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Abstract. We study the motion of a solid with large deformations. The solid may be
loaded on its surface by needles, rods, beams, plates, ... It turns out that it is wise to
choose a third gradient theory for the body. The stretch matrix of the polar decompo-
sition has to be symmetric. This is an internal constraint which introduces a reaction
stress in the Piola-Kirchhoff-Boussinesq stress. By use of a Galerkin approximation,
combined with suitable a priori estimates and a passage to the limit, we prove that there
exists a motion which solves a variational formulation of the complete equations of me-
chanics, at least locally in time. This motion may be interrupted by crushing resulting
in a discontinuity of velocity with respect to time, i.e., an internal collision.
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1. Introduction

Lagrangian mechanics produces predictive theories of the motion of continuous media.
For rigid solids which do not interact or interact smoothly, the equations and their so-
lutions are given within the analytical mechanics theories, see [9]. For rigid solids which
interact, for instance which collide, equations are complemented by the collision theory [6].

For deformable solids (see [2, 4, 10, 12]), the Lagrangian theory is not achieved. We
give a mechanical description of the motion together with a mathematical analysis of the
related equations. In particular, we investigate the motion of a deformable solid assuming
the solid is fixed on a part of its boundary and that there are neither self-collision nor
self-contact and neither collisions nor contact with obstacles. Indeed, in the case when self
collisions or collisions with obstacles are included, the equations should result from the
coupling of this theory with the collision theory, while smooth self-contact and smooth
contact with an obstacle need a slight sophistication of the present theory.

In this paper, as a first step and for the sake of simplicity, we consider 2D problems and
choose the value of all the mechanical constants but one equal to 1. Hence, the motion of
a 2D solid is investigated during a finite time interval (0, T ). At time t = 0, the solid is
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assumed to be located in a smooth domain Da. The motion is described by the function

(a, t)→ Φ(a, t) ∈ R2, (a, t) ∈ Da × [0, T ] ,

a = Φ(a, 0),

where time T > 0 is given.

The paper is organized as follows. Some properties of 2 × 2 matrices are recalled in
Section 2 for the reader convenience. The mechanical theory is fully developed from
Section 3 to Section 7.

The equations of motion result from the principle of virtual power. We point out that
surface loads can be applied to the solid by needles, wires and curvilinear beams. Thus,
in order to account for these loads, it is wise to have a third gradient power of the interior
forces: this is introduced and detailed in Section 3.

We are considering the two classical equations of motion of mechanics: the linear mo-
mentum equation and the angular momentum and look for two unknowns. Indeed, in
addition to the function Φ, a reaction ensuring an internal constraint is introduced when
defining the constitutive laws. The kinematic relationships relate function Φ to the quan-
tities which describe the deformations, that is, the stretch matrix W and the rotation
matrix R, see Section 4.

The constitutive laws are deduced in Section 5 from schematic and simple free energy
and pseudo-potential of dissipation, which account for all the mechanical properties. One
of these properties is the symmetry of the stretch matrix which is an internal constraint.
Reaction stress A to this internal constraint is the other unknown of the problem, as
specified in Section 6.

The usual indetermination on reaction A is solved by the equations of motion (resulting
from the kinematic relationships and the constitutive laws). In particular, the angular
momentum equation of motion leads to the reaction matrix A: referring to Section 7, let
us point out that, in dimension 2, this equation has a simple structure. The equations are
solved within a suitable variational framework. More precisely, we show that that there
exists a motion satisfying a weak version of the resulting nonlinear PDE system, at least
locally in time, i.e., in some time interval (0, T̂ ), with 0 < T̂ ≤ T .

Our main result is shown by applying a Galerkin discretization scheme, combined with
suitable a priori estimates and passage to the limit: the proof is given in Section 8.

The fact that the existence result is local in time is justified by the possibility of the
motion to be interrupted by crushing which is caused by discontinuity of velocity (with
respect to time), i.e. an internal collision: this is explained in Section 9. These results
have been previously announced in [3].

2. Properties of 2× 2 Matrices

For the sake of clarity, we summarize in this section some useful results concerning
properties of 2× 2 matrices. Let M be the linear space of 2× 2 matrices, endowed with
scalar product

A : B = AijBij = tr (ABT ).

The subspaces S ⊂M of the symmetric matrices and A ⊂M of the antisymmetric ma-
trices are orthogonal. In M, for 0 < α < 1 (whose physical meaning will be specified in
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Section 5) , we introduce the sets

Mα =
{

F ∈M, det F > α2,
√

tr FTF + 2 det F > 2α
}
, (1)

Cα = {B ∈ M
∣∣ tr B ≥ 2α, det B ≥ α2

}
. (2)

The set Cα is the set of matrices with the sum of their eigenvalues larger than 2α and the
product of their eigenvalues larger than α2. The interior set C̊α is defined by

tr B > 2α, det B > α2.

and C̊α ∩ S is an open set of S. The meaning and the role of Mα and Cα will be clear in
the following. Note that I ∈ Cα (I being the identity matrix). Moreover, we have

1 > γ > α =⇒ Cγ ⊂ Cα, I ∈ Cγ.

Now, let us recall some properties of 2× 2 matrices.

Proposition 1. Let F ∈ M, such that det F > 0, then there exist a unique matrix

W ∈ S and a unique direct orthogonal matrix R, such that F = RW.

The proof is detailed, e.g. in [7], and refers to a fairly classical result. In particular, let
us recall that a direct orthogonal matrix satisfies

R ∈M, det R = 1, RRT = I.

Hence, we investigate functions

F→W(F), F→ R(F),

as well as

F→ tr W(F), det W(F),
1

det W(F)
,

1

tr W(F)
,

defined in Mα.

Proposition 2. Functions F→W(F), F→W−1(F), F→ R(F), and

F→ tr W(F), det W(F),
1

det W(F)
,

1

tr W(F)
.

are C∞ on Mα. Moreover, if F : Da × (0, T ) → Mα satisfies |F(a, t)| = |W(a, t)| ≤ c

(i.e., the norm of F is uniformly bounded), all the derivatives of the previous functions

with respect to F are globally bounded, i.e., uniformly bounded with respect to (a, t) ∈
Da × (0, T ).

Proof. The set Mα is open in M. We have

det W = det F, tr W =
√

tr FTF + 2 det F. (3)

Functions

F→ tr W(F), det W(F),
1

det W(F)
,

1

tr W(F)

are C∞ functions of F from Mα into R. Moreover, we have with the Hamilton-Cayley

theorem

W =
1√

tr FTF + 2 det F

{
−FTF + det(F)I

}
, (4)
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which is a C∞ functions of F from Mα into S∩C̊α. We have also

W−1 =
1

det W
{(W)I−W} , (5)

which is also a C∞ functions of F from Mα into S. Note that

R = FW−1,

is also a C∞ functions of F from Mα into M. If the norm of F in M is bounded, the

computation of the derivatives of W and R with respect to the Fiα show that they are

globally bounded with respect to a and t, i.e., uniformly bounded with respect to a and t:∣∣∣∣∂kW∂Fk
(F(a, t)

∣∣∣∣ ≤ c.

�

3. The Model and the Principle of Virtual Power

3.1. The Unknowns. The unknowns of the problem are the position function Φ(a, t) ∈
R2 and a reaction matrix A(a, t) ∈ A, which activates to guarantee the symmetry of
stretch matrix W(a, t) ∈ S. This matrix is introduced as a reaction to an internal
constraint. This reaction yields its value to be given by the equations of motion and not
by the constitutive laws. Thus we are going to have two unknowns and two equations.

