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Abstract We investigate properties of some extensions of a class of Fourier-
based probability metrics, originally introduced to study convergence to equi-
librium for the solution to the spatially homogeneous Boltzmann equation.
At difference with the original one, the new Fourier-based metrics are well-
defined also for probability distributions with different centers of mass, and
for discrete probability measures supported over a regular grid. Among other
properties, it is shown that, in the discrete setting, these new Fourier-based met-
rics are equivalent either to the Euclidean-Wasserstein distance W2, or to the
Kantorovich-Wasserstein distance W1, with explicit constants of equivalence.
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1 Introduction

In computational applied mathematics, numerical methods based on Wasser-
stein distances achieved a leading role over the last years. Examples include the
comparison of histograms in higher dimensions [6,9,22], image retrieval [21],
image registration [4,11], or, more recently, the computations of barycenters
among images [7, 15]. Surprisingly, the possibility to identify the cost function
in a Wasserstein distance, together with the possibility of representing images
as histograms, led to the definition of classifiers able to mimic the human
eye [16,21,24].

More recently, metrics which are able to compare at best probability dis-
tributions were introduced and studied in connection with machine learning,
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where testing the efficiency of new classes of loss functions for neural networks
training has become increasingly important. In this area, the Wasserstein
distance often turns out to be the appropriate tool [1,5,18]. Its main drawback,
though, is that it suffers from high computational complexity. For this reason,
attempts to use other metrics, which require a lower computational cost while
maintaining a good approximation, have been object of recent research [28].
There, the theory of approximation in the space of wavelets was the main
mathematical tool.

Following the line of thought of [28], we consider here an alternative to the
approximation in terms of wavelets, which is furnished by metrics based on
the Fourier transform. In terms of computational complexity, the price to pay
for a dimension N � 1 of the data changes from a time O(N) to the time
O(N logN) required to evaluate the fast Fourier transform.

While this represents a worsening, with respect to the use of wavelets, in
terms of computational complexity, there is an effective improvement with
respect to the computational complexity required to evaluate Wasserstein-type
metrics, which is of the order O(N3 logN). Furthermore, from the point of
view of the important questions related to the comparison of these metrics
with Wasserstein metrics in problems motivated by real applications, we prove
in this paper that in the case of probability measures supported on a bounded
domain, one has a precise and explicit evaluation of the constants of equivalence
among these Fourier-based metrics and the Wassertein ones, a result which is
not present in [28].

The Fourier-based metrics considered in this paper were introduced in [19],
in connection with the study of the trend to equilibrium for solutions of
the spatially homogeneous Boltzmann equation for Maxwell molecules. Since
then, many applications of these metrics have followed in both kinetic theory
and probability [10,12–14,20,25,30]. All these problems deal with functions
supported on the whole space Rd, with d ≥ 1, that exhibit a suitable decay at
infinity which guarantees the existence of a suitable number of moments.

Given two probability measures µ, ν ∈ P(Rd), d ≥ 1, and a real parameter
s > 0, the Fourier-based metrics ds considered in [19] are given by

ds(µ, ν) := sup
k∈Rd\{0}

|µ̂(k)− ν̂(k)|
|k|s

, (1.1)

where µ̂ and ν̂ are the Fourier transforms of the measures µ and ν, respectively.
As usual, given a probability measure µ ∈ P(Rd), the Fourier transform of µ is
defined by

µ̂(k) :=
∫
Rd
e−ik·xdµ(x).

These metrics, for s ≥ 1, are well-defined under the further assumption of
boundedness and equality of some moments of the probability measures. Indeed,
a necessary condition for ds to be finite, is that moments up to [s] (the integer
part of s) are equal for both measures [19].
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In dimension d = 1, similar metrics were introduced a few years later
by Baringhaus and Grübel in connection with the characterization of convex
combinations of random variables [8]. Given two probability measures µ, ν ∈
P(Rd), d ≥ 1, and two real parameters s > 0 and p ≥ 1, the multi-dimensional
version of these Fourier-based metrics reads

Ds,p(µ, ν) :=
(∫

Rd

|µ̂(k)− ν̂(k)|p

|k|(ps+d) dk

)1/p
. (1.2)

The metrics defined by (1.1) and (1.2) belong to the set of ideal metrics [32], and
have been shown to be equivalent to other common probability distances [19,30],
including the Wasserstein distance W2(µ, ν) [14], given by

W2(µ, ν) := inf
π∈Π(µ,ν)

{∫
Rd×Rd

|x− y|2 dπ(x,y)
}1/2

, (1.3)

where the infimum is taken on the set Π(µ, ν) of all probability measures on
Rd × Rd with marginal densities µ and ν. However, in dimension d > 1 the
constants of equivalence are not explicit [14], so that it is difficult to establish
a comparison between these metrics’ efficacy in applications.

An unpleasant aspect related to the application of the previous Fourier-
based distances is related to its finiteness, that requires, for high values of
s, a sufficiently high number of equal moments for the underlying probabil-
ity measures. In the context of kinetic equations of Boltzmann type, where
conservation of momentum and energy of the solution is a consequence of
the microscopic conservation laws of binary interactions among particles, this
requirement on ds, with 2 < s < 3, is clearly not restrictive. However, in order
to apply the Fourier-based metrics outside of the context of kinetic equations,
this requirement appears unnatural. To clarify this point, let us consider the
case in which we want to compare the distance between two images. If we
take two grey scale images and model them as probability distributions, there
is no reason why these distributions possess the same expected value. The
simplest example is furnished by two images consisting of a black dot, each one
centered in a different point of the region, that can be modeled as two Dirac
delta functions centered in two different points.

