

∫ π
2

−π
2

β(θ)| sin θ|ν+εdθ < +∞

for all ε > 0.

H3 β(θ) is zero near −π
2 and π

2 , namely there exists a small constant ε0 > 0
such that

β(θ) = 0 ∀θ ∈ (−π

2
,−π

2
+ ε0] ∩ [

π

2
− ε0,

π

2
).

In the case in which the classical Kac equation is concerned, the asymptotic
equivalence between the non cut-o� Kac equation and the linear Fokker-Planck
equation as collisions become grazing has been proven in [25]. Hence, the pas-
sage to grazing collisions in (9), would give us the correct Fokker-Planck type
operator which leads the initial density towards the Bose-Einstein distribution.

Due to the symmetries of the kernel (9) and to the microscopic conservation
of the energy (11), it can be easily shown, at least at a formal level, that the
mass and the global energy of the solution are conserved

∫

R
f(t, v)dv =

∫

R
f0(v)dv,

and ∫

R
v2f(t, v)dv =

∫

R
v2f0(v)dv,

for all t > 0. Moreover, if

H(f) =
∫

R

(
1
δ
(1 + δf) log(1 + δf)− f log f

)
dv

denotes the Bose-Einstein entropy, the time derivative of H(f) is given by

D(f) =
1
4

∫ π
2

−π
2

β(θ)
∫

R2
Γ
(
ff ′∗(1 + δf)(1+δf∗),

ff∗(1 + δf ′)(1 + δf ′∗)
)
dvdv∗dθ

with

Γ(a, b) =





(a− b) log(a/b), a > 0, b > 0;
+∞, a > 0, b = 0 or a = 0, b > 0;
0, a = b = 0.

(14)

Then, since D(f) ≥ 0 the solution f(t) to equation (8) satis�es formally an
H-theorem: H(f(t)) is monotonically increasing unless f(t) coincides with the
Bose-Einstein density fBE , de�ned by the relationship

fBE(v)
1 + δfBE(v)

= ae−bv2
, (15)
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where a and b are positive constant chosen to satisfy the mass and energy
conservation for fBE .

It can be easily veri�ed by direct inspection that the fourth order term in
(9) cancels out from the collision integral, so that it can be rewritten as

QQBE(f)(t, v) =
∫ π

2

−π
2

β(θ)
∫

R

(
f ′f ′∗(1 + δf + δf∗)

− ff∗(1 + δf ′ + δf ′∗)
)
dv∗dθ.

(16)

In trying to give a rigorous signi�cation to equation (8), several di�culties
arise. In fact, our non-cuto� cross-section β(θ) does not allow us neither to use
the same change of variable as in [18], nor to use the same weak formulation as
in [7]. A su�cient condition to give a sense to the collision kernel would be that
f ∈ L∞(R+ × R). It would even be enough that such a condition hold for the
quantum part, that is for the f involved in the terms of the form 1 + δf .

To satisfy that condition, we introduce a new model where the quantum part
is smoothed. Let ψ be a molli�er, that is

1. ψ ∈ C∞c (R)

2. ψ ≥ 0

3.
∫
R ψ(v)dv = 1.

Then, let
f̃(t, v) =

∫

R
f(t, v − w)ψ(w)dw = f(t, .) ∗v ψ.

The function f̃ is regular in the velocity variable, and relies uniformly in all the
Lp(R) spaces (for 1 ≤ p ≤ +∞) since the L1(R) norm of f(t, .) is constant.
Moreover, f̃(t, .) is as close as we want to f(t, .) in all these norms, provided ψ
is well chosen, so that our new model is nothing but an approximation of (8):





∂f

∂t
= Q̃QBE(f), t ∈ R+, v ∈ R

f(0, v) = f0(v)
(17)

with

Q̃QBE(f)(t, v) =
∫ π

2

−π
2

β(θ)
∫

R

(
f ′f ′∗(1 + δf̃)(1 + δf̃∗)

− ff∗(1 + δf̃ ′)(1 + δf̃ ′∗)
)
dv∗dθ.

(18)

This approximation still formally preserves mass and energy, while maintaining
the same nonlinearity of the original collision operator. It has to be remarked,
however, that both the validity of the H-theorem and the explicit form of the
steady solution are lost. Other approximations can be introduced, which do not
exhibit this problem. Among others, the operator

Q̃QBE(f)(t, v) =
∫ π

2

−π
2

β(θ)
∫

R

( f ′

1 + δf ′
f ′∗

1 + δf ′∗
− f

1 + δf

f∗
1 + δf∗

)·

· (1 + δf̃)(1 + δf̃∗)(1 + δf̃ ′)(1 + δf̃ ′∗)dv∗dθ.

(19)
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preserves mass and energy, satis�es the H-theorem and possesses the right
steady state. Unlikely, the nonlinearity of (19) is di�cult to handle for our
purposes since its Fourier transform can not be written in a simple form.

Let us end this Section with a few notations. The functional spaces that will
be used in the following, apart from the usual Lebesgue spaces, are the weighted
Lebesgue spaces, de�ned, for p > 0, by the norm

‖g‖L1
p(R) =

∫

R
(1 + |v|p)|g(v)|dv.

We will also need some Sobolev spaces, de�ned for 0 < s < 1 by the norm

‖g‖2Hs(R) = ‖g‖2L2 + |g|2Hs

where
|g|2Hs =

∫∫

R2

|g(x + y)− g(y)|2
|y|1+2s

dxdy.

Our convention for the Fourier transform is the following:

f̂(ξ) = F(f)(ξ) =
∫

R
f(v)e−ivξdv

and the inverse Fourier transform is given by

f(v) =
1
2π

∫

R
f̂(ξ)eivξdξ.

We will sometimes use the notations

m =
∫

R
f0(v)dv

and
e =

∫

R
v2f0(v)dv.

3 Formal results
In this section we will show how the grazing collision limit work on the Kac
model for bosons (20)





∂f

∂t
= QQBE(f)(t, v), t ∈ R+, v ∈ R,

f(0, v) = f0(v),
(20)

where

QQBE(f)(t, v) =
∫ π

2

−π
2

β(θ)
∫

R

(
f ′f ′∗(1 + δf)(1 + δf∗)

− ff∗(1 + δf ′)(1 + δf ′∗)
)
dv∗dθ.