3.2. Which Gradient Theory? The 2D solid can be loaded on its surface by curvilinear
beams. The velocities of the beams are equal to the traces on the solid surface of the
solid body velocities. Principle of virtual power for beams requires the second order space
derivatives on the surface. Thus it is convenient to have a third gradient body theory
which insures that the trace of the second gradient is defined on the surface of the solid.
Note also that the 2D solid may also be loaded by needles. The velocity of the tip of
the needle is equal to the trace of the body velocity. The trace of the zero gradient is of
course defined on the surface of the solid if the trace of the second gradient is defined.
We have the same property for the trace of the first gradient for loads applied by wires.

3.3. The Third Gradient Theory. Power of the interior forces involves third order
space derivatives introducing a new interior force Z, which is a stress taking into account
the effects of the spatial variation of the Laplacian of the velocity

−
∫
Da

{
Π : grad ~V + Z : grad ∆~V

}
da+

∫
Da

1

2

{
M : Ω̂− Λα : Ω̂,α

}
da,

with
Z : grad ∆~V = ZiδVi,ββδ.

Here Π is the Piola-Kirchhoff-Boussinesq stress tensor, M represents the momentum, and

Λ is the momentum flux vector. The virtual velocities ~V and virtual angular velocities Ω̂
are independent. Quantity

grad ∆~V = grad (div (grad ~V ))

quantifies the variation of the Laplacian of the velocity of deformation ∆~V with respect
to space. One may say it quantifies the diffusion of the velocity of deformation. The dual
quantity is a stress (represented by the matrix Ziδ) the physical meaning of which is given
by the boundary conditions and the equation of motion.
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Note that

Π : grad ~V and Z : grad ∆~V

are bilinear forms in M×M and

1

2
M : Ω̂,

1

2
Λα : Ω̂,α

are bilinear forms in A×A and in A2×A2. We denote by

Λ :: G = Λα : Gα,

the scalar product in A2×A2.

3.4. The Linear Momentum Equation. It results from integration by parts. We have

−
∫
Da

{
Π : grad ~V + Z : grad ∆~V

}
da = −

∫
Da

{ΠiαVi,α + ZiδVi,ββδ} da

=

∫
Da

Πiα,αVi + Ziδ,ββδVi da

−
∫
∂Da

ΠiαNαVidΓ−
∫
∂Da

ZiδVi,βδNβdΓ +

∫
∂Da

Ziδ,βVi,δNβdΓ−
∫
∂Da

Ziδ,ββViNδdΓ

=

∫
Da

{div Π + div (∆Z)} · ~V da

−
∫
∂Da

Π ~N · ~V dΓ−
∫
∂Da

Z :
∂

∂N
(grad ~V )dΓ +

∫
∂Da

∂Z

∂N
: grad ~V dΓ−

∫
∂Da

(∆Z) ~N · ~V dΓ,

where ~N is the normal vector to the boundary. This formula gives the physical meaning
of ∆Z, which is a stress defined in the volume with a trace (∆Z) ~N on the boundary,

which is a classical force which equilibrates with classical force Π ~N , the exterior force.
Quantity ∂Z/∂N is a surface stress which equilibrates an exterior stress. Quantity Z
is a double stress which works with the normal variation of the velocity of deformation
∂(grad ~V )/∂N . The equation of motion follows:

d~U

dt
= div Π + div (∆Z) + ~f, in Da,

where

~U =
dΦ

dt
= Φ̇

is the actual velocity. It is combined with suitable initial and boundary conditions.

3.4.1. The Initial Conditions. The initial velocity is null

Φ(a, 0) = a, ~U(a, 0) =
dΦ

dt
(a, 0) = 0.

3.4.2. The Boundary Conditions. Let Γ0,Γ1 be a partition of ∂Da. The solid is clamped
on part Γ0 to an immobile support; on the other part Γ1 no surface force is applied and
there is no surface deformation.

On Γ0. We have

Φ̇ = 0, grad Φ̇ = 0,
∂

∂N
gradΦ̇ = 0.
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On Γ1. We have

grad Φ̇ = 0.

All the exterior forces are assumed to be null except the body force ~f .

3.5. The Angular Momentum Equation. It is

div Λ + M = 0, in Da,

combined with suitable boundary condition.

3.5.1. The Boundary Condition. On ∂Da, we have

Ω = 0,

where Ω is the actual angular velocity.

4. Kinematic Relationships

They relate the stretch matrix W and rotation matrix R to the gradient matrix F of the
kinematically admissible position Φ. A kinematically admissible position is differentiable
and det F > 0, with F = grad Φ. This condition is a local impenetrability condition. Let
us recall that we have assumed there are no self-collision neither self-contact during the
motion which may produce a non local interpenetration. Thus the non local impenetra-
bility condition is satisfied, see [7, 8].

We have

Proposition 3. If position Φ is kinematically admissible, there are unique matrices W

and R which satisfy relationships (grad Φ = F)

W2 = FTF, R = FW−1.

Proof. See Proposition 1. �

In the sequel, the constitutive laws imply that the kinematically admissible positions
Φ are such that matrices W(F) ∈ Cα

W2 = FTF, W ∈ Cα, (6)

R = FW−1. (7)

Let us recall our notation

Ω = ṘR
T
, Ṙ =

dR

dt
, Ẇ =

dW

dt
, ~U =

dΦ

dt
= Φ̇.

Note that we have

RTgrad Φ̇ = Ẇ + R
T
ΩF. (8)

Remark 4. We may denote

W =
√

FTF.
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5. Free Energy and Pseudo-Potential of Dissipation

The opposite of the actual power of the internal forces, using internal constraint (8){
Π : grad ~U + Z : grad ∆~U

}
− 1

2
{M : Ω− Λα : Ω,α}

= RTΠ : Ẇ +
1

2

(
ΠFT − FΠT −M

)
: Ω +

1

2
Λ :: grad Ω + Z : grad ∆~U,

is the sum of bilinear forms. In particular, bilinear form

RTΠ : Ẇ,

is a bilinear form onM×M because Π and RTΠ are elements ofM. Thus the symmetry
of stretch matrix W or of its velocity Ẇ, is an internal constraint and has to be accounted
for. We use the free energy to satisfy this internal constraint. No such internal constraint
appears in the other three bilinear forms,

1

2

(
ΠFT − FΠT −M

)
: Ω,

1

2
Λ :: grad Ω., Z : grad ∆~U

which are bilinear forms on A×A, on A2 ×A2 and on M×M, without any constraint
on Ω and on grad ∆~U .

The state variables quantify the deformation properties of the material. We choose
the stretch matrix W, an objective spatial variation of the rotation matrix, that is
(grad R)RT , and the third gradient deformation grad ∆Φ. The quantities which describe

the evolution of the material are the stretch matrix velocity Ẇ and the gradient of the
angular velocity grad Ω. All these quantities measure the mechanical influence of a mate-
rial point on its neighbourhood. We derive the constitutive laws from the free energy and
the pseudo-potential of dissipation which account for the whole physical properties, in
particular for the internal constraint. The schematic and simple free energy we choose is

Ψ(B, grad ∆Φ̂,
∥∥grad R̂

∥∥2
) =

1

2

∥∥B− I
∥∥2

+
1

2

∥∥grad ∆Φ̂
∥∥2

+ Ψ̂(B) + IS(B) +
1

4

∥∥grad R̂
∥∥2
,

where Φ̂ is a position function, B is a matrix of M, R̂ is a matrix of M, and∥∥B∥∥2
= B : B,

∥∥grad ∆Φ̂
∥∥2

= Φ̂i,αββΦ̂i,αδδ.