In this paper we improve the existing results concerning the evaluation of
the constants in the equivalence relations between the Fourier-based metrics
and the Wasserstein one, in a relevant setting with respect to applications. This
equivalence is related to the comparison of two discrete measures and it is based
on the properties of the Fourier transform in the discrete setting. To this extent,
we consider a new version of these metrics, the periodic Fourier-based metrics,
that play the role of the metrics (1.1) and (1.2) in the discrete setting. With
our results, we show that the new family of Fourier-based metrics represents a
fruitful alternative to the Wasserstein metrics, both from the theoretical and
the computational points of view.

To weaken the restriction about moments, we further consider a variant of
the Fourier metric d2 that remains well-defined even for probability measures
with different mean values.
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The content of this paper is as follows. In Section 2 we introduce the
notations and the basic concepts of measure theory and optimal transport. Fur-
thermore, we define the Fourier-based metrics, we recall their main properties,
and we introduce our extension. Then, in view of applications, in Section 3, we
consider a discrete setting and we define and study the properties of the new
family of periodic Fourier-based metrics, highlighting their explicit equivalence
with the Wasserstein distance in various cases. Section 4 presents numerical
results obtained comparing our implementation of the periodic Fourier-based
metrics with the Wasserstein metrics as implemented in the POT library [17].
The concluding remarks are contained in Section 5.

2 An extension of Fourier-based metrics

In what follows, we briefly review some basic notions of optimal transport,
together with the definition and some properties of Wassertein and Fourier-
based metrics. The final goal is to extend the definition of the metrics (1.1)
and (1.2) for the particular case s = 2, which allows for a direct and fruitful
comparison between the Fourier-based metrics and the Wasserstein metric
W2 defined in (1.3). In what follows, we only present the notions that are
necessary for our purpose. For a deeper insight on optimal transport, we refer
the reader to [2, 3, 26, 31]. Likewise, we address the interested reader to [14] for
an exhaustive review of the properties of the Fourier-based metrics and their
connections with other metrics used in probability theory.

We work on the Euclidean space Rd, endowed with the Borel σ−algebra
B(Rd). We use bold letters to denote vectors of Rd. If x ∈ Rd, then xi denotes
its i-th coordinate. Given x,y ∈ Rd, 〈x,y〉 =

∑n
i=1 xiyi is their scalar product

and |x| = 〈x,x〉1/2 is the Euclidean norm (or modulus) of x.
The set of probability measures on Rd is denoted by P(Rd). For all m ∈ N

we denote by Pm(Rd) the set of probability measures with finite moments up
to order m

Pm(Rd) :=
{
µ ∈ P(Rd) :

∫
Rd
xβ dµ(x) < +∞, ∀β ∈ Nd, |β| ≤ m

}
.

Given µ ∈ P(Rd) and a Borel map f : Rd → Rd, then the image measure (or
push-forward) of µ by f is f#µ ∈ P(Rd), given by f#µ(A) = µ(f−1(A)) for all
A ∈ B(Rd). Equivalently, for every continuous compactly supported function φ
on Rd, it holds ∫

Rd
φ(y) d(f#µ)(y) =

∫
Rd
φ(f(x)) dµ(x).

Our first goal is to define the Fourier-based metrics ds, in the range 1 <
s ≤ 2, on P(Rd).

Definition 1 Given µ ∈ P1(Rd), we say that

mµ =
∫
Rd
x dµ(x)
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is the center of µ.

The center of a measure µ can be moved by resorting to a translation. Given
µ ∈ P1(Rd) and τ ∈ Rd, we define the translated measure µτ ∈ P1(Rd) by

µτ = Sτ#µ, where Sτ (x) = x+ τ .

Lemma 1 Given µ, ν ∈ P1(Rd), there exists a unique vector τ ∈ Rd such that

mµ = mντ .

Proof Let τ = mµ −mν , then

mντ =
∫
Rd
xdντ (x) =

∫
Rd

(x+ τ )dν(x) = mν + τ = mµ.

�

Let us recall now the definition of transport plan, and the consequent
definition of Wasserstein Distance.

Definition 2 (Transport plan) Given two probability measures µ, ν ∈
P(Rd), a vector π ∈ P(Rd × Rd) is called a transport plan between µ and ν if
its marginals coincide with µ, ν, that is

π(A× Rd) = µ(A) ∀A ∈ B(Rd), (2.4)
π(Rd ×B) = ν(B) ∀B ∈ B(Rd). (2.5)

We denote by Π(µ, ν) the set of all transport plans between µ and ν.

Definition 3 (Wasserstein distance) Given p ∈ N and µ, ν ∈ Pp(Rd), the
Wasserstein distance of order p between µ and ν is defined as

Wp(µ, ν) := inf
π∈Π(µ,ν)

{∫
Rd×Rd

|x− y|p dπ(x,y)
}1/p

, (2.6)

where | · | is a norm defined in Rd.