(21)

As we pointed out before, it is not known how to prove that solutions to this
model exist; hence we will give only formal results, assuming that a solution to
this equation exists and is regular enough.
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3.1 H-theorem and regularity of the solution
Formally, the solutions to (20) satisfy the H-theorem as pointed out in the
previous section:
Theorem 1. Let f be a solution of the problem (20), with f0 ∈ L log L(R), and
assume that H(f) and D(f) are well de�ned. Then

H(f(t, .)) = H(f0) +
∫ t

0

D(f(s, .))ds ∀t > 0.

Consequently, the entropy H is increasing along the solution.
Using the H-theorem, we can give an a priori regularity estimate on the

solution f to (20).
Theorem 2. Let β satisfy the properties (H1), (H2) and (H3), and let f(t, v) be
a solution of the problem (20) with the initial datum f0 ∈ L1

2 ∩L log L. Assume
that f satis�es the H-theorem. Then we have

log(1 + δf) ∈ L2
loc(R+; Hν/2(R)).

If in addition f ∈ L∞(R+ × R), then

f ∈ L2
loc(R+;Hν/2(R)).

Proof. We will do the computations as if the cross-section and the function f
were smooth. Using the classical changes of variable (v, v∗, θ) 7→ (v′, v′∗,−θ) and
(v, v∗) 7→ (v∗, v) which have unit jacobian, we have:

D(f) =
1
4

∫ π
2

−π
2

β(θ)
∫

R2

(
f ′f ′∗(1 + δf)(1 + δf∗)− ff∗(1 + δf ′)(1 + δf ′∗)

)

× log
f ′f ′∗(1 + δf)(1 + δf∗)
ff∗(1 + δf ′)(1 + δf ′∗)

dvdv∗dθ

= −1
2

∫ π
2

−π
2

β(θ)
∫

R2

(
f ′f ′∗(1 + δf)(1 + δf∗)− ff∗(1 + δf ′)(1 + δf ′∗)

)

× log
(
ff∗(1 + δf ′)(1 + δf ′∗)

)
dvdv∗dθ

= −
∫ π

2

−π
2

β(θ)
∫

R2

(
f ′f ′∗(1 + δf)(1 + δf∗)− ff∗(1 + δf ′)(1 + δf ′∗)

)

× log
(
f(1 + δf ′)

)
dvdv∗dθ

=
∫ π

2

−π
2

β(θ)
∫

R2
ff∗(1 + δf ′)(1 + δf ′∗) log

f(1 + δf ′)
f ′(1 + δf)

dvdv∗dθ

=
∫ π

2

−π
2

β(θ)
∫

R2
f∗(1 + δf ′∗)

(
f(1 + δf ′) log

f(1 + δf ′)
f ′(1 + δf)

− f(1 + δf ′) + f ′(1 + δf)
)
dvdv∗dθ

+
∫ π

2

−π
2

β(θ)
∫

R2
f∗(1 + δf ′∗)

(
f(1 + δf ′)− f ′(1 + δf)

)
dvdv∗dθ

= I1 + I2.
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The term I2 can be treated easily, because it can be written as

I2 =
∫ π

2

−π
2

β(θ)
∫

R2
f∗(1 + δf ′∗)(f − f ′)dvdv∗dθ,

and the presence of f − f ′ involves strong cancellations. In fact, the term I2

veri�es
I2 = ‖f‖2L1

∫ π
2

−π
2

β(θ)
(

1− 1
cos θ

)
dθ. (22)

To prove (22), consider that

I2 =
∫ π

2

−π
2

β(θ)
∫

R2
f∗(f − f ′)dvdv∗dθ + δ

∫ π
2

−π
2

β(θ)
∫

R2
f∗f ′∗(f − f ′)dvdv∗dθ

= I1
2 + I2

2

Thanks to the change of variable (v, v∗, θ) 7→ (v′, v′∗,−θ), we see that I2
2 = 0.

On the second part of I1
2 , we use the change of variable v 7→ v′ with v∗ and θ

�xed, which jacobian is
dv

dv′
=

1
cos θ

.

Therefore
I1
2 =

∫ π
2

−π
2

β(θ)
(

1− 1
cos θ

) ∫

R2
f∗fdvdv∗dθ

and from this (22) follows.
Using now the inequality

x log
x

y
− x + y ≥ (√

x−√y
)2

, ∀x, y > 0,

we obtain

I1 ≥
∫ π

2

−π
2

β(θ)
∫

R2
f∗(1 + δf ′∗)

(√
f(1 + δf ′)−

√
f ′(1 + δf)

)2

dvdv∗dθ.

Therefore
∫ π

2

−π
2

β(θ)
∫

R2
f∗(1+δf ′∗)

(√
f(1 + δf ′)−

√
f ′(1 + δf)

)2

dvdv∗dθ ≤ D(f)+c1‖f‖2L1

(23)
where

c1 =
∫ π

2

−π
2

β(θ)
(

1
cos θ

− 1
)

dθ > 0.

Now, we write

√
f(1 + δf ′)−

√
f ′(1 + δf) = (log(1+δf ′)−(log 1+δf))

√
f(1 + δf ′)−

√
f ′(1 + δf)

log(1 + δf ′)− log(1 + δf)
.

For 0 < a < x, let

φ(x) =

√
x(1 + δa)−

√
a(1 + δx)

log(1 + δa)− log(1 + δx)
.
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Then, there exists some constant c2 > 0 that does not depend on x or a such
that

|φ(x)| > c2 ∀x > a.

From this inequality we deduce that

c2

∫ π
2

−π
2

β(θ)
∫

R2
f∗(1 + δf ′∗)

(
log(1 + δf ′)− log(1 + δf)

)2

≤ D(f) + c1‖f‖2L1

It has been shown in [1] that if F is a real function such that F (f) ∈ L2(R)
satisfying

∫ π
2

−π
2

β(θ)
∫

R2
f∗

(
F (f ′)− F (f)

)2

≤ D(f) + c1‖f‖2L1 ,

then the following inequality holds:

‖F (f)‖2Hν/2 ≤ D(f) + c1‖f‖2L1 .

Taking F (f) = c2 log(1 + δf) the result follows.

3.2 Moments of the solution and the grazing collision limit
We can now make precise assumptions on the asymptotics of the grazing colli-
sions, namely in letting the kernel β concentrate on the singularity θ = 0. We
will introduce a family of kernels {βε(|θ|)}ε>0 satisfying hypotheses (H1) and
(H2), with

∀θ0 > 0 sup
θ>θ0

βε(|θ|) −→
ε→0

0 (24)

and
lim

ε→0+

∫ π

0

βε(|θ|)θ2 dθ = 1 (25)

This can be obtained in several ways, for example taking, for 0 < µ < 1

βε(|θ|) =
2(1− µ)
ε|θ|2+µ

0 ≤ |θ| ≤ ε1/(1−µ),

βε(|θ|) =
(1− µ)ε
|θ|2+µ

elsewhere.