The function IS is the indicator function of subspace S of M, [11], [5]. The schematic
and simple pseudo-potential of dissipation we choose is

D(Ḃ, grad Ω̂) =
1

2

∥∥Ḃ∥∥2
+

1

4

∥∥grad Ω̂
∥∥2
.

Let us note, it is also possible to have IS(Ḃ) in the pseudo-potential of dissipation, in

order to have matrix Ẇ symmetric.

5.1. The Function Ψ̂(B) Approximation of the Indicator Function of Cα. Quan-

tity Ψ̂(B) in the free energy accounts for the resistance of the material to flattening or
to crushing. It makes impossible all the principal stretches of matrix W to be small at
the same time, i.e., all the principal stretches cannot be lower than α > 0. Parameter α
quantifies this resistance to flattening. Function Ψ̂(B) is a smooth approximation from
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the interior of the indicator function of the set Cα inM. Let Idet(x) be a decreasing non
negative smooth approximation of the indicator function of [α2,∞) from the interior, i.e.,
such that Idet(x) = ∞ if x ≤ α2 (for instance, 1/(x − α2) for x > α2). Let Itr(x) be a
decreasing non negative smooth approximation of the indicator function of [2α,∞) from

the interior, i.e., such that such Itr(x) =∞ if x ≤ 2α. Then function Ψ̂ may be defined by

Ψ̂ :M→ [0,∞], Ψ̂(B) :=

{
Idet(det B) + Itr(tr B), if B ∈ C̊α,
∞, if B /∈ C̊α.

(9)

Note that we may split free energy into two parts

Ψ(B, grad ∆Φ̂,
∥∥grad R̂

∥∥2
) = Ψ̄(B, grad ∆Φ̂,

∥∥grad R̂
∥∥2

) + IS(B),

where

Ψ̄(B, grad ∆Φ̂,
∥∥grad R̂

∥∥2
) =

1

2

∥∥B− I
∥∥2

+
1

2

∥∥grad ∆Φ̂
∥∥2

+ Ψ̂(B) +
1

4

∥∥grad R̂
∥∥2

is a smooth function in C̊α.

The following result holds.

Proposition 5. If the functions Idet(x) and Itr(x) are C∞ functions for x > α2 and for

x > 2α, then free energy F → Ψ̂(W(F)) : Mα → R is a C∞ function of F. Matrix W

commutes with matrix dΨ̂
dB

(W)

W
dΨ̂

dB
(W) =

dΨ̂

dB
(W)W.

If W ∈ C̊γ with 1 > γ > α and |W(a, t)| ≤ c, all the derivatives with respect to F of
dΨ̂
dB

(W) are globally bounded. Function Ψ̂ satisfies Ψ̂(I) <∞, and

Ψ̂(W) <∞ ⇔ W ∈ C̊α.

Remark 6. We may choose function Ψ̂ such that Ψ̂(I) = 0.

Proof. We have
d det B

dB
= cof B = det(B)B−T ,

dtr B

dB
= I.

We get

dΨ̂

dB
(W) =

dIdet

d det B
(det W)

d det B

dB
(W) +

dItr

dtr B
(tr W)

dtr B

dB
(W)

=

(
dIdet

d det B
(det W)

)
(det W)W−1 +

(
dItr

dtr B
(tr W)

)
I, (10)

which commutes with W. We have

det W = det F, tr W =
√

tr FTF + 2 det F.

Due to Proposition 2, these functions are C∞ function of F in Mα. Because dIdet

dx
(x) is a

is a C∞ function of x if x > γ2 > α2 and dItr

dy
(x) is a C∞ function of x if x > 2γ > 2α,

dIdet

dx
(det W(a, t)) and dItr

dy
(tr W(a, t)) are C∞ functions of F. They are bounded in R

because |W| ≤ c. It results that dΨ̂
dB

(W) is a C∞ function of F in C̊γ and its derivatives

with respect to F are globally bounded. �
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6. The Clausius-Duhem Inequality and the Constitutive Laws

The Clausius-Duhem inequality is

dΨ

dt
(W, grad ∆Φ,

∥∥grad R
∥∥2

) ≤
{

Π : grad ~U + Z : grad ∆~U
}
− 1

2
{M : Ω− Λα : Ω,α} .

It involves actual quantities. Thus these quantities satisfy the kinematic relationships.
By using internal constraint (8) which give

grad ~U = RẆ + ΩF,

we get the equivalent inequality

dΨ

dt
(W, grad ∆Φ,

∥∥grad R
∥∥2

)

≤ RTΠ : Ẇ + ΠF
T

: Ω + Z : grad ∆~U − 1

2
{M : Ω− Λα : Ω,α}+ Z : grad ∆~U

= RTΠ : Ẇ +
1

2

(
ΠFT − FΠT −M

)
: Ω +

1

2
Λ : grad Ω + Z : grad ∆~U.

We have
dΨ

dt
(W, grad ∆Φ,

∥∥grad R
∥∥2

)

=
dΨ̄

dt
(W, grad ∆Φ,

∥∥grad R
∥∥2

) + ∂IS(W) : Ẇ

=

{
(W − I) +

dΨ̂

dB
(W) + A

}
: Ẇ + grad ∆Φ :: grad ∆~U +

(grad R)RT

2
: grad Ω,

with A ∈ ∂IS(W) = A. As matrix W is symmetric, we find out that

0 ≤

{
RTΠ− (W − I)− dΨ̂

dB
(W) + A

}
: Ẇ +

1

2

(
ΠFT − FΠT −M

)
: Ω

+
1

2
(Λ− (grad R)RT ) : gradΩ + (Z− grad ∆Φ) :: grad ∆~U,

where

(
(grad R)RT

)
ijα

= Riβ,αRβj.

The pseudo-potential of dissipation we have chosen assumes dissipation with respect to
stretch velocity Ẇ and the spatial variation of the angular velocity Ω. Then, we obtain

• the constitutive laws

Π = R(S + A), S ∈ S, A ∈ A, (11)

S = (W − I) +
dΨ̂

dB
(W) + Ẇ, A ∈ ∂IS(W)= A. (12)

Note that the constitutive law for stress A

A ∈ ∂IS(W) (13)

means that matrix A is antisymmetric. Stress A ensures that the stretch matrix
W is symmetric. This reaction matrix is an important quantity of the theory.
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Position Φ and reaction matrix A are the main unknowns of the problem. We
have

A : Ẇ = 0,

because Ẇ is symmetric and A is antisymmetric. As expected, reaction A is a
workless reaction, un vincolo perfetto in Italian. Constitutive law (13) does not give
more information besides the antisymmetry of A. As usual, the indetermination
on workless reaction A is solved by the equations of motion. Stress S is symmetric.
Stress dΨ̂/dB is the impenetrability reaction which intervenes to avoid flattening

of the material. Stress Ẇ is dissipative. The constitutive law (12) implies that

W ∈ C̊α because function Ψ̂(B) is differentiable for B = W.
• It is impossible to have dissipation with respect to the angular velocity Ω which

is non objective. Then constitutive law for M is the usual relationship

M = ΠFT − FΠT ; (14)

• the constitutive law for momentum flux Λ

Λ = (grad R)RT + grad Ω, (15)

is dissipative, dissipation resulting from grad Ω;
• the constitutive law for Z

Z = grad ∆Φ, (16)

is non dissipative.