In this paper, we consider only the Euclidean norm, and we focus on
Wasserstein distances with exponents p = 1 and p = 2, namely

W1(µ, ν) := inf
π∈Π(µ,ν)

{∫
Rd×Rd

|x− y| dπ(x,y)
}
, (2.7)

W2(µ, ν) := inf
π∈Π(µ,ν)

{∫
Rd×Rd

|x− y|2 dπ(x,y)
}1/2

. (2.8)

The W2 metric satisfies an explicit translation property (Remark 2.19, [16] ).
We give below a short proof of this property.
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Lemma 2 Let µ, ν ∈ P2(Rd), with centers mµ and mν , respectively. For any
given pair of vectors v,w ∈ Rd we have

W2(µv, νw)2 = W2(µ, ν)2 + |v −w|2 + 2〈v −w,mµ −mν〉. (2.9)

In addition, if we choose v = −mµ and w = −mν it holds

W2(µ−mµ , ν−mν )2 = W2(µ, ν)2 − |mµ −mν |2. (2.10)

Proof Given a transport plan π ∈ Π(µ, ν), we consider the transport plan

π̃ := (Sv, Sw)#π,

where Sv(x) = x + v, Sw(y) = y + w. π̃ is a transport plan between the
translated measures µv and νw. Then, by definition of push-forward, we get∫

Rd×Rd
|x− y|2dπ̃(x,y)

=
∫
Rd×Rd

|(x+ v)− (y +w)|2dπ(x,y)

=
∫
Rd×Rd

(|x− y|2 + |v −w|2 + 2〈x− y,v −w〉)dπ(x,y)

=
∫
Rd×Rd

|x− y|2dπ(x,y) + |v −w|2 + 2〈mµ −mν ,v −w〉.

If π is an optimal transport plan between µ and ν, we have

W2(µv, νw)2 ≤
∫
Rd×Rd

|x− y|2dπ̃(x,y)

= W2(µ, ν)2 + |v −w|2 + 2〈v −w,mµ −mν〉.

By repeating the previous argument with an optimal transport plan between
µv, νw, we find

W2(µv, νw)2 =
∫
Rd×Rd

|x− y|2dπ(x,y) + |v −w|2 + 2〈v −w,mµ −mν〉

≥W2(µ, ν)2 + |v −w|2 + 2〈v −w,mµ −mν〉.

Hence, we can conclude

W2(µv, νw)2 = W2(µ, ν)2 + |v −w|2 + 2〈v −w,mµ −mν〉.

�

The idea of using translation operators to compute the distance of prob-
ability measures with different centers can be used to properly modify the
Fourier-based metrics ds and Ds,p defined in (1.1) and (1.2). Indeed, as briefly
discussed in the introduction, the case s ≥ 1 requires the probability measures
to satisfy the further condition given below [19].
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Proposition 1 (Proposition 2.6, [14]) Let bsc denote the integer part of
s ∈ R, and assume that the densities µ, ν ∈ Ps(Rd) possess equal moments up
to bsc if s /∈ N, or equal moments up to s− 1 if s ∈ N. Then the Fourier-based
distance ds(µ, ν) is well-defined. In particular, d2(µ, ν) is well-defined for two
densities with the same center.

The interest in the d2 metric is related to its equivalence to the Euclidean
Wasserstein distance W2. A detailed proof in dimension d ≥ 1 can be found in
the review paper [14].

Theorem 1 (Proposition 2.12 and Corollary 2.17, [14]) For any given
pair of probability densities µ, ν ∈ P2(Rd) such that mµ = mν , the d2 metric
is equivalent to the Euclidean Wasserstein distance W2, that is, there exist two
positive bounded constants c < C such that

cW2(µ, ν) ≤ d2(µ, ν) ≤ CW2(µ, ν). (2.11)

The proof in [14] does not provide in general the explicit expression of the two
constants c and C. The value of these constants is quite involved, and it is
strongly dependent on higher moments of the densities.

The equivalence result of Theorem 1 can easily be extended to cover the
case of probability measures with different centers of mass. To this aim it is
necessary, in analogy with the property of Wasserstein distance W2 stated
in Lemma 2, to modify the Fourier-based metrics d2 and D2,p in such a way
to allow for probability measures with different centers of mass. We start by
considering the case of the metric d2.

Definition 4 (Translated Fourier-based Metric) We define the function
D2 : P2(Rd)× P2(Rd)→ R as:

D2(µ, ν) :=
√
d2(µ, νmµ−mν

)2 + |mµ −mν |2. (2.12)

Owing to Remark 1 and Proposition 1, D2(µ, ν) is well-defined for each
pair of probability measures in P2(Rd), independently of their centers. Note
that νmµ−mν , which is the translation of ν by mµ −mν , has the same center
as µ. One could give an equivalent definition of D2 by translating µ, instead of
ν, or by translating both centers to 0.

Lemma 3 Given µ, ν ∈ P2(Rd) and v,w ∈ Rd, then

|µ̂v(k)− ν̂w(k)| = |µ̂(k)− ν̂w−v(k)| = |µ̂v−w(k)− ν̂(k)|.

Therefore
d2(µv, νw) = d2(µ, νw−v) = d2(µv−w, ν).

In particular, the function (µ, ν)→ d2(µ, νmµ−mν ) is symmetric.
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Proof By the translation property of the Fourier Transform, for all v ∈ Rd we
have the identity

µ̂v(k) = e−iv·kµ̂(k).
Therefore

|e−iv·kµ̂(k)− e−iw·kν̂(k)| = |e−iw·k(e−i(v−w)·kµ̂(k)− ν̂(k))|
= |e−i(v−w)·kµ̂(k)− ν̂(k)|.

This shows that

sup
k∈Rd\{0}

|e−iv·kµ̂(k)− e−iw·kν̂(k)|
|k|2

= sup
k∈Rd\{0}

|e−i(v−w)·kµ̂(k)− ν̂(k)|
|k|2

.

�

Lemma 3 implies the following theorem.
Theorem 2 The function D2 defined in (2.12) is a distance over P2(Rd).
Proof Clearly D2(µ, ν) ≥ 0,∀µ, ν ∈ P2(Rd), and D2(µ, ν) = 0 if and only if
µ = ν. Symmetry follows from Lemma 3. Finally, both d2(µ, ν), in reason of
the fact that it is a distance, and |mµ −mν | satisfy the triangular inequality.