Let fε be a solution of




∂fε

∂t
= Qε

QBE(fε)(t, v), t ∈ R+, v ∈ R,

fε(0, v) = f0(v),
(26)

where βε(θ) has replaced β(θ). The grazing collision limit is obtained when
ε → 0. Our strategy is �rst to take the Fourier transform in the velocity variable
of equation (26), then to pass to the limit ε → 0 in the Fourier formulation, and
�nally to recognize at the limit the Fourier formulation of a quantum Fokker-
Planck equation.

Let us take the Fourier transform of (26):
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∂f̂ε(t, ξ)
∂t

=
∫ π

2

−π
2

∫

R2
βε(θ)fεfε,∗(1 + δfε(v′) + δfε(v′∗))(e

−iv′ξ − e−ivξ)dvdv∗dθ.

We can split the integral on the right-hand side into three parts. The �rst part
gives

∫ π
2

−π
2

∫

R2
βε(θ)fεfε,∗(e−iv′ξ − e−ivξ)dvdv∗dθ

=
∫ π

2

−π
2

βε(θ)
(
f̂ε(ξ cos θ)f̂ε(ξ sin θ)− f̂ε(ξ)f̂ε(0)

)
dθ.

The second part can be evaluated using the inverse Fourier transform of the
function fε which is supposed to rely in L2

δ

∫ π
2

−π
2

∫

R2
βε(θ)fεfε,∗fε(v′)(e−iv′ξ − e−ivξ)dvdv∗dθ

=
δ

2π

∫ π
2

−π
2

βε(θ)
∫

R3
fεfε,∗f̂ε(η)eiη(v cos θ−v∗ sin θ)·

·
(
e−iξ(v cos θ−v∗ sin θ) − e−ivξ

)
dηdvdv∗dθ

=
δ

2π

∫ π
2

−π
2

βε(θ)
∫

R
f̂ε((ξ − η) cos θ)f̂ε((ξ − η) sin θ)f̂ε(η)dηdθ

− δ

2π

∫ π
2

−π
2

βε(θ)
∫

R
f̂ε(ξ − η cos θ)f̂ε(η sin θ)f̂ε(η)dηdθ.

The third term can be computed in the same way. At the end we get that the
Fourier transform of fε satis�es

∂f̂ε(t, ξ)
∂t

=
∫ π

2

−π
2

βε(θ)
(
f̂ε(ξ cos θ)f̂ε(ξ sin θ)− f̂ε(ξ)f̂ε(0)

)
dθ

+
δ

2π

∫ π
2

−π
2

βε(θ)
∫

R

[
f̂ε((ξ − η) cos θ)f̂ε((ξ − η) sin θ)

− f̂ε(ξ − η cos θ)f̂ε(η sin θ)
]
f̂ε(η)dηdθ

+
δ

2π

∫ π
2

−π
2

βε(θ)
∫

R

[
f̂ε(ξ cos θ − η sin θ)f̂ε(−ξ sin θ − η cos θ)

− f̂ε(ξ − η sin θ)f̂ε(−η cos θ)
]
f̂ε(η)dηdθ.

(27)

To pass to the limit ε → 0, we need some regularity on f̂ε, or equivalently,
fε must have bounded moments. The following result will be proved at the end
of Section 6.

Theorem 3. Assume that the cross-section β satis�es (H1), (H2), with 1 <
ν <

√
5−1. Assume that there exists a solution fε to the problem (26). Assume

12



that fε is regular, in the sense that ‖fε(t)‖L∞(R) and ‖fε(t)‖H
ν
2
are in Lp(R+)

for some p big enough; then there exists some constants λ, T > 0 independent
of ε such that

sup
0≤t<T

‖fε(t)‖L1
4
≤ max

{
λ, ‖f0‖L1

4

}
.

This result formally shows that the Fourier transform of fε (in the velocity
variable) is four times derivable, with bounded derivatives. It is then possible
to use Taylor expansions in the formulation (27) :

∂f̂ε(t, ξ)
∂t

=
1
ε2

∫ π
2

−π
2

β(θ)

[
εθξ

(
f̂ε(ξ)f̂ ′ε(0)

− δ

2π

∫

R

(
f̂ε(ξ − η)f̂ε(η)f̂ ′ε(0)− f̂ ′ε(−η)f̂ε(η)f̂ε(ξ)

)
dη

)

+ ε2 θ2

2

(
ξ2f̂ ′′ε (0)f̂ε(ξ)− ξf̂ ′ε(ξ)f̂ε(0)− δ

2π

∫

R

(
f̂ ′ε(ξ − η)f̂ε(η)f̂ε(0)

+ ((η − ξ)2 − η2)f̂ε(ξ − η)f̂ε(η)f̂ ′′ε (0) + ξf̂ ′ε(ξ)f̂ε(η)f̂ε(−η)

+ ξ2f̂ ′′ε (−η)f̂ε(η)f̂ε(ξ) + 2ηξf̂ ′ε(ξ)f̂ε(η)f̂ ′ε(−η)
)
dη

)
+ θ2O(ε3)

]
dθ.

(28)

Letting ε go to 0, we obtain the grazing collision limit, and we recognize in the
limit the Fourier form of a quantum Fokker-Planck equation:

Theorem 4. Let (fε) be a family of solutions to (26) where the cross-section
β satis�es (H1), (H2), with 1 < ν <

√
5 − 1. Assume that the solutions fε are

regular enough (L∞((0, T ); L1 ∩ L∞(R)) should be enough thanks to Theorem
2). Then there exists a distribution f such that

f̂ε → f̂ when ε → 0

in L∞((0, T ); W 4,∞(R)), and f is a solution to

∂f

∂t
=

(∫

R
f(v)dv

)
∂

∂v
(vf(1 + δf)) +

(∫

R
v2f(v)(1 + δf(v))dv

)
∂2f

∂v2
. (29)

The study of equation (29) should be close to what is done in [4, 5].

4 Existence theorems for the molli�ed model
To give rigorous results, we will from now on work on the regularized model





∂f

∂t
= Q̃QBE(f), t ∈ R+, v ∈ R

f(0, v) = f0(v)
(30)

13



with

Q̃QBE(f)(t, v) =
∫ π

2

−π
2

β(θ)
∫

R

(
f ′f ′∗(1 + δf̃)(1 + δf̃∗)

− ff∗(1 + δf̃ ′)(1 + δf̃ ′∗)
)
dv∗dθ.