Remark 7. It is easy to verify that the constitutive laws are objective, as it follows for

instance from results of [1]. The dissipated power

0 ≤ Ẇ : Ẇ +
1

2
grad Ω :: grad Ω,

which intervenes in the entropy balance

∂s

∂t
+ div ~Q =

1

T

{
Ẇ : Ẇ +

1

2
grad Ω :: grad Ω− gradT · ~Q

}
,

is an objective scalar (s the entropy, T the temperature and ~Q = (Qα) the entropy flux

vector, are objective quantities behaving like scalars). There is no dissipation with respect

to Ω and grad ∆~U which are not objective. In case we assume that Ω, the rotation with

respect to the support Γ0, is a quantity which describes the deformation of the system

made of the solid and the immobile obstacle, matrix Ω becomes objective.

The constitutive laws are such that

Ẇ : Ẇ +
1

2
grad Ω :: grad Ω

=

{
RTΠ− (W − I)− dΨ̂

dB
(W) + A

}
: Ẇ +

1

2

(
ΠFT − FΠT −M

)
: Ω

+
1

2
(Λ− (grad R)RT ) : gradΩ + (Z− grad ∆Φ) :: grad ∆~U,

which is non negative, proving that the Clausius-Duhem inequality is satisfied.



2D MOTION WITH LARGE DEFORMATIONS 11

7. The Equations

For the sake of clarity, we make precise the PDE system resulting from the model,
using kinematic relationships, the equations of motion and the constitutive laws plus the
boundary and initial conditions. We look for Φ and A solving the following equations

d2Φ

dt2
= div Π + div (∆Z) + ~f, in Da,

div ((grad R)RT ) + ∆Ω + R
{

AW + WA + ẆW −WẆ)
}

RT = 0, in Da,

with boundary conditions

Φ̇ = 0, grad Φ̇ = 0,
∂

∂N

(
grad Φ̇

)
= 0, on Γ0,

grad Φ̇ = 0 and no exterior force is applied, on Γ1,

in the time interval (0, T ), and initial conditions

Φ(a, 0) = a,
dΦ

dt
(a, 0) = 0,

where

F = grad Φ, W =
√

FTF, R = FW−1,

Π = R(S + A),

S = (W − I) + Ẇ +
∂Ψ̂

∂B
(W), A ∈ ∂IS(W),

Z = grad ∆Φ,

Ω = ṘR
T
.

Note that the initial and boundary conditions for Φ give the initial condition for R,
R(a, 0) = I, and a Dirichlet boundary condition R = I on ∂Da, see Proposition 10.

Remark 8. Let us point out that we may replace W by W(Φ) =
√

FTF and R by

R(Φ) = FW−1 in the previous equations. Thus, we actually get two equations for the two

unknowns, position Φ and antisymmetric reaction matrix A.

7.1. The 2D Equations. In dimension 2, the direct orthogonal matrix R is defined by
an angle θ,

R(θ) =

[
cos θ sin θ
− sin θ cos θ

]
, (17)

and the antisymmetric matrix A may be specified with the help of a function z:

A = z

[
0 1
−1 0

]
.

Thus, choosing Φ (from which one finds θ thanks to (17) and the definition of F) and
function z as unknowns, we are allowed to recover the following equivalent angular mo-
mentum system

∆θ̇ + ∆θ + z(w11 + w22) + (ẇ11 − ẇ22)w12 + ẇ12(w22 − w11) = 0, in Da, (18)

θ̇ = 0, on ∂Da. (19)
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Note that the properties of free energy Ψ̂(W) ensure that (cf. Proposition 5) matrix W

commutes with matrix ∂Ψ̂/∂W.

7.2. Properties of Angular Momentum Equation. Let us comment that equation
(18) actually leads to the reaction A, once θ is determined by grad Φ. Indeed, due to the
fact that, by definition of Cα, (w11 +w22) = tr W > 2α, it easily follows that equation (18)
has a unique solution z in R as it is stated by the following proposition.

Proposition 9. If W ∈ Cα is known and sufficiently smooth, system (18)–(19) gives a

unique z (and thus A) depending on R, Ω, W and Ẇ (i.e., θ, θ̇, W and Ẇ).

We can also prove that

Proposition 10. Boundary condition Ω= 0 on ∂Da, which is equivalent to R = I, is

satisfied if

grad Φ̇ = 0, on ∂Da.

Proof. If grad Φ̇ = 0, we have grad Φ = I because grad Φ = grad a = I at time t = 0.

Then, we have that

Ṙ = grad Φ̇W−1 + grad Φ
d

dt
W−1 = 0,

owing to

Ẇ =
d

dt

√
FTF =

dI

dt
= 0,

which also gives
d

dt
W−1 = 0.

It results that

Ω = ṘR
T

= 0.

Relationship Ω = 0 or Ṙ = 0 is equivalent to R = I due to the initial condition. �

Let us note that the boundary condition for the angular momentum equation results
from the boundary conditions for the linear momentum.

7.3. Variational Formulation of the Equations and Existence of a Solution.
Actually, we are not able to solve directly the PDE system we have summarized at the
beginning of this section, due to a lack of regularity of the solutions. Thus, we introduce
a weak version as it is stated in the following. However, let us point out that our weak
formulation may be read as a mechanical duality between forces and velocities. To this
aim, let us define the space of the virtual velocities

V(T ) =

{
~ϕ ∈ L2(0, T ;H3(Da)) :

d~ϕ

dt
∈ L2(0, T ;L2(Da)),

~ϕ = 0, grad ~ϕ = 0,
∂

∂N
(grad ~ϕ) = 0, on Γ0, grad ~ϕ = 0, on Γ1

}
,

and the spaces of the virtual angular velocities

Vrv(T ) =
{

Ω̂ ∈ L2(0, T ;H1(Da)) : Ω̂ ∈ A, Ω̂ = 0, on ∂Da
}
,
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or
Vr(T ) =

{
ξ ∈ L2(0, T ;H1(Da)) : ξ = 0, on ∂Da

}
,

with

for every Ω̂ ∈ Vrv(T ) there is a unique ξ ∈ Vr(T )

such that Ω̂ = ξ

[
0 1
−1 0

]
, and viceversa.

For the sake of simplicity, we are using the same symbol X for a Banach space and
any power of it. We use the notation 〈〈 · , · 〉〉 for the duality pairing between V(T ) and
V ′(T ), while the duality between Vrv(T ) and Vr(T ) and their dual spaces is realized by∫ T

0
〈 · , · 〉 dt, where 〈 · , · 〉 is the usual duality pairing between the Hilbert space H1

0 (Da)
and its dual space. Finally, note that, as usual, L2(Da) is identified with its dual space.
The variational formulation of our problem is the following.