�

An analogous extension can be done for the metric D2,p defined in (1.2).
Definition 5 Given p ≥ 1, we define D2,p : P2(Rd)× P2(Rd)→ R by

D2,p(µ, ν) :=
√
D2,p(µ, νmµ−mν )2 + |mµ −mν |2.

D2,p is a metric on P2(Rd).
It is remarkable that the result of Theorem 1 can be extended to the D2

metric.
Theorem 3 The function D2 defined in (2.12) is equivalent to the W2 distance.
Proof Let µ, ν ∈ P2(Rd) and let µ∗, ν∗ denote the two corresponding translated
measures centered in 0. By Lemma 2, we have

W 2
2 (µ, ν) = W 2

2 (µ∗, ν∗) + |mµ −mν |2. (2.13)
Owing to Theorem 1, there exist two constants c, C ∈ (0,∞) such that

cd2(µ∗, ν∗) ≤W2(µ∗, ν∗) ≤ Cd2(µ∗, ν∗). (2.14)
Using (2.13) in (2.14), we get

cd2(µ∗, ν∗)2 + |mµ −mν |2 ≤W2(µ, ν)2 ≤ Cd2(µ∗, ν∗)2 + |mµ −mν |2,
which can be rewritten as

min{c, 1}
(
d2(µ∗, ν∗)2 + |mµ −mν |2

)
≤W2(µ, ν)2

≤ max{1, C}
(
d2(µ∗, ν∗)2 + |mµ −mν |2

)
.

Finally
min{c, 1}D2

2(µ, ν) ≤W 2
2 (µ, ν) ≤ max{1, C}D2

2(µ, ν).
�
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3 The Periodic Fourier-based metrics

In this section, we introduce a family of (Discrete) Periodic Fourier-based
metrics suitable to measure the distance between discrete probability measures
whose support is restricted to a given set of points, and we discuss their
equivalence with the Wasserstein metrics. The main result is that in this case
one obtains a precise estimation of the constants of equivalence.

Definition 6 (Regular grid) For N ∈ N \ {0}, we define the regular grid

GN :=
{
x ∈ Rd : Nx ∈ Zd ∩ [0, N)d

}
.

Note that GN ⊂ [0, 1)d.

Definition 7 (Discrete Measure over a grid) We say that µ is a a discrete
measure over GN if its support is contained in GN , that is, if µ has the form

µ(x) =
∑
y∈GN

µyδ(x− y), (3.15)

where µy ∈ R, µy ≥ 0 for all y ∈ GN .
The Discrete Fourier transform of a discrete measure over GN is given by

µ̂(k) =
∑
x∈GN

µxe
−i〈x,k〉. (3.16)

The periodicity of the complex exponential implies that µ̂ is 2πN -periodic
over all directions, so that it is sufficient to study µ̂ over a strict subset of Rd,
e.g., over [0, 2πN ]d. For instance, the value of the Fourier-based metric (1.1)
is achieved by searching for the “sup” operator on the bounded set [0, 2πN ]d.
Since

1
|k|2

≥ 1
|k′|2

, ∀k ∈ (0, 2πN ]d, ∀k′ ∈ Rd+\[0, 2πN ]d

and the function
k→ |µ̂(k)− ν̂(k)|

is 2πN -periodic, for any given constant s > 0 the Discrete Fourier-based metric
can be defined as

ds(µ, ν) = sup
k∈[0,2πN ]d\{0}

|µ̂(k)− ν̂(k)|
|k|s

. (3.17)

Definition 8 (Dilated Discrete Measures) Given a discrete measure µ
over GN and γ ∈ R such that γ > 0, the γ-dilated measure µγ is

µγ(x) =
∑
y∈GN

µyδ(γx− y).

The Fourier transform of µγ is

µ̂γ(k) =
∑
x∈GN

µxe
− i
γ 〈k,x〉 = µ̂

(
k

γ

)
. (3.18)
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Therefore, if µ̂ is T -periodic, then µ̂γ is γT -periodic. Like the original metrics
(1.1) [14], the metric (3.17) satisfies the dilation property

ds(µγ , νγ) = 1
γs
ds(µ, ν). (3.19)

In particular, if we consider µ of the form (3.15), the Fourier transform of its
1
N -dilation is 2π-periodic.

We recall the definition of the metrics (1.2):

Ds,p(µ, ν) :=
(∫

Rd

|µ̂(k)− ν̂(k)|p

|k|(sp+d) dk

) 1
p

,

where s > 0 and p ≥ 1. As we did for the Fourier Based Metrics ds, thanks
to the periodicity of the Fourier transform, we can restrict the domain of
integration to [0, T ]d. In this case, for any given choice of the parameters
p and s, this distance is well-defined any time the integrand is integrable
in a neighbourhood of the origin. This corresponds to requiring that 1

|k|γ is
integrable on the d-dimensional ball B1(0) = {k ∈ Rd : |k| ≤ 1}, that is, if and
only if γ < d. This consideration suggests the following definition.

Definition 9 (The Periodic Fourier-based Metric) Let µ and ν be two
probability measures over GN . The (s, p, α)-Periodic Fourier-based Metric (or
PFM) between µ and ν is defined as

f (α)
s,p (µ, ν) :=

(
1
|T |d

∫
[0,T ]d

|µ̂(k)− ν̂(k)|p

|k|sp+α dk

) 1
p

, (3.20)

where p, s, α ∈ R and T is the period of µ̂ and ν̂. When α = 0 and s ∈ N we
say that fs,p := f

(0)
s,p is pure.