(31)

The goal of this Section is to prove the existence of a solution to the problem
(30). To start with, we �rst consider the case of a cross-section with cuto�.

Theorem 5. Let f0 ∈ L1
2(R) be a nonnegative function. Assume that the cross-

section satis�es β ∈ L1(−π
2 ; π

2 ) and (H1). Then there exists a unique solution
f ∈ L∞(R+; L1

2(R)) to the problem (30), which is nonnegative, and preserves
mass and energy.

The proof is a consequence of the following theorem from Wild [15]:

Theorem 6. Let E be a given Banach space and P : EN → E (for N ≥ 2) be
a N-linear operator satisfying the inequality

‖P (u1, · · · , uN )‖ ≤ Cp‖u1‖ · · · ‖uN‖ for all ui ∈ E.

Let
u(t) =

∞∑

k=0

bke−t(1− e(1−N)t)kuk,

where
uk =

∑

i1+···+iN=k=1

bi1 · · · biN

k(N − 1)bk
P (ui1 , · · · , uiN ) for k ≥ 1

and the bk are the coe�cients of the Taylor expansion of the function

v(x)− (1− x)
1

1−N =
∞∑

k=0

bkxk.

Let
t0 =

1
1−N

log(1 + C−1
p ‖u0‖1−N )

and
t1 =

{
1

1−N log(1− C−1
p ‖u0‖1−N ) if 1 > C−1

p ‖u0‖1−N

∞ if 1 ≤ C−1
p ‖u0‖1−N .

Then u(t) is uniformly convergent on compact subsets of (t0, t1) and is the so-
lution of the equation

du

dt
= −u + P (u, · · · , u),

with the initial condition
u(0) = u0.
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Proof of Theorem 5. For f, g, h ∈ L1
2(R), let

P (f,g, h) =
∫ π

2

−π
2

β(θ)
∫

R

[
f ′g′∗

( ∫
R h

‖f0‖L1
+ δh̃ + δh̃∗

)
− fg∗

( ∫
R h

‖f0‖L1

+ δh̃′ + δh̃′∗

)]
dv∗dθ + f

(∫

R
g

)( ∫
R h

‖f0‖L1
+ 2δ‖ψ‖L∞

∫

R
h

) ∫ π
2

−π
2

β(θ)dθ.

Let
K = ‖f0‖L1 (1 + 2δ‖ψ‖L∞‖f0‖L1)

∫ π
2

−π
2

β(θ)dθ.

Let us consider the following problem




∂f

∂t
+ Kf = P (f, f, f), t ∈ R+, v ∈ R

f(0, v) = f0.
(32)

The operator P : (L1
2)

3 → L1
2 is trilinear, and satis�es the inequality

‖P (f, g, h)‖L1
2
≤ CP ‖f‖L1

2
‖g‖L1

2
‖h‖L1

2
∀f, g, h ∈ L1

2(R),

with
CP =

∫
β(θ)dθ

(
2

‖f0‖L1
+ 4δ‖ψ‖L∞

)
.

Assume for the moment that K = 1. Thanks to Theorem 6, there exists some
T > 0 such that there exists a solution f ∈ L∞(0, T ; L1

2(R)) to the problem
(32). This solution can be written as a Wild sum, which reads

f(t) =
+∞∑

k=0

bke−t(1− e−2t)kfk,

where

fk =
∑

i1+i2+i3=k−1

bi1bi2bi3

2kbk
P (fi1 , fi2 , fi3) for k ≥ 1

and
fk=0 = f0.

The numbers bk are the coe�cients of the Taylor expansion of

1√
1− x

=
+∞∑

k=0

bkxk.

One can easily see that all the bk are positive. Moreover

0 ≤ f, g, h ∈ L1
2 =⇒ P (f, g, h) ≥ 0.

Thus, the solution f of (32) is nonnegative. Moreover, owing to the de�nition
of P (·, ·, ·), one can verify that this solution preserves the mass. From that we
deduce that f is solution of (30) on (0, T ). But it preserves the mass, and it
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relies in L1
2, so that it also preserves the energy. Since the time T depends only

on ‖f0‖L1 , ‖f0‖L1
2
, ‖ψ‖L∞ , ‖β‖L1(−π

2 , π
2 ), we can use the same arguments on the

time intervals (T, 2T ), (2T, 3T ), etc, to get a solution on (0, +∞). Finally, in
the case K 6= 1, it is enough to rescale the time to get the right formulae, and
to obtain the same conclusions.

The following theorem claims the existence of a solution of (30) in the non-
cuto� case in some weak sense.

Theorem 7. Let f0 ∈ L1
2(R) be a nonnegative function. Let β satisfy the

assumptions (H1) and (H2). Then, there exists a distribution g such that its
Fourier transform ĝ ∈ L∞(R+;C0 ∩ L∞(R)) is a solution of (33), the Fourier
form of equation (30). Moreover, ĝ preserves the mass.

Proof. We introduce, for n ∈ N∗, the cross-section

βn(θ) = β(θ) ∧ n = min(β(θ), n),

and we denote by fn the solution of the problem (30) corresponding to the
cross-section βn. This solution exists thanks to Theorem 5. For all n and all
t > 0, fn(t) relies in L1, so that we can de�ne its Fourier transform. Moreover,
Q̃QBE(fn) also relies in L1. Hence, we can write the following equation:

∂f̂n(t, ξ)
∂t

=
∫ π

2

−π
2

∫

R2
βn(θ)fnfn

∗ (1 + δf̃n(v′) + δf̃n(v′∗))(e
−iv′ξ − e−ivξ)dvdv∗dθ.

As in Section 3 and since F(f̃n)(η) = f̂n(η)ψ̂(η), we get

∂f̂n(t, ξ)
∂t

=
∫ π

2

−π
2

βn(θ)
(
f̂n(ξ cos θ)f̂n(ξ sin θ)− f̂n(ξ)f̂n(0)

)
dθ

+
δ

2π

∫ π
2

−π
2

βn(θ)
∫

R

[
f̂n((ξ − η) cos θ)f̂n((ξ − η) sin θ)

− f̂n(ξ − η cos θ)f̂n(η sin θ)
]
f̂n(η)ψ̂(η)dηdθ

+
δ

2π

∫ π
2

−π
2

βn(θ)
∫

R

[
f̂n(ξ cos θ − η sin θ)f̂n(−ξ sin θ − η cos θ)

− f̂n(ξ − η sin θ)f̂n(−η cos θ)
]
f̂n(η)ψ̂(η)dηdθ.