Problem (P). We look for the pair (Φ, z) fulfilling

Φ ∈ L∞(0, T ;H3(Da)) ∩H1(0, T ;H1(Da)) ∩W 1,∞(0, T ;L2(Da)), (20)

d2Φ

dt2
∈ V ′(T ), z ∈ V ′r(T ), (21)

Φ(a, 0) = a,
dΦ

dt
(a, 0) = 0, a ∈ Da, (22)

(Φ− a) ∈ V(T ), and for all ~ϕ ∈ V(T ),

〈〈d
2Φ

dt2
, ~ϕ〉〉+

∫ T

0

∫
Da

R

{
(W − I) + Ẇ +

∂Ψ̂

∂W
(W)

}
: grad ~ϕ da dτ

+

∫ T

0

1

2
〈A,RT grad ~ϕ− (grad ~ϕ)TR〉 dτ

+

∫ T

0

∫
Da

grad ∆Φ : grad ∆~ϕ da dτ =

∫ T

0

∫
Da

~f · ~ϕ da dτ, (23)

and such that there exists a function θ with

θ̇ ∈ Vr(T ), θ(a, 0) = 0, a ∈ Da, and for all ξ ∈ Vr(T ),∫ T

0

∫
Da

{
grad (θ̇ + θ) · grad ξ

}
da dτ =

∫ T

0

〈z, (w11 + w22)ξ〉 dτ

+

∫ T

0

∫
Da

(
(ẇ11 − ẇ22)w12 + ẇ12(w22 − w11)

)
ξ da dτ, (24)

where Ψ̂ is specified by (9), and

W =
√

FTF, F = grad Φ, RW = F, (25)

A = z

[
0 1
−1 0

]
, R =

[
cos θ sin θ
− sin θ cos θ

]
. (26)

Remark 11. Concerning the variational equalities (23) and (24), we point out that, due

to the resulting regularities of R, W and ~ϕ, ξ, actually RT grad ~ϕ − (grad ~ϕ)TR belongs

to Vrv and (w11 + w22)ξ is in Vr. As A is antisymmetric, it turns out that

A : RT grad ~ϕ = A :
RT grad ~ϕ− (grad ~ϕ)TR

2
. (27)
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Note also that in mechanical parlance the above duality pairings may be understood as

integrals.

By use of a suitable Galerkin approximation combined with a priori estimates – passage
to the limit techniques (see the next section for details), we can prove the following local
in time existence result.

Theorem 12. Assuming that ~f belongs to L∞(0, T ;L2(Da)), there exists T̂ with 0 < T̂ ≤
T , such that the Problem (P ) admits a solution in (0, T̂ ). Moreover, the estimates

‖Φ‖L∞(0,T̂ ;H3(Da))∩H1(0,T̂ ;H1(Da))∩W 1,∞(0,T̂ ;L2(Da)) ≤ c,∥∥∥d2Φ

dt2

∥∥∥
V ′(T̂ )

≤ c,

‖W‖L∞(0,T̂ ;H2(Da))∩H1(0,T̂ ;L2(Da)) ≤ c,

‖Ψ̂(W)‖L∞(0,T̂ ;L1(Da)) ≤ c,

‖θ‖L∞(0,T̂ ;H2(Da))∩H1(0,T̂ ;H1(Da)) ≤ c,

‖R‖L∞(0,T̂ ;H2(Da))∩H1(0,T̂ ;H1(Da)) ≤ c,

‖z‖V ′r(T̂ ) + ‖A‖V ′rv(T̂ ) ≤ c,

hold for some positive constant c depending on T and on the data of the problem.

8. Proof of the Existence Result

In this section we give some details on the proof of the existence (and stability) result
stated by Theorem 12. The outline of the proof is the following. We first apply a Galerkin
approximation of our system, proving the existence of a solution for the finite dimensional
approximated problem, at each discretized step, depending on a parameter n. Then, we
perform some a priori estimates on the solutions, independently of the parameter n. We
prove, in particular, that there is a time interval (0, T̂ ) with 0 < T̂ ≤ T , in which, for each
step n, there exists a solution to the discrete problem. Finally, we pass to the limit by
use of weak(star)-strong compactness results and, after the identification of the limits for
nonlinear terms in the system, we prove that the limit problem admits a (weak) solution,
at least locally in time.

8.1. The Galerkin Approximation. Let

Φn(a, t) = xi(t)~ui(a) + a, 0 ≤ i ≤ 2n+ 1,

with ~ui ∈ V̂ and where V̂ is the space of the velocities

V̂ =

{
~ϕ ∈ H3(Da) : ~ϕ = 0,

∂

∂N
(grad ~ϕ) = 0, on Γ0, grad ~ϕ = 0, on ∂Da

}
. (28)

The ~ui(a) (actually belonging to C3(Da)), 0 ≤ i ≤ 2n+ 1, span the linear space V̂n ⊂ V̂ .

Note that V̂n ⊂ V̂m for n < m and that ∪n∈NV̂n is dense in V̂ . We choose

~u2k(a) =

[
0

ϕk(a)

]
, ~u2k+1(a) =

[
ϕk(a)

0

]
, 0 ≤ k ≤ n.
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where ϕk ∈ C3(Da) are known. For x(t) = (xi(t))0≤i≤2n+1 we define Φ̃n(a, x(t)) = Φn(a, t)

and observe that the quantity
∥∥Φ̃n(a, x)− ~a

∥∥
H3(Da)

is a norm of x in R2n+2. We have

Φ̇n(a, t) = ẋi(t)~u(a) =: Φ̂n(a, ẋ),

and observe that
∥∥Φ̂n(a, ẋ)

∥∥
L2(Da)

is a norm of ẋ in R2n+2. We aim to approximate

matrices Fn(a, t) and Wn(a, t) as well. We have

grad Φn(a, t) = Fn(a, t) = I + xi(t)grad ~ui(a) =: F̃n(a, x(t)).

Hence, we infer that

Rn(a, t) = R(Fn(a, t)) = R(F̃n(a, x(t))) =: R̃n(a, x(t)),

and let

Wn(a, t) =: W̃n(a, x(t)).

Before introducing the discrete problem, we state some results on the approximation
of functions. For the sake of simplicity, we do not report technical details of the proofs.

The following proposition defines a set C̊n
α approximating Ċα ∩ S.

Proposition 13. Condition W̃n(a, x) ∈ C̊α ∩ S is equivalent to x ∈ C̊n
α, where C̊n

α is an

open set of R2n+2 which contains vector x = 0.

Now, let us comment on the functions W̃n(a, x), R̃n(a, x) approximating W(F), R(F).
Due to Proposition 2 and the fact that matrix F is a linear function of vector x depending
on a we can prove the following result.

Proposition 14. If
∥∥Φ̃n(a, x) − ~a

∥∥
H3(Da)

≤ c and x ∈ C̊n
α, functions x → R̃n(a, x) and

x → W̃n(a, x) are C∞ functions of x. All the derivatives with respect to x are globally

bounded. In particular x→ R̃n(a, x) and x→ W̃n(a, x) are, uniformly with respect to a,

Lipschitz functions of x.

Finally, we state properties concerning the functions ∂R̃n

∂t
(a, x, ẋ) and ∂W̃n

∂t
(a, x, ẋ) that

approximate Ṙ(F, Ḟ) and Ẇ(F, Ḟ).

Proposition 15. If
∥∥Φ̃n(a, x)− ~a

∥∥
H3(Da)

≤ c, Φ̇n ∈ L∞(0, Tn;L2(Da)), i.e.,∥∥Φ̂n(a, ẋ)
∥∥
L2(Da)

≤ c and x ∈ C̊n
α ,

functions x, ẋ → ∂R̃n

∂t
(a, x, ẋ) = Ṙn(a, t) and x, ẋ → ∂W̃n

∂t
(a, x, ẋ) = Ẇn(a, t) are C∞

functions of x, ẋ. All the derivatives with respect to x, ẋ are uniformly bounded with

respect to a and x, ẋ. In particular x, ẋ → ∂R̃n

∂t
(a, x, ẋ) and x, ẋ → ∂W̃n

∂t
(a, x, ẋ) are,

uniformly with respect to a, Lipschitz functions of x, ẋ.