As discussed in the introduction, in dimension d = 1 the continuous version
of the metrics (3.20) has been considered in [8]. Recently, these metrics have
been considered in relation with the problem of convergence toward equilibrium
of a Fokker–Planck type equation modeling wealth distribution [29], where
various properties of these metrics have been studied. As pointed out in [29], if
µ and ν have equal r-moments, the function |µ̂(k)− ν̂(k)| behaves like |k|r+1

as k→ 0. As a consequence, the value of f (α)
s,p (µ, ν) is finite only if the following

condition is verified
p(s− r − 1) + α < d. (3.21)

If s, p and α satisfy (3.21), and thus f (α)
s,p < +∞, we say that f (α)

s,p is feasible.

Proposition 2 Let µ and ν be two probability measures over GN . For any
given constant γ > 0, the following dilation property holds

f (α)
s,p (µγ , νγ) = 1

|γ|s+α
p
f (α)
s,p (µ, ν).
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Proof Using relation (3.18) and the change of variables k = γk′, we get

f (α)
s,p (µγ , νγ) =

(
1
|γT |d

∫
[0,γT ]d

|µ̂γ(k)− ν̂γ(k)|p

|k|sp+α dk

) 1
p

=
(

1
|γT |d

∫
[0,γT ]d

|µ̂(kγ )− ν̂(kγ )|p

|k|sp+α dk

) 1
p

=
(

1
|γ|d

1
|T |d

∫
[0,T ]d

|µ̂(k′)− ν̂(k′)|p

|γ|sp+α|k′|sp+α |γ|
ddk′

) 1
p

= 1
|γ|s+α

p

(
1
|T |d

∫
[0,T ]d

|µ̂(k′)− ν̂(k′)|p

|k′|sp+α dk′

) 1
p

= 1
|γ|s+α

p
f (α)
s,p (µ, ν).

�

It is important to remark that, at difference with the metrics (1.2), the analogous
of the dilation property (3.19) is true only for α = 0, that is only for pure
metrics. We show next that the f

(α)
s,p metrics satisfy various monotonicity

properties with respect to the parameters p and s.

Proposition 3 Let µ and ν be two probability measures over GN , with mo-
ments equal up to r. If t ≤ s, then

f
(α)
t,p (µ, ν) ≤ (

√
d|T |)(s−t)f (α)

s,p (µ, ν),

for any p and α for which the metric is feasible, i.e., for p(s− r − 1) + α < d.

Proof We compute

f
(α)
t,p (µ, ν) =

(
1
|T |d

∫
[0,T ]d

|µ̂(k)− ν̂(k)|p

|k|tp+α dk

) 1
p

=
(

1
|T |d

∫
[0,T ]d

|k|p(s−t)

|k|p(s−t)
|µ̂(k)− ν̂(k)|p

|k|tp+α dk

) 1
p

=
(

1
|T |d

∫
[0,T ]d

|k|p(s−t) |µ̂(k)− ν̂(k)|p

|k|sp+α dk

) 1
p

≤ (
√
d|T |)(s−t)f (α)

s,p (µ, ν).

The last inequality is obtained resorting to the bound |k| ≤
√
d|T |. �

Proposition 4 Let µ and ν be two probability measures over GN . If α = 0
and p ≤ q, then

fs,p(µ, ν) ≤ fs,q(µ, ν).
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Proof We have

fs,p(µ, ν) =
(

1
|T |d

∫
[0,T ]d

|µ̂(k)− ν̂(k)|p

|k|sp
dk

) 1
p

=
((

1
|T |d

∫
[0,T ]d

|µ̂(k)− ν̂(k)|p

|k|sp
dk

) q
p
) 1
q

≤

(
1
|T |d

∫
[0,T ]d

(
|µ̂(k)− ν̂(k)|p

|k|sp

) q
p

dk

) 1
q

= fs,q(µ, ν).

The last inequality follows from Jensen’s inequality. �

Remark 1 By letting p→ +∞, we get

lim
p→∞

fs,p(µ, ν) = fs,∞(µ, ν) := ds(µ, ν).

Thanks to Hölder inequality, for all p < +∞ we have the bound

fs,p(µ, ν) ≤ ds(µ, ν). (3.22)

The results of this Section are preliminary to our main result, which deals with
the equivalence of the pure metrics, for p = 2, with the Wasserstein metrics.
For the sake of simplicity, and without loss of generality, in the next subsection
we consider measures in dimension d = 2.

3.1 Equivalence with the Wasserstein metric W1

We consider the two cases s = 1 and s = 2, in dimension d = 2, and we show
that f1,2 and f2,2 are equivalent to W1 and W2, respectively.

We start with the case s = 1. For any µ, ν ∈ P(GN ), the PFM is

f1,2(µ, ν) =
(

1
|T |2

∫
[0,T ]2

|µ̂(k)− ν̂(k)|2

|k|2
dk

) 1
2

. (3.23)

We have the following

Theorem 4 For any pair of measures µ, ν ∈ P(GN ), we have the inequality

f1,2(µ, ν) ≤W1(µ, ν).
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Proof Let π be a transport plan between µ and ν. It holds

|µ̂(k)− ν̂(k)| =
∣∣∣∣ ∑
x,y∈GN

e−ik·xπ(x,y)−
∑

x,y∈GN

e−ik·yπ(x,y)
∣∣∣∣

=
∣∣∣∣ ∑
x,y∈GN

(
e−ik·x − e−ik·y

)
π(x,y)

∣∣∣∣
≤

∑
x,y∈GN

∣∣e−ik·x − e−ik·y∣∣π(x,y)

=
∑

x,y∈GN

∣∣1− eik·(x−y)∣∣π(x,y)

≤
∑

x,y∈GN

∣∣k · (x− y)
∣∣π(x,y)

≤ |k|
∑

x,y∈GN

|x− y|π(x,y).