(33)

Note that here the mass is the quantity f̂(0). Since the second moment of
fn(v, t) is �nite and conserved in time, its Fourier transform is two times dif-
ferentiable, and satis�es

sup
t>0

‖∂2
ξξ f̂

n(t, ξ)‖L∞ ≤
∫

R
v2f0(v)dv.

Hence, we can use the Taylor formula at the order 2

h(θ) = h(0) + θh′(0) + θ2

∫ 1

0

(1− s)h′′(sθ)ds
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on the functions θ 7→ f̂n(ξ cos θ)f̂n(ξ sin θ), θ 7→ f̂n((ξ−η) cos θ)f̂n((ξ−η) sin θ),
θ 7→ f̂n(ξ−η cos θ)f̂n(η sin θ), θ 7→ f̂n(ξ cos θ−η sin θ)f̂n(−ξ sin θ−η cos θ) and
θ 7→ f̂n(ξ − η sin θ)f̂n(−η cos θ).

Using the notations m =
∫
R f0(v)dv and e =

∫
R v2f0(v)dv, we get the fol-

lowing estimates
∣∣∣∣∣
∫ π

2

−π
2

βn(θ)
(
f̂n(ξ cos θ)f̂n(ξ sin θ)− f̂n(ξ)f̂n(0)

)
dθ

∣∣∣∣∣

≤
∫ π

2

−π
2

θ2β(θ)dθ
(
4|ξ|2me + 2|ξ|m3/2e1/2

)
,

(34)

∣∣∣∣∣
∫ π

2

−π
2

βn(θ)
(

f̂n((ξ − η) cos θ)f̂n((ξ − η) sin θ)

− f̂n(ξ − η cos θ)f̂n(η sin θ)
)
F(f̃n)(η)dθ

∣∣∣∣∣

≤ |ψ̂(η)|m
∫ π

2

−π
2

θ2β(θ)dθ
(
4(|ξ − η|2 + |η|2)me + 2(|ξ − η|+ |η|)m3/2e1/2

)

(35)

and

∣∣∣∣∣
∫ π

2

−π
2

βn(θ)
(

f̂n(ξ cos θ − η sin θ)f̂n(−ξ sin θ − η cos θ)

− f̂n(ξ − η sin θ)f̂n(−η cos θ)
)
F(f̃n)(η)dθ

∣∣∣∣∣

≤ |ψ̂(η)|m
∫ π

2

−π
2

θ2β(θ)dθ
(
4((|ξ|+ |η|)2 + |η|2)me + 2(|ξ|+ 2|η|)m3/2e1/2

)

(36)

The right member of (34) is integrable in time on any interval [t1, t2] ⊂ R+, and
the right-members of (35) and (36) are integrable in (t, η) on any [t1, t2] × R
with 0 < t1 < t2, since ψ ∈ C∞c (R). Therefore, to pass to the limit in (33), it is
enough for f̂n to converge pointwise on R+×R. But inequalities (34), (35) and
(36) ensure that for all compact set K ⊂ R, there exists a constant C depending
only on K, m, e, ψ, β, such that

|f̂n(t1, ξ)− f̂n(t2, ξ)| ≤ C|t1 − t2| ∀ 0 < t1 < t2, ∀ ξ ∈ K.

Then, thanks to Ascoli's theorem, there exists a function ĝ ∈ L∞([t1, t2] × K)
such that, up to the extraction of a subsequence,

‖f̂n − ĝ‖L∞([t1,t2]×K) −→
n→+∞

0.

All this being true for every t1, t2, K, we deduce that ĝ is well de�ned on R+×R
and that ĝ ∈ L∞(R+; L∞ ∩C0(R)). We can therefore pass to the limit in (33).
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Finally, we obtained the existence of a function ĝ(ξ, t) which satis�es (33) with
the original cross-section β, and such that

ĝ(t, 0) = m ∀t > 0.

5 Moments of the cuto� solutions, regularity of
the non cuto� solution

The second step of our analysis is the study of the regularity of the Fourier
transform of the solution obtained in the previous Section. This can be done
by investigating the moments of the solution to the cut-o� equation. Since it is
enough for our needs, we will limit ourselves to the fourth moment. Let

A =
∫ π/2

−π/2

β(θ) cos θ sin2 θdθ

Aη =
∫ π/2

−π/2

β(θ) cos θ| sin θ|1+ηdθ, ν − 1 < η < 1,

A∗ =
∫ π/2

−π/2

β(θ) cos2 θ sin2 θdθ

and chose nβ ∈ N large enough such that, for all n ≥ nβ ,
∫ π/2

−π/2

βn(θ) cos2 θ sin2 θdθ ≥ A∗
2

with βn(θ) = min(β(θ), n). Our result is the following

Theorem 8. Let β(θ) satisfy the assumptions (H1) and (H2), and let fn(t, v)
be the solution of the problem (30) with cross-section βn and with nonnegative
initial datum f0 ∈ L1

4(R). Then there are explicit constants a > 0, c > 0, C > 0
such that we have

sup
n≥nβ

‖fn(t)‖L1
4
≤ (‖f0‖L1

4
+ ct)eat, t ≥ 0, (37)

sup
n≥nβ

sup
t∈R+

‖fn(t)‖L1
4
≤ max{C, ‖f0‖L1

4
}. (38)

Moreover, a, c in (37) depend only on ‖f0‖L1 , ‖f0‖L1
2
, δ, ψ and A, whereas C

in (38) depends only on ‖f0‖L1 , ‖f0‖L1
2
, δ, ψ and A, A∗, Aη and η.

Proof. Let us take φ(v) = v4 as test function. Thanks to the symmetries of the
kernel we obtain

d
dt

∫

R
v4fn(v, t)dv

=
1
2

∫ π
2

−π
2

βn(θ)
∫

R2
(v′4 − v4 + v′4∗ − v4

∗)f
nfn
∗ (1 + δf̃n(v′) + δf̃n(v′∗))dvdv∗dθ.
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From the collision rule (10) it follows that

(v′)4 + (v′∗)
4 − v4 − v4

∗
= (v4 + v4

∗)(cos4 θ + sin4 θ − 1) + 12v2v2
∗ sin2 θ cos2 θ

+ 4vv∗ cos θ sin θ(v2(sin2 θ − cos2 θ) + v2
∗(cos2 θ − sin2 θ))

= −2 cos2 θ sin2 θ(v4 + v4
∗) + 12v2v2

∗ sin2 θ cos2 θ

+ 4 cos θ sin θ cos(2θ)vv∗(v2
∗ − v2).