Now, let us approximate function z as follows.

Proposition 16. If
∥∥Φ̃n(a, x)− ~a

∥∥
H3(Da)

≤ c, Φ̇n ∈ L∞(0, Tn;L2(Da)), i.e.,∥∥Φ̂n(a, ẋ)
∥∥
L2(Da)

≤ c and x ∈ C̊n
α ,
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the relationship

zn(a, t)

[
0 1

−1 0

]
=

−1

(wn11(a, t) + wn22(a, t))

{(
div
(
(grad Rn)RT

n

))
(a, t) + (div (grad ṘnR

T
n ))(a, t))

+ Rn(a, t)
(
Ẇn(a, t)Wn(a, t)−Wn(a, t)Ẇn(a, t)

)
RT
n (a, t)

}
(29)

defines a function

z̃(a, x(t), ẋ(t))

[
0 1

−1 0

]
.

Note that z̃ is a C∞ function of x and ẋ. All the derivatives with respect to x and ẋ

are uniformly bounded with respect to a, x and ẋ. In particular, z̃(a, x, ẋ) is a Lipschitz

function of x and ẋ (uniformly with respect to to a).

To deal with the approximating function dΨ̂
dW

(W̃n(a, x)) of dΨ̂
dW

(W) we exploit the fol-
lowing result.

Proposition 17. If
∥∥Φ̃n(a, x) − ~a

∥∥
H3(Da)

≤ c and x ∈ C̊n
γ with γ > α, the function

dΨ̂
dW

(Wn) = dΨ̂
dW

(W̃n) is a C∞ function of x ∈ C̊n
γ . All the derivatives with respect to x

are globally bounded. In particular, x→ dΨ̂
dW

(W̃n(a, x)) is, uniformly with respect to a, a

Lipschitz function of x.

Analogously, we aim to approximate grad ∆Φ.

Proposition 18. If
∥∥Φ̃n(a, x)− ~a

∥∥
H3(Da)

≤ c and x ∈ C̊n
α, the function

x→ grad ∆Φn(a, x)= (xkgrad ∆~uk(a))

is, uniformly with respect to a, a linear Lipschitz function of x.

Now, we are in the position of introducing the finite dimensional approximated problem
as follows (it is written in a suitable variational formulation and z̃ depends on x and ẋ).

∀i, 0 ≤ i ≤ 2n+ 1,

∫
Da

d2Φn

dt2
.~ui da

+

∫
Da

R̃n

{
(W̃n−I) +

dW̃n

dt
Ẇ +

∂Ψ̂

∂W
(W̃n) + z̃n

[
0 1
−1 0

]}
: grad ~ui

+ grad ∆Φn : grad ∆~ui da =

∫
Da

~f · ~ui da, (30)

combined with (29). Note that (30) leads to

Mẍ+G1(x)ẋ+G2(x) = f(t),

x(0) = 0, ẋ(0) = 0, (31)

where M is the mass matrix,

f(t) = (f in(t)) = (

∫
Da

~f(~a, t) · ~uin(~a) da),
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and

G1(x)ẋ+G2(x) =

∫
Da

(
R̃n

{
(W̃n − I) +

dW̃n

dt
+

∂Ψ̂

∂W
(W̃n) + zn

[
0 1
−1 0

]}
: grad ~ui

+grad ∆Φn : grad ∆~ui

)
da.

Recall that we assume
~f ∈ L∞(0, T ;L2(Da)). (32)

Let vectors v ∈ R2n+2, v̂ ∈ R2n+2 and define Φn(v) = vi~uin(~a) + ~a, Φ̂n(v̂) = v̂i~uin(~a).
The set

E =
{

(v, v̂) ∈
(
R2n+2

)2
:
∥∥Φn(v)− ~a

∥∥
H3(Da)

< c1,

Wn(Φn(v)) ∈ C̊γ,
∥∥Φ̂n(v̂)

∥∥
L2 (Ωa)

< c2

}
, (33)

with 1 > γ > α, is an open set which contains (0, 0).

Remark 19. Let us recall that we have chosen the norms v →
∥∥Φn(v) − ~a

∥∥
H3(Da)

and

v̂ →
∥∥Φ̂n(v̂)

∥∥
L2(Da)

in R2n+2 because they are going to be useful when dealing with the a

priori estimates.

We observe that the function (v, v̂)→ G1(v)v̂ +G2(v), is a Lipschitz function.

As a consequence of the above argument, the differential equation (31) has a solution
in time interval [0, Tn], with 0 < Tn ≤ T , which satisfies∥∥Φn(t)− ~a

∥∥
H3 (Ωa)

< c1,
∥∥Φ̇n(t)

∥∥
L2 (Ωa)

< c2, Wn(~a, t) ∈ C̊γ.

Time Tn depends on c1, c2, n and γ.

8.2. The a Priori Estimates. We perform suitable a priori estimates on the approxi-
mated problem given by (29), (30) (written in terms of zn and Φn), actually not depending
on n. We point out that, for the moments, the existence of a solution for the discrete
problem is given, for each n, in (0, Tn). Now, we test (29) by (wn11 +wn22)θ̇n)/2, and (30)
(written for zn and Φn) by Φ̇n, and integrate over (0, t). We add the two relationships.
Some terms cancel and we can integrate by parts in time and get

1

2

∫
Da

Φ̇2
n(t) da+

∫
D

{
1

2

∥∥Wn(t)−I
∥∥2

+ Ψ̂(Wn(t))

}
da+

∫ t

0

‖Ẇn‖2
L2(Da)dτ

+
1

2

∫
Da

∥∥grad ∆Φn(t)
∥∥2
da

+
1

2

∫
Da

∥∥grad θn(t)
∥∥2
da+

∫ t

0

‖ grad θ̇n‖2
L2(Da)dτ

=

∫ t

0

∫
Da

~f · Φ̇n da dτ +

∫
Da

Ψ̂(I) da. (34)

Remark 20. Note that

grad ∆Φn = ∆grad Φn = (Φn)i,αββ = (Φn)i,ββα .

Thus ∆(grad Φn) is bounded in L∞(0, Tn;L2(Da)). With boundary condition grad Φn = I

on ∂Da we deduce that grad Φn is bounded in L∞(0, Tn;H2(Da)).
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Remark 21. Relationship (34) is the integral with respect to time of the principle of

virtual power where the velocities are the actual ones.

We directly get the following estimates

‖Φn‖W 1,∞(0,Tn;L2(Da))∩L∞(0,Tn;H3(Da)) ≤ c,

‖Wn‖H1(0,Tn;L2(Da)) ≤ c,

‖Ψ̂(Wn)‖L∞(0,Tn;L1(Da)) ≤ c,

‖θn‖H1(0,Tn;H1(Da)) ≤ c.

Moreover, with the a priori estimates and the above propositions (see, in particular,
Proposition 2), it results that

‖Φn‖H1(0,Tn;H1(Da)) ≤ c,

‖θn‖L∞(0,Tn;H2(Da)) ≤ c,

‖Wn‖L∞(0,Tn;H2(Da)) ≤ c,

‖Rn‖L∞(0,Tn;H2(Ωa))∩H1(0,Tn;H1(Ωa)) ≤ c.