Hence, if π is the optimal transport plan, we conclude with the inequality

|µ̂(k)− ν̂(k)| ≤ |k|W1(µ, ν). (3.24)

Using inequality (3.24) into definition (3.23), we finally obtain the bound

f1,2(µ, ν) ≤
(

1
|T |2

∫
[0,T ]2

(
|k|W1(µ, ν)

)2

|k|2
dk

) 1
2

= W1(µ, ν). (3.25)

�

Since W1(µ, ν) < +∞ for every µ, ν ∈ P(GN ), inequality (3.25) implies that
f1,2 is bounded in correspondence to any pair of probability measures over the
grid GN .

We now show that f1,2 and W1 satisfy a reverse inequality, thus concluding
that the two metrics are equivalent.

Theorem 5 For any pair of measures µ, ν ∈ P(GN ) it holds

W1(µ, ν) ≤ T 2

2π f1,2(µ, ν). (3.26)

Proof Owing to the dual characterization of the W1 distance (see [31], Chapter
5), there exists a 1-Lipschitz function φ such that

W1(µ, ν) =
∫
R2
φ(x)dµ(x)−

∫
R2
φ(x)dν(x).

Since µ and ν are discrete and supported on a subset of [0, 1]2, we can write

W1(µ, ν) =
∑
x∈GN

φ(x)
(
µx − νx

)
.
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Therefore, resorting to the fact that both the measures have the same mass,
for any given constant c ∈ R we have

W1(µ, ν) =
∑
x∈GN

(
φ(x) + c

)(
µx − νx

)
.

The last identity permits to choose φ such that φ(N2 ,
N
2 ) = 0. Since φ is

1-Lipschitz, we conclude that

|φ(x)| ≤
√

2
2 , ∀x ∈ GN . (3.27)

By Hölder inequality we obtain

W1(µ, ν) ≤
( ∑
x∈GN

|φ(x)|2
) 1

2
( ∑
x∈GN

|µx − νx|2
) 1

2

.

Since ∑
x∈GN

|µx − νx|2 = 1
|T |2

∫
[0,T ]2

A(k)B(k)dk

where

A(k) =
∑
x∈GN

(µx − νx)e−i<x,k>

B(k) =
∑
y∈GN

(µy − νy)e+i<y,k>

we have ∑
x∈GN

|µx − νx|2 = 1
|T |2

∫
[0,T ]2

∣∣µ̂(k)− ν̂(k)
∣∣2dk.

Now using (3.27) we obtain

W1(µ, ν) ≤
√

2N
2

(
1
|T |2

∫
[0,T ]2

∣∣µ̂(k)− ν̂(k)
∣∣2dk) 1

2

=
√

2N
2

(
1
|T |2

∫
[0,T ]2

|k|2 |µ̂(k)− ν̂(k)|2

|k|2
dk

) 1
2

.

Since |k|2 ≤ 2T 2 and T = 2πN , we can finally conclude that

W1(µ, ν) ≤ T 2

2π

(
1
|T |2

∫
[0,T ]2

|µ̂(k)− ν̂(k)|2

|k|2
dk

) 1
2

= T 2

2π f1,2(µ, ν).

�

In consequence of the previous estimates, it is immediate to show that the
metrics ds and W1 are equivalent. This is proven in the following
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Corollary 1 For any pair of measures µ, ν ∈ P(GN )

d1(µ, ν) ≤W1(µ, ν) ≤ T 2

2π d1(µ, ν).

Proof The first inequality is a consequence of bound (3.24). The second one
follows from inequality (3.22). �

3.2 Equivalence with the Wasserstein metric W2

The aim of this Section is to show the equivalence of the Fourier-based metric
f2,2 and the Wasserstein metric W2. Let s = 2. In this case, the PFM takes
the form

f2,2(µ, ν) =
(

1
|T |2

∫
[0,T ]2

|µ̂(k)− ν̂(k)|2

|k|4
dk

) 1
2

.

Clearly, the distance between the two probability measures is well-defined only
when µ and ν possess the same expected value. Since, in general this is not
the case, we start by translating the measures, as done in Section 2, in order
to satisfy this condition. The following proposition shows that, for probability
measures with the same center, the topology induced by f2,2 is not stronger
than the topology induced by W2.

Theorem 6 For any pair of measures µ, ν ∈ P(GN ) such that mµ = mν , it
holds

f2,2(µ, ν) ≤ 2
√

2W2(µ, ν). (3.28)
In particular, f2,2(µ, ν) <∞.

Proof For any given pair of probability measures µ and ν in P(GN ), with
centers mµ = mν , we have

ik
∑
x∈GN

xµx = ik
∑
y∈GN

yνy.

For any transport plan π between µ and ν, we can rewrite the previous relations
in the form

ik
∑

x,y∈GN

(x− y)πx,y = 0. (3.29)

Using identity (3.29) we obtain

µ̂(k)− ν̂(k) =
∑
x∈GN

µxe
−ik·x −

∑
y∈GN

νye
−ik·y

=
∑

x,y∈GN

(
e−ik·x − e−ik·y − ik · (x− y)

)
πx,y

=
∑

x,y∈GN

e−ik·y
(
e−ik·(x−y) − 1− ik · (x− y)

)
πx,y

+
∑

x,y∈GN

ik · (x− y)(e−ik·y − 1)πx,y.
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Using that for all θ ∈ R

|eiθ − 1| ≤ |θ|,

|eiθ − 1− iθ| ≤ θ2

2
we obtain

|µ̂(k)− ν̂(k)| ≤ |k|
2

2
∑

x,y∈GN

|x− y|2πx,y + |k|2
∑

x,y∈GN

|x− y||y|πx,y

≤ |k|
2

2
∑

x,y∈GN

|x− y|2πx,y

+|k|2
( ∑
x,y∈GN

|y|2πx,y
) 1

2
( ∑
x,y∈GN

|x− y|2πx,y
) 1

2

.