Consequently

d
dt
‖fn(t)‖L1

4

= −
∫ π/2

−π/2

βn(θ) cos2 θ sin2 θ

∫∫

R2

(
v4 + v4

∗
)
fnfn

∗
(
1 + δf̃n(v′) + δf̃n(v′∗)

)
dvdv∗dθ

+ 6
∫ π/2

−π/2

βn(θ) cos2 θ sin2 θ

∫∫

R2
v2v2

∗f
nfn
∗

(
1 + δf̃n(v′) + δf̃n(v′∗)

)
dvdv∗dθ

+ 2
∫ π/2

−π/2

βn(θ) cos θ sin θ cos(2θ)
∫∫

R2
vv∗fnfn

∗
(
1 + δf̃n(v′) + δf̃n(v′∗)

)
dvdv∗dθ

:= I1 + I2 + I3.

In what follows we always assume n ≥ nβ . For the �rst and second terms
I1, I2 we use

1
2
A∗ ≤

∫ π/2

−π/2

βn(θ) cos2 θ sin2 θdθ ≤ A∗

and
‖f̃n(t)‖L∞ ≤ m‖ψ‖L∞

to get

I1 ≤ −
(

1
2

∫ π/2

−π/2

β(θ) cos2 θ sin2 θdθ

)
2m

∫

R
|v|4fn(t, v)dv

= m2A∗ −mA∗‖fn(t)‖L1
4
,

(39)

and
I2 ≤ 6(1 + 2δm‖ψ‖L∞)A∗e2. (40)

For the third term I3 we compute by change of variable (v, v∗, θ) 7→ (v, v∗,−θ)

I3 = δ

∫ π/2

−π/2

βn(θ) cos θ sin θ cos(2θ)

×
∫∫

R2
vv∗(v2

∗ − v2)fnfn
∗

(
f̃n(v′) + f̃n(v′∗)− f̃n(v̄′)− f̃n(v̄′∗)

)
dvdv∗dθ

where
v̄′ = v cos θ + v∗ sin θ, v̄′∗ = −v sin θ + v∗ cos θ.

Recall
v′ = v cos θ − v∗ sin θ, v′∗ = v sin θ + v∗ cos θ
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and
‖ ∂

∂v
f̃n(., t)‖L∞ ≤ m‖ψ′‖L∞ .

It follows that

|f̃n(v′) + f̃n(v′∗)− f̃n(v̄′)− f̃n(v̄′∗)| ≤ |f̃n(v′)− f̃n(v̄′)|+ |f̃n(v′∗)− f̃n(v̄′∗)|
≤ 2m‖ψ′‖L∞(|v|+ |v∗|)| sin θ|.

(41)

The left hand side is also less than 2m‖ψ‖L∞ (since f ≥ 0). Thus

|f̃n(v′)+f̃n(v′∗)−f̃n(v̄′)−f̃n(v̄′∗)| ≤ 2m(‖ψ‖L∞)1−η(‖ψ′‖L∞)1−η(|v|η+|v∗|η)| sin θ|η.
(42)

By (41) and (42) we obtain two estimates for I3:

I3 ≤ 2mδ‖ψ′‖L∞A

∫∫

R2
|v||v∗|(|v|+ |v∗|)(v2

∗ + v2)fnfn
∗ dvdv∗

= Km,eδ‖ψ′‖L∞A‖fn(t)‖L1
4
,

(43)

and

I3 ≤ 2m(‖ψ‖L∞)1−η(‖ψ′‖L∞)1−ηδAη

∫∫

R2
|v||v∗|(|v|η + |v∗|η)(v2

∗ + v2)fnfn
∗ dvdv∗

≤ Km,e(‖ψ‖L∞)1−η(‖ψ′‖L∞)1−ηδAη(‖fn(t)‖L1
4
)

3+η
4 := C1(‖fn(t)‖L1

4
)

3+η
4 .

(44)

Here Km,e > 0 depends only on m and e.
To prove the �st estimate (37) we omit the negative term I1 and use (40),

(43) and notice that A∗ ≤ A to get

d
dt
‖fn(t)‖L1

4
≤ 6e2(1 + 2δm‖ψ‖L∞)A + Km,eδ‖ψ′‖L∞A‖fn(t)‖L1

4
, t > 0.

This gives by Gronwall lemma

sup
n≥nβ

‖fn(t)‖L1
4
≤ (‖f0‖L1

4
+ ct)eat, t ≥ 0

where
c = 6e2(1 + 2δm‖ψ‖L∞)A, a = Km,eδ‖ψ′‖L∞A.

To prove the second estimate (38) we use (39), (40) and (44) to see that

d
dt
‖fn(t)‖L1

4
≤ C2 + C1(‖fn(t)‖L1

4
)

3+η
4 −mA∗‖fn(t)‖L1

4
, t > 0.

Here and below C1, C2 and C3 depend only on m, e, ψ, δ, A,A∗, Aη and η. Ap-
plying the following inequality

Y α ≤ (1/ε)
α

1−α + εY, α ∈ (0, 1), Y ≥ 0, ε > 0

to
Y = ‖fn(t)‖L1

4
, α =

3 + η

4
, ε =

mA∗
2C1
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gives

C1(‖fn(t)‖L1
4
)

3+η
4 ≤ C1

(
2C1

mA∗

) 3+η
1−η

+
mA∗

2
‖fn(t)‖L1

4

and so
d
dt
‖fn(t)‖L1

4
≤ C3 − mA∗

2
‖fn(t)‖L1

4
, t > 0.

Therefore,
sup

n≥nβ

sup
t≥0

‖fn(t)‖L1
4
≤ max

{
2C3

mA∗
, ‖f0(t)‖L1

4

}
.

Passing to the limit n → +∞ in inequality (38) we obtain

Theorem 9. Let β satisfy (H1) and (H2), and let g be the weak solution of
(30) de�ned in Theorem 7, with nonnegative initial data f0 ∈ L1

4. Then, ĝ(t) is
C3 for all t and

sup
t>0

{‖ĝ(t)‖L∞+‖∂ξ ĝ(t)‖L∞+‖∂2
ξ2 ĝ(t)‖L∞+‖∂3

ξ3 ĝ(t)‖L∞+‖∂4
ξ4 ĝ(t)‖L∞} < +∞.

Moreover, ĝ conserves the energy, in the sense that ∂2
ξξ ĝ(t, 0) = −e for all t > 0.