Indeed, these a priori estimates follows by the fact that once Φn is bounded, as Wn and
Rn are smooth functions of grad Φn, they are bounded, too.

Actually, the bounds do not depend on n, but (for the moment) they may depend on
Tn. However, we will show in a while that we can find some uniform bounds on a interval
(0, T̂ ) for the solutions, with T̂ independent of n. Hence, we are allowed to write

zn = − ∆θ̇n + ∆θn
(wn11 + wn22)

− (ẇn11 − ẇn22)wn12 + ẇn12(wn22 − wn11)

(wn11 + wn22)
,

where

0 <
1

(wn11 + wn22)
≤ 1

2α
.

Let us test the previous equality by ξ ∈ Vr, by inferring that∫ t

0

∫
Da

znξ da dτ =

∫ t

0

∫
Ωa

(grad θ̇n + grad θn) · grad
ξ

(wn11 + wn22)
da dτ

−
∫ t

0

∫
Da

(ẇn11 − ẇn22)wn12 + ẇn12(wn22 − wn11)

(wn11 + wn22)
ξ da dτ,

where

grad
ξ

(wn11 + wn22)
=

grad ξ

(wn11 + w22)
− ξ grad (wn11 + wn22)

(wn11 + wn22)2
.

Moreover, in view of (wn11 + wn22) > 2α, as the term grad (wn11 + wn22) is bounded in
L∞(0, Tn;H1(Da)), we have∥∥grad

ξ

(wn11 + wn22)

∥∥
L2(0,Tn;L2(Da))

≤ c
∥∥ξ∥∥

L2(0,Tn;H1(Da))
.
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We also have ∣∣∣∣∫ t

0

∫
Da

(ẇn11 − ẇn22)wn12 + ẇn12(wn22 − wn11)

(wn11 + wn22)
ξ da dτ

∣∣∣∣
≤
∫ t

0

∫
Da

|ẇn11 − ẇn22| |wn12|+ |ẇn12| |wn22 − wn11|
2α

|ξ| da dτ

≤ c
∥∥wn∥∥L∞(0,Tn;L∞(Ωa))

∥∥ẇn∥∥L2(0,Tn;L2(Ωa))

∥∥ξ∥∥
L2(0,Tn;H1(Ωa))

≤ c
∥∥ξ∥∥

L2(0,Tn;H1(Ωa))
.

Since (grad θ̇ + grad θ) is bounded in L2, we deduce that∣∣∣∣∫ t

0

∫
Da

znξ da dτ

∣∣∣∣ ≤ c
∥∥ξ∥∥

L2(0,Tn;H1(Da))
,

so that zn is bounded in V ′r(Tn), and An in V ′rv(Tn).

Now, let us point out that the a priori estimates on Φn and Φ̇n show that Tn does not
depend on c1 and c2 (see (33)) provided they are taken large enough. We let Ψ̂ satisfy

Ψ̂(I) = 0. Then, from (34) it follows that

1

2

∫
Da

Φ̇2
n(t) da ≤

∫ t

0

∫
Da

~f · Φ̇n da dτ,

which gives, along with (32) and the Gronwall lemma,∥∥Φ̇n(t)
∥∥
L2(Da)

≤ ct.

With this estimate, from (34) we infer

1

2

∥∥∆(grad Φn(t))
∥∥2

L2(Da)
da ≤

∫ t

0

∫
Da

~f · Φ̇n da dτ ≤ ct2.

We know that
grad Φn(t) = I, on ∂Da,

and therefore

|Fn(a, t)− I| = |grad Φn(a, t)− I|
≤ c
∥∥∆(grad Φn(t))

∥∥
L2(Da)

= c
∥∥∆(grad Φn(t)− I)

∥∥
L2(Da)

≤ ct.

Then, for t < t1 we have

1 + ct ≥ |Fn(a, t)| ≥ 1− ct ≥ δ > 0,

|det Fn(a, t)− det I| = |det Fn(a, t)− 1| ≤ c |Fn(a, t)− I| ≤ ct,

because the derivatives of det F with respect to F are bounded. Thus, for t < t2 < t1 we
see that

det Fn(a, t) = det Wn(a, t) ≥ 1− ct ≥ γ2 ≥ α2.

As a consequence, for t < t2 we have det F ≥ γ2 and

tr W =
√

tr FTF + 2 det F, |tr W − tr I| = |tr W − 2| ≤ c |Fn(a, t)− I| ≤ ct,

due to the boundedness of the derivatives of tr W with respect to F (note that tr FTF > 0).
Then, we obtain

tr W ≥ 2− ct ≥ 2γ ≥ 2α for 0 ≤ t < t3 < t2 < t1

and for t < t3 = T̂ we have xn(t) ∈ C̊n
γ . Thus, there is a solution to the approximated

problem (31) up to time T̂ which is independent of n, c1 and c2.
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Proposition 22. If assumption (32) is satisfied, there exists T̂ > 0 such that the approx-

imated problems (31) have solutions up to the time T̂ .

Remark 23. As for t < t2 there holds

tr W =
√

tr FTF + 2 det F ≥
√

2 det F ≥
√

2 γ,

it is clear that to ensure the property tr W > 2α we may need to have t < t3 ≤ t2.

8.3. Convergence Results. Using well-known weak, weak*, and strong compactness
result on the interval (0, T̂ ), we get the following convergence results, holding at least for
subsequences,

Φn ⇀
∗ Φ in W 1,∞(0, T̂ ;L2(Da)) ∩H1(0, T̂ ;H1(Da)) ∩ L∞(0, T̂ ;H3(Da)),

Φn → Φ in C([0, T̂ ];H2(Da)),

θn ⇀
∗ θ in H1(0, T̂ ;H1(Da)) ∩ L∞(0, T̂ ;H2(Ωa)),

θn → θ in C([0, T̂ ];H1(Da)),

Rn ⇀
∗ R in L∞(0, T̂ ;H2(Ωa)) ∩H1(0, T̂ ;H1(Ωa)),

Rn → R in C0([0, T̂ ];H1(Da)),

Wn ⇀
∗ W in H1(0, T̂ ;L2(Da)) ∩ L∞(0, T̂ ;H2(Ωa)),

Wn →W in C0([0, T̂ ];H1(Da)),

An ⇀ A in V ′rv(T̂ ).

Note that if ~ϕ ∈ V , then we infer that RT
n grad ~ϕ − (grad ~ϕ)T Rn ∈ Vrv or that the

non-null element of this antisymmetric matrix is an element of Vr, because

RT
n grad ~ϕ− (grad ~ϕ)T Rn = 0, on ∂Da.

Thus, as Rn converges strongly in C0([0, T̂ ];H1(Da)) and, on the other hand, An converges

weakly in V ′rv(T̂ ), the integral∫ t

0

∫
Da

RnAn : grad ~ϕ da dτ =
1

2

∫ t

0

〈An,R
T
ngrad ~ϕ− (grad ~ϕ)T Rn〉dτ

converges too.

Now, we introduce a definition of the limit process.

Definition 24. We say that the exterior force is not extreme or does not tend to crush

the solid if Ψ̂(W) is globally bounded, i.e., if there exists c > 0 such that

∀(a, t), Ψ̂(W(a, t)) ≤ c.

We show below that we can select a motion, as long as this assumption is satisfied.

Proposition 25. Assume that the exterior force ~f satisfies (32); then there exists T̂ > 0

such that the exterior force is not extreme in the time interval
[
0, T̂

]
.