In particular, if we take π as the optimal transportation plan between µ and ν
for the cost |x− y|2 we get

|µ̂(k)− ν̂(k)|
|k|2

≤ W 2
2 (µ, ν)

2 +
( ∑
y∈GN

|y|2νy
) 1

2

W2(µ, ν)

= W2(µ, ν)

W2(µ, ν)
2 +

 ∑
y∈GN

|y|2νy

 1
2
 .

Since

W2(µ, ν) ≤W2(µ, δ) +W2(δ, ν) ≤
( ∑
x∈GN

|x|2µx

) 1
2

+

 ∑
y∈GN

|y|2νy

 1
2

,

and, as µ and ν are supported in [0, 1]2,√ ∑
x∈GN

|x|2µx ≤
√

2,
√ ∑
y∈GN

|y|2νy ≤
√

2,

we obtain (3.28):
|µ̂(k)− ν̂(k)|

|k|2
≤ 2
√

2W2(µ, ν).

�

We conclude by showing the validity of a reverse inequality, thus proving
the equivalence between f2,2 and W2.

Theorem 7 For any pair of measures µ, ν ∈ P(GN ), we have the inequality

W 2
2 (µ, ν) ≤ T 3

π
f2,2(µ, ν).
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Proof Let π be the optimal transportation plan between µ and ν for the cost
|x− y|, since |x− y| ≤

√
2 for all x,y ∈ GN ⊂ [0, 1]2, it holds

W 2
2 (µ, ν) ≤

∑
x,y∈GN

|x− y|2πx,y ≤
∑

x,y∈GN

√
2|x− y|πx,y =

√
2W1(µ, ν).

Then, by Theorem 5 and Proposition 3 with t = 1 and p = s = 2, we get
√

2W1(µ, ν) ≤
√

2T 2

2π f1,2(µ, ν) ≤ T 3

π
f2,2(µ, ν),

which, together with the last inequality, concludes the proof. �

The previous bounds hold provided that µ and ν are centered in the same
point. However, when mµ−mν 6= 0, we can resort, as in Section 2, to the new
metric

F2,2(µ, ν) :=
√(

f2,2(µ, νmµ−mν )2 + |mµ −mν |2
)
,

which is well-defined also for probability measures having different centers.
This shows that we can generalize, similarly to Theorem 2 and Theorem 3, the
equivalence of F2,2 and W2 to measures which are not centered in the same
point.

3.3 Connections with other distances

As discussed in [29], the case in which s ≤ 0 leads to stronger metrics. In this
case, we clearly loose relations like (3.28), that link from above the Wasserstein
metric with the Fourier-based metric. An interesting case is furnished by
choosing s = 0 into (3.20). The metric in this case is defined by

f0,2(µ, ν) =
(

1
|T |d

∫
[0,T ]d

|µ̂(k)− ν̂(k)|2dk
) 1

2

=
(∑
x∈G
|µ(x)− ν(x)|2

) 1
2

,

which defines the Total Variation distance between the probability measures µ
and ν.

We remark that the distance above corresponds to the choice α = 0, which
does not require the measures to possess the same mass. In alternative one can
choose a value α ∈ [0, 2). However, if α > 0, one obtains a distance between
measures that requires that the two measures have the same mass. Note however
that the choice of values of α > 0 allows to obtain a sequence of metrics that
interpolate between the Total Variation distance and the W1 distance, namely
a family of measures that move from a strong metric to a weaker one.

In the case s < 0 the Fourier-based metric (3.20) becomes

fs,2(µ, ν) =
(

1
|T |d

∫
[0,T ]d

|k|2|s||µ̂(k)− ν̂(k)|2dk
) 1

2

.



18 Auricchio, Codegoni, Gualandi, Toscani, Veneroni

In particular, when −s = n ∈ N+, we find that

f−n,2(µ, ν) =
(

1
|T |d

∫
[0,T ]d

|k|2n|µ̂(k)− ν̂(k)|2dk
) 1

2

.

This metric, by Fourier identity, controls the n-th derivative of the measures µ
and ν.

4 Numerical Results

We run extensive numerical tests to compare the Wasserstein metrics W1 and
W2 with the corresponding Periodic Fourier-based Metrics f0

1,2 and f0
2,2.

The goal of our tests is to compare empirically the distance values obtained
with the different metrics, and to measure the runtime gain that we can achieve
using the Fourier-based metrics. In the following paragraphs, we report the
main conclusions of our tests.

Implementation details. We implemented our algorithms in Python 3.7, using
the Fast Fourier Transform implemented in the Numpy library [23]. To compute
the Wasserstein distances, we use the Python Optimal Transport (POT) library
[17]. All the tests are executed on a MacBook Pro 13 equipped with a 2.5 GHz
Intel Core i7 dual-core and 16 GB of Ram.

Dataset. As problem instances, we use the DOTmark benchmark [27], which
contains 10 classes of gray scale images, each containing 10 different images.
Every image is given in the data set at the following pixel resolutions: 32 ×
32, 64 × 64, 128 × 128, 256 × 256, and 512× 512. Figure 1 shows the Classic,
Microscopy, and Shapes images, respectively, at the highest pixel resolution
(one class for each row).