Proof. The conservation of the mass and inequality (38) imply that there exists
a constant C > 0 which do not depend on n such that





‖∂ξ f̂
n‖L∞(R+×R) ≤ C

‖∂2
ξ2 f̂n‖L∞(R+×R) ≤ C

‖∂3
ξ3 f̂n‖L∞(R+×R) ≤ C

‖∂4
ξ4 f̂n‖L∞(R+×R) ≤ C.

Since L∞(R+ ×R) is the dual space of the Banach space L1(R+ ×R), the four
sequences converge (up to the extraction of a subsequence) in L∞(R+ × R)
weak-*; the limits can only be respectively ∂ξ ĝ, ∂2

ξ2 ĝ, ∂3
ξ3 ĝ and ∂4

ξ4 ĝ (since the
convergence in L∞(R+×R) weak-* implies the convergence in the distributional
sense). Moreover, we have the inequalities, for 1 ≤ i ≤ 4,

‖∂i
ξi ĝ‖L∞(R+×R) ≤ lim inf

n→+∞
‖∂i

ξi f̂n‖L∞(R+×R).

Finally, we have the embedding

W 4,∞(R) ↪→ C3(R),

so that ĝ ∈ L∞(R+; C3(R)).
It remains to prove that the energy is conserved. Let us �x some time t0 > 0.

It is clear that for all integer n, we have

‖∂2
ξ2 f̂n(t0, .)‖L∞(R) ≤ e.

Therefore, up to the extraction of a subsequence, there exists a function h ∈
L∞(R) such that

∂2
ξ2 f̂n(t0, .) ⇀ h weak− ∗ L∞(R).
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But it is clear that h = ∂2
ξ2g(t0, .), since for all function φ ∈ C∞(R) with

compact support,
∫

R
f̂n(t0, ξ)φ′′(ξ)dξ →

∫

R
ĝ(t0, ξ)φ′′(ξ)dξ,

or, after two integrations per part on both sides,
∫

R
∂2

ξ2 f̂n(t0, ξ)φ(ξ)dξ →
∫

R
∂2

ξ2 ĝ(t0, ξ)φ(ξ)dξ.

Let us de�ne an approximation of the Dirac measure

Φp(ξ) =

{
p if − 1

2p < ξ < 1
2p

0 otherwise

We have

∣∣∣∂2
ξ2 f̂n(t0, 0)− ∂2

ξ2 ĝ(t0, 0)
∣∣∣ ≤

∣∣∣∣∂2
ξ2 f̂n(t0, 0)−

∫

R
Φp(ξ)∂2

ξ2 f̂n(t0, ξ)dξ

∣∣∣∣

+
∣∣∣∣
∫

R
Φp(ξ)

(
∂2

ξ2 f̂n(t0, ξ)− ∂2
ξ2 ĝ(t0, ξ)

)
dξ

∣∣∣∣

+
∣∣∣∣
∫

R
Φp(ξ)∂2

ξ2 ĝ(t0, ξ)dξ − ∂2
ξ2 ĝ(t0, 0)

∣∣∣∣ .

The �rst and the third terms converge toward 0 when p converges to in�nity,
independently of n since

‖∂3
ξ3 f̂n(t0, .)‖L∞ ≤ C

with C > 0 independent of n. As for the second term, once p has been �xed, it
converges to 0 since Φp ∈ L1(R), and the result follows.

6 The grazing collision limit
We are now in a position to perform the grazing collision limit in equation (17).
The mechanism is the same as in Section 3: we introduce a family of kernels
{βε(|θ|)}ε>0 satisfying hypotheses (H1) and (H2), with

∀θ0 > 0 sup
θ>θ0

βε(|θ|) −→
ε→0

0 (45)

and
lim

ε→0+

∫ π

0

βε(|θ|)θ2 dθ = 1 (46)

Let gε be the weak solution of the problem (30) in the sense that it satis�es
equation (33), where β(θ) has been replaced by βε(θ).

Theorem 10. Let β(θ) satisfy assumptions (H1), (H2), and let βε(θ) satisfy
(45) and (46). Let gε be the weak solution of the problem (30) where β(θ) has
been replaced by βε(θ), with the nonnegative initial data f0 satisfying f0 ∈ L1

4(R).
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Then, for all T > 0, there exists a distribution g whose Fourier transform
satisfy ĝ ∈ L∞(0, T ; W 4,∞(R)), and such that, up to the extraction of a subse-
quence,

‖ĝε − ĝ‖L∞([t1,t2]×K) −→
ε→0

0 ∀ 0 < t1 < t2 < T and K ⊂ R compact,

∂i
ξi ĝε ⇀

ε→0
∂i

ξi ĝ in L∞((0, T )× R) weak-*, 1 ≤ i ≤ 4,

and such that ĝ is a solution of the Fourier form of the equation

∂h

∂t
=

(∫

R
h(v)dv

)
∂

∂v
(vh(1 + δh̃)) +

(∫

R
v2h(v)(1 + δh̃(v))dv

)
∂2h

∂v2
, (47)

Remark 11. If δ = 0, equation (47) reduces to the classical linear Fokker-Planck
equation.

Proof. To pass to the limit, we need some regularity on the solution gε. However,
Theorem 9 is not su�cient, since the bound on the fourth derivative of ĝε

depends on Aη which becomes an unbounded quantity when replacing β by βε

and as ε → 0. Therefore, we use inequality (37) to obtain a regularity result on
ĝε which is the same than Theorem 9, except that it works only on any time
interval (0, T ). The gain is that the constants used remain bounded as ε → 0
when replacing β by βε.

Let us �x some T > 0; ĝε is four times di�erentiable for almost any time in
(0, T ), and these derivatives are bounded uniformly in time and independently
of ε, provided the initial datum f0 relies in L1

4(R). We now act as if β(θ) was
integrable, and then we will obtain the result by an approximation argument.
A Taylor expansion in ε under the integral sign gives

∂ĝε(t, ξ)
∂t

=
1
ε2

∫ π
2

−π
2

β(θ)

[
εθξ

(
ĝε(ξ)ĝ′ε(0)

− δ

2π

∫

R

(
ĝε(ξ − η)ĝε(η)ĝ′ε(0)ψ̂(η)− ĝ′ε(−η)ĝε(η)ĝε(ξ)ψ̂(η)

)
dη

)

+ ε2 θ2

2

(
ξ2ĝ′′ε (0)ĝε(ξ)− ξĝ′ε(ξ)ĝε(0)− δ

2π

∫

R
ψ̂(η)

(
ĝ′ε(ξ − η)ĝε(η)ĝε(0)

+ ((η − ξ)2 − η2)ĝε(ξ − η)ĝε(η)ĝ′′ε (0) + ξĝ′ε(ξ)ĝε(η)ĝε(−η)

+ ξ2ĝ′′ε (−η)ĝε(η)ĝε(ξ) + 2ηξĝ′ε(ξ)ĝε(η)ĝ′ε(−η)
)
dη

)
+ θ2O(ε3)

]
dθ.