Proof. From Proposition 22, we have that

det W(a, t) ≥ γ2 ≥ α2, tr W(a, t) ≥ 2γ ≥ 2α.
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Then, it follows that

Ψ̂(W(a, t)) = Idet(det W(a, t)) + Itr (tr W(a, t)) ≤ Idet(γ2) + Itr(2γ) = c.

�

Note that assumption (32) is satisfied by any practical loading which does not crush
too much the solid.

Proposition 26. For all (a, t) fulfilling Ψ̂(W(a, t)) ≤ c and |W(a, t)| ≤ c, there hold∣∣∣∣∣Rn
∂Ψ̂

∂W
(Wn)(a, t)

∣∣∣∣∣ ≤ ĉ for some constant ĉ > 0. (35)

Proof. If Ψ̂(W(a, t)) ≤ c, there exist γ such that trWn > 2γ > 2α and det Wn > γ2 > α2.

Then (35) follows from formula (10) and the fact that Wn(a, t) is bounded. �

The property (35) is satisfied in the time interval [0, T̂ ] as we have that

tr Wn > 2γ > 2α, det Wn > γ2 > α2, and |W(a, t)| ≤ c.

Thanks to relationship (35) and using the approximated linear momentum equation of

motion, we get for ~ϕp ∈ L2(0, T ; V̂n)

lim
n→∞

∫ T̂

0

∫
Da

d2Φn

dt2
· ~ϕp da dτ

= −
∫ T̂

0

∫
Da

R
{

W − I + Ẇ +
∂Ψ̂

∂W
(W)

}
: grad ~ϕp da dτ

+

∫ T̂

0

1

2
〈A,RT grad ~ϕp − grad ~ϕTp R〉dτ

−
∫ T̂

0

∫
Da

grad ∆Φ : grad ∆~ϕp da dτ +

∫ T̂

0

∫
Da

~f · ~ϕp da dτ = 〈〈B, ~ϕp〉〉,

where B is the element of the dual space of V(T ) defined by

〈〈B, ~ϕ〉〉 = −
∫ T̂

0

∫
Da

R
{

W − I + Ẇ +
∂Ψ̂

∂W
(W)

}
: grad ~ϕ da dτ

+

∫ T̂

0

1

2
〈A,RT grad ~ϕ− grad ~ϕTR〉dτ

−
∫ T̂

0

∫
Da

grad ∆Φ : grad ∆~ϕ da dτ +

∫ T̂

0

∫
Da

~f · ~ϕ da dτ.

This result is not sufficient for the convergence of d2Φn/dt
2 because we cannot exchange

the limits n → ∞ and p → ∞ with limp→∞ ~ϕp = ~ϕ. We couple this result with the
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convergence for dΦn/dt and point out that ~ϕ = ~ϕp + (~ϕ− ~ϕp). We have

lim
n→∞

∫ T̂

0

∫
Da

d2Φn

dt2
· ~ϕ da dτ = lim

n→∞

∫ T̂

0

∫
Da

d2Φn

dt2
· (~ϕp + (~ϕ− ~ϕp)) da dτ

= 〈〈B, ~ϕp〉〉 − lim
n→∞

{∫ T̂

0

∫
Da

dΦn

dt
· d(~ϕ− ~ϕp)

dt
da dτ

}

+ lim
n→∞

{∫
Da

dΦn

dt
(T̂ ) · (~ϕ(T̂ )− ~ϕp(T̂ )) da

}
;

and, with the a priori estimates on dΦn/dt,

− lim
n→∞

{∫ T̂

0

∫
Da

dΦn

dt
· d(~ϕ− ~ϕp)

dt
da dτ

}

= −
∫ T̂

0

∫
Da

dΦ

dt
· d(~ϕ− ~ϕp)

dt
da dτ = 〈〈~C, (~ϕ− ~ϕp)〉〉

and ∣∣∣∣∫
Da

dΦn

dt
(T̂ ) · (~ϕ(T̂ )− ~ϕp(T̂ )) da

∣∣∣∣ ≤ ∥∥dΦn

dt

∥∥
L∞(0,T ;L2(Da))

∥∥~ϕ− ~ϕp
∥∥
V ,

where ~C belongs to the dual space of V(T ). Then, we infer that∣∣∣∣∣ lim
n→∞

∫ T̂

0

∫
Da

d2Φn

dt2
· ~ϕ da dτ − 〈〈B, ~ϕp〉〉

∣∣∣∣∣ ≤ c
∥∥~ϕ− ~ϕp

∥∥
V ,

for all p, whence ∣∣∣∣∣ lim
n→∞

∫ T̂

0

∫
Da

d2Φn

dt2
· ~ϕ da dτ − 〈〈B, ~ϕ〉〉

∣∣∣∣∣ = 0,

and d2Φn

dt2
→ B, weakly in the dual space of V(T ). Then d2Φn/dt

2 is bounded in the dual

space of V(T ) and Φ̇n converges strongly in C([0, T ];L2(Da)).
Thus, we are now in the position of passing to the limit in (23), (24) (written for n)

and solve Problem (P ). Of course, the kinematic relationship grad Φ= RW is satisfied.

Remark 27. Due to regularities we have obtained, and by a comparison in (23), the term

〈〈d
2Φ

dt2
, ~ϕ〉〉

is linear and bounded with respect to ~ϕ varying in L2(0, T̂ ; V̂), where V̂ is defined in (28).

Then, by using a density argument in (23), it is not difficult to check that∥∥∥d2Φ

dt2

∥∥∥
L2(0,T̂ ;V̂)

≤ c,
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and that the variational in equality (23) can be equivalently rewritten as

V̂ ′〈
d2Φ

dt2
(t), ~ϕ〉V̂ +

∫
Da

R

{
(W − I) + Ẇ +

∂Ψ̂

∂W
(W)

}
(t) : grad ~ϕ da

+〈A(t),RT (t) grad ~ϕ− (grad ~ϕ)TR(t)〉+

∫
Da

grad ∆Φ(t) : grad ∆~ϕ da

=

∫
Da

~f(t) · ~ϕ da for all ~ϕ ∈ V̂ , for a.e. t ∈ (0, T̂ ). (36)

9. What Occurs When Time T < T̂ . A Mechanical Remark

After time T , there may be at some time t, a null measure set, for instance a curve,
where ∣∣∣∣∣RdΨ̂

dB
(W)(a, t)

∣∣∣∣∣ =∞, Ψ̂(W)(a, t) =∞,

together with ∫
Da

Ψ̂(W) da ≤ c.

On this curve, it happens that

W(a, t) ∈ ∂Cα.
and the velocity

Ẇ(a, t)

cannot be continuous with respect to time because W(a, t) has to remain in Cα. Thus
there is a time discontinuity of the velocities Φ̇ and Ω satisfying

RTgrad
[
Φ̇
]

=
[
Ẇ
]

+RT [Ω] F,

owing to relationship (8) (the brackets denote the time discontinuities). A collision occurs.
The predictive theory we have chosen does not take into account collisions. Thus, it is a
mechanical phenomenon which makes impossible to have a solution, i.e., a smooth motion,
after time T .

Let us stress that before time T the deformations may be large up to −(1 − γ). This
means negative elongation up to −99, 999..%, which is enough for many practical prob-
lems. We may say that if the exterior forces are not extreme, we can predict the motion
of a solid with large deformations. In any case, we predict the motion when it begins and
before a possible flattening or crushing, for instance when you crush fresh pasta between
two fingers.
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