Fig. 1 DOTmark benchmark: Classic, Microscopy, and Shapes images.
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Fig. 2 Wasserstein metric W2 versus Periodic Fourier-based metric f0
2,2: Comparison of

distance values for 450 pair of images of size 32 × 32.

Results. For each pair of images of the DOTmark dataset, we have computed
the reciprocal distance values using the W1,W2, f

0
1,2 and f0

2,2 metrics, and we
have recorded the corresponding runtime in seconds.

The scatter plot in Figure 2 shows the relation between the W2 and the
f0

2,2 distances for each pairs of images at pixel resolution 32 × 32. The plot
shows that not only the two metrics are theoretically equivalent, as proofed in
Theorem 6 and 7, but they also yields very similar values in practice. The only
partial exception is the Shape class, which, however, contains artificial shape
images. Note, however, that on the much more (application-wise) interesting
Classic images, the two metrics return very close values.

Table 1 reports the averages and the standard deviations of the runtime,
measured in seconds, at different image size. For each row and each metric,
the averages are computed over 450 instances. The numerical results clearly
show that the PFM metrics are orders of magnitude faster, and permits to
compute the distance even for the largest 512×512 images in around 10 seconds.
Note that using the POT library, we were unable to compute the W1 and W2
distances for images of size 256× 256 and 512× 512, due to memory issues.
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Table 1 Runtime vs. Image size for different metrics: The runtime is measured in seconds
and reported as “Mean (StdDev)”. Each row gives the averages over 450 instances of pairwise
distances.

Averages Runtime in seconds
Dimension W1 W2 f0

1,2 f0
2,2

32 × 32 0.84 (0.30) 1.06 (0.32) 0.002 (10−4) 0.006 (10−4)
64 × 64 21.9 (7.96) 23.4 (8.49) 0.01 (10−3) 0.02 (10−3)
128 × 128 205.0 (45.9) 199.0 (45.0) 0.28 (0.07) 0.63 (0.16)
256 × 256 1.21 (0.40) 2.96 (0.94)
512 × 512 4.74 (1.32) 11.55 (2.84)

5 Conclusions

The Fourier-based metrics introduced in [19] and [8] are useful tools to measure
the distance between pairs of probability distributions in terms of their Fourier
transforms, and they represent an interesting alternative to the Wasserstein
metric, in reason of their equivalence.

In this paper, we have shown that this equivalence can be precisely quantified
when discrete probability measures are considered. In addition, our compu-
tational results shown the the Fourier metrics can be computed in matter of
seconds even for very large images. Based on these results on Fourier metrics, it
will be possible to design new numerical methods in computer imaging, having
good theoretical convergence results with a lower computational cost than the
the Wasserstein metric, which, nowadays, has still a heavy computational load.
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16. M. Cuturi and G. Peyré. Computational optimal transport. Foundations and Trends R©
in Machine Learning, 11(5-6):355–607, (2019).

17. R. Flamary and N. Courty. POT Python Optimal Transport library, 2017.
18. C. Frogner, C. Zhang, H. Mobahi, M. Araya, and T. Poggio. Learning with a Wasserstein

loss. In Advances in Neural Information Processing Systems, pages 2053–2061, (2015).
19. G. Gabetta, G. Toscani, and B. Wennberg. Metrics for probability distributions and

the trend to equilibrium for solutions of the Boltzmann equation. Journal of statistical
physics, 81(5-6):901–934, (1995).

20. T. Goudon, S. Junca, and G. Toscani. Fourier-based distances and Berry-Esseen like
inequalities for smooth densities. Monatshefte für Mathematik, 135(2):115–136, (2002).

21. L.J. Guibas, Y. Rubner, and C. Tomasi. The earth mover’s distance as a metric for
image retrieval. International journal of computer vision, 40(2):99–121, (2000).

22. H. Ling and K. Okada. An efficient Earth Mover’s Distance algorithm for robust
histogram comparison. IEEE transactions on pattern analysis and machine intelligence,
29(5):840–853, (2007).

23. Travis Oliphant. NumPy: A guide to NumPy. USA: Trelgol Publishing, 2006–. [Online;
accessed ¡today¿].

24. O. Pele and M. Werman. Fast and robust earth mover’s distances. In 2009 IEEE 12th
International Conference on Computer Vision, pages 460–467. IEEE, (2009).

25. A. Pulvirenti and G. Toscani. Asymptotic properties of the inelastic Kac model. Journal
of statistical physics, 114(5-6):1453–1480, (2004).

26. F. Santambrogio. Optimal transport for applied mathematicians, volume 55. Springer,
(2015).

27. J. Schrieber, D. Schuhmacher, and C. Gottschlich. Dotmark–A benchmark for Discrete
Optimal Transport. IEEE Access, 5:271–282, 2017.

28. S. Shirdhonkar and D. W. Jacobs. Approximate earth moverâĂŹs distance in linear
time. In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages
1–8, 2008.

29. M. Torregrossa and G. Toscani. Wealth distribution in presence of debts. A Fokker–
Planck description. arXiv preprint arXiv:1709.09858, (2017).

30. G. Toscani and C. Villani. Probability metrics and uniqueness of the solution to the
Boltzmann equation for a Maxwell gas. Journal of statistical physics, 94(3-4):619–637,
(1999).

31. C. Villani. Optimal transport: old and new. Springer Science & Business Media, (2008).
32. V. M. Zolotarev. Probability metrics. Theory of Probability & Its Applications, 28(2):278–

302, 1984.