(48)

Since β(θ) is an even function, the �rst-order terms vanish.
By Theorem 8 there exists a constant λT > 0 which do not depend on ε such

that

sup
0<t<T

{
4∑

i=0

‖∂i
ξi ĝε(t, .)‖L∞

}
≤ λT .

23



Using equation (48), we see that the family (ĝε)ε is equicontinuous, so that we
can use Ascoli's theorem, which says that there exists a function ĝ ∈ L∞((0, T )×
R) such that, up to the extraction of a subsequence,

‖ĝε − ĝ‖L∞([t1,t2]×K) −→ 0
ε→0

for all 0 < t1 < t2 < T and all compact set K ⊂ R. In addition, all the
results of Theorem 9 are still valid for ĝ on (0, T ). Therefore, thanks to both
the uniform convergence for ĝ and the convergence in L∞((0, T ) × R) weak-*
for its derivatives, we can pass to the limit in equation (48), and we get, using
classical formulae on the Fourier transform and the conservation of mass and
energy, that ĝ satis�es the equation which is the Fourier transform of equation
(47).

Proof of Theorem 3. To study the grazing collision limit, we needed some reg-
ularity on the Fourier transform of the solution. This is equivalent to have a
uniform bound on some higher moment of the solution. In proving Theorem 8,
we used the regularity of the molli�ed part, more precisely the fact that this
part was in C1. In fact it could be enough to use the H

ν
2 regularity which

follows from the H-theorem. Indeed, the terms that raise problems in the proof
of Theorem 8 are Ĩ1 and Ĩ2. Let us see how to treat the �rst one. We have

|Ĩ1| =
∣∣∣∣
∫

β(θ) sin θ cos3 θ

∫

R2
vv∗(v2 − v2

∗)ff∗(f(v′)− f(ṽ′))dvdv∗dθ

∣∣∣∣

=

∣∣∣∣∣
∫

β(θ) sin θ cos3 θ

∫

R2
vv∗(v2 − v2

∗)f(v)f(v∗)

[
v(1− cos θ)

]α

f(v′)− f(ṽ′)
[v(1− cos θ)]α

dvdv∗dθ

∣∣∣∣∣

≤
∫

β(θ)| sin θ||1− cos θ|α| cos3 θ|
(∫

R2

(
v1+αv∗(v2 − v2

∗)
)p

f(v)pf(v∗)pdvdv∗

)1/p

·

·
(∫

R2

|f(v′)− f(ṽ′)|q
|v(1− cos θ)|αq

dvdv∗

)1/q

dθ.

In order to deal with moments not exceeding the fourth one, we use Hölder's
inequality, with p such that (3 + α)p = 4. Consequently q = 4

1−α . Moreover,
in order to recognize the semi-norm of f in the Sobolev space Hν/2 in the last
term of the product, we need to set

αq = 1 + ν,

and thus
α =

1 + ν

5 + ν

(note that 0 < α < 1). With these constants, we have
(∫

R2

|f(v′)− f(ṽ′)|q
|v(1− cos θ)|αq

dvdv∗

)1/q

=
1

|1− cos θ|1/q

(∫

R2

|f(v′)− f(ṽ′)|q
|v(1− cos θ)|αq

dvd(1− cos θ)v∗

)1/q

≤ 21− 2
q

|1− cos θ| 1q | sin θ| 1q
‖f(t)‖1−

2
q

L∞ |f(t)|
2
q

Hν/2 .
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Finally

|Ĩ1| ≤ C

∫
β(θ)| cos3 θ|| sin θ|1− 1

q |1− cos θ|α− 1
q dθ

(∫

R
v4f(t, v)dv

) 2
p

‖f(t)‖L∞ |f(t)|
2
q

Hν/2

The integral in θ is �nite if and only if

2
(

α− 1
q

)
− ν − 1

q
> −1.

Recalling that
q =

4
1− α

and that
α =

1 + ν

5 + ν
,

this request is equivalent to

ν2 + 2ν − 4 < 0,

which is veri�ed for −1−√5 < ν <
√

5− 1. Combining this with the previous
constraints on the parameter ν, we obtain that our bound of the fourth moment
works for all ν verifying

1 < ν <
√

5− 1.

The treatment of Ĩ2 is quite more simple, since it requires only some changes
of variable. Indeed, using the changes of variable v 7→ v − v∗ sin θ and θ 7→ −θ

Ĩ2 =
∫ π

2

−π
2

β(θ) sin θ cos3 θ

∫

R2
vv∗(v2 − v2

∗)f(v)f(v∗)(f(ṽ′)− f(v))dvdv∗dθ

=
∫ π

2

−π
2

β(θ) sin θ cos3 θ

∫

R2
vv∗(v2 − v2

∗)f(v)f(v∗)f(ṽ′)dvdv∗dθ

=
∫ π

2

−π
2

β(θ) sin θ cos3 θ·

·
∫

R2
(v + v∗ sin θ)v∗((v + v∗ sin θ)2 − v2

∗)f(v + v∗ sin θ)f(v∗)f(v)dvdv∗dθ

= −
∫ π

2

−π
2

β(θ) sin θ cos3 θ·

·
∫

R2
(v − v∗ sin θ)v∗((v − v∗ sin θ)2 − v2

∗)f(ṽ′)f(v∗)f(v)dvdv∗dθ

This implies

Ĩ2 ≤ C(m, e)

(∫ π
2

−π
2

β(θ) sin2 θdθ

)
‖f(t)‖L∞

(
e2 + m

1
4

(∫

R
v4f(t, v)dv

) 3
4
)

.
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7 Conclusions
In this paper we investigated the asymptotic equivalence between the (molli�ed)
Kac caricature of a Bose-Einstein gas and a nonlinear Fokker-Planck type equa-
tion in the so-called grazing collision limit. The limit equation di�ers from the
analogous one present in the literature [13], since in our case the linear di�usion
has a di�usivity which depends on the solution itself, in order to guarantee the
conservation of energy. Our analysis refers to a molli�ed version of the equa-
tion, due to the di�culties of handle the third order nonlinearity present in the
Bose-Einstein correction. A further inside on the true model, done in the �rst
part of the paper, shows that a proof of the boundedness of the solution would
be su�cient to avoid the presence of the molli�er.
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