Sobolev spaces on non-Lipschitz sets with application to BIEs on fractal screens

Andrea Moiola

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF READING

with S.N. Chandler-Wilde (Reading) and D.P. Hewett (UCL)

Motivation: acoustic scattering by fractal screen

 Γ bounded open subset of $\{ {f x} \in {\mathbb R}^{n+1} : x_{n+1} = 0 \} \cong {\mathbb R}^n$, n=1,2

u satisfies Sommerfeld radiation condition (SRC) at infinity (i.e. $\partial_r u - iku = o(r^{-(n-1)/2})$ uniformly as $r = |\mathbf{x}| \to \infty$).

Classical problem when Γ is Lipschitz. What happens for arbitrary (e.g. fractal) Γ ?

Fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

Fractal antennas are a popular topic in engineering: Wideband/multiband, compact, cheap, metamaterials, cloaking... Not analysed by mathematicians.

Example: Dirichlet scattering

Given $g_D \in H^{1/2}(\Gamma)$, we can write 3 different BVPs: Find $u \in C^2(D) \cap \{u \in L^2_{loc}(D), \nabla u \in L^2_{loc}(D)^n\}$ s.t. $P' \begin{cases} Au + k^2 u = 0 \quad \text{in } D \\ \gamma^{\pm}(u)|_{\Gamma} = g_D \\ SRC \\ P' \begin{cases} P \\ [u] = \gamma^{+}u - \gamma^{-}u = 0 \\ [u] = \gamma^{+}u - \gamma^{-}u = 0 \end{cases} \text{ if } \mathcal{D}(\Gamma) \text{ dense in } \{ \overset{u \in H^{-1/2}(\mathbb{R}^n)}{\operatorname{supp} u \subset \overline{\Gamma}} \} \end{cases}$

Jump [*u*] is supported in $\overline{\Gamma}$, while γ^{\pm} is restricted to Γ only. P' is equivalent to BIE $(-S_k \phi = g_D, S_k \text{ coercive in } \overline{\mathcal{D}(\Gamma)}^{H^{-1/2}})$. P" is uniquely solvable. P \iff P' \iff P" holds if Γ is C^0 . Swap $\pm 1/2$ for Neumann problem. (Chandler-Wilde, Hewett 2013)

- ► For which Γ and s are conditions above satisfied? $\{u \in H^s(\mathbb{R}^n) : \operatorname{supp} u \subset \partial \Gamma\} = \{0\},\$ $\mathcal{D}(\Gamma)$ dense in $\{u \in H^s(\mathbb{R}^n) : \operatorname{supp} u \subset \overline{\Gamma}\}$
- Given Γ , which other $\widetilde{\Gamma} \neq \Gamma$ give the same scattered fields $\forall u^i$?
- When is Γ "inaudible", i.e. u^s = 0 for all g_D? Can a screen with zero mass scatter waves?
- Does it matter whether Γ is open or closed?
- ▶ Where do Galerkin (BEM) solutions converge to?

To try to answer these questions we need to learn more about Sobolev spaces on non-Lipschitz sets.

Many results available (Maz'ya, Triebel, Polking, Adams, Hedberg,...) but not entirely clear/satisfactory/useful for us.

Part II

Definitions and duality

Basic definitions I: Sobolev spaces on \mathbb{R}^n

For
$$k \in \mathbb{N}_0$$
, $W^k := \{ u \in L^2(\mathbb{R}^n) : \partial^{\boldsymbol{\alpha}} u \in L^2(\mathbb{R}^n), \ \forall |\boldsymbol{\alpha}| \le k \},$
 $\|u\|_{W^k}^2 := \sum_{|\boldsymbol{\alpha}| \le k} \int_{\mathbb{R}^n} |\partial^{\boldsymbol{\alpha}} u(\mathbf{x})|^2 \mathrm{d}\mathbf{x}.$

$$\begin{array}{ll} \text{For } s \in \mathbb{R}, \qquad \quad H^s := \{ u \in \mathcal{S}^*(\mathbb{R}^n) : \hat{u} \in L^1_{loc}(\mathbb{R}^n) \text{ and } \|u\|_{H^s} < \infty \}, \\ \|u\|_{H^s}^2 := \int_{\mathbb{R}^n} (1 + |\boldsymbol{\xi}|^2)^s \, |\widehat{u}(\boldsymbol{\xi})|^2 \, \mathrm{d}\boldsymbol{\xi}. \end{array}$$

For $k \in \mathbb{N}_0$, $H^k = W^k$ with equivalent norms.

▶ For t > s, $H^t \subset H^s$ (continuous embedding, norm 1).

• $(H^s)^* = H^{-s}$, with duality pairing

$$\langle u,v\rangle_{H^{-s}\times H^s} := \int_{\mathbb{R}^n} \hat{u}(\boldsymbol{\xi})\overline{\hat{v}(\boldsymbol{\xi})} \,\mathrm{d}\boldsymbol{\xi}.$$

 $\begin{array}{ll} \blacktriangleright \hspace{0.1cm} H^{s} \subset C(\mathbb{R}^{n}) \text{ for } s > n/2 \hspace{0.5cm} (\text{Sobolev embedding theorem}). \\ \delta_{\mathbf{x}_{0}} \in H^{s} \iff s < -n/2 \hspace{0.5cm} (\langle \delta_{\mathbf{x}_{0}}, \phi \rangle = \overline{\phi(\mathbf{x}_{0})}). \end{array}$

Basic definitions II: Sobolev sp. on subsets of \mathbb{R}^n

Notation: $\Gamma \subset \mathbb{R}^n$ open, $F \subset \mathbb{R}^n$ closed, $K \subset \mathbb{R}^n$ compact.

$$\begin{split} \widetilde{H}^{s}(\Gamma) &:= \overline{\mathcal{D}(\Gamma)}^{H^{s}} & (\mathcal{D}(\Gamma) := C_{0}^{\infty}(\Gamma) \subset C^{\infty}(\mathbb{R}^{n})) \\ H^{s}_{F} &:= \{ u \in H^{s} : \operatorname{supp} u \subset F \} = \{ u \in H^{s} : u(\varphi) = 0 \; \forall \varphi \in \mathcal{D}(F^{c}) \} \\ H^{s}(\Gamma) &:= \{ u|_{\Gamma} : u \in H^{s} \} \\ H^{s}_{0}(\Gamma) &:= \overline{\mathcal{D}(\Gamma)|_{\Gamma}}^{H^{s}(\Gamma)} & \text{(notation from McLean)} \end{split}$$

"Global" and "local" spaces:

$$\widetilde{H}^{s}(\Gamma) \subset H^{s}_{\overline{\Gamma}} \subset H^{s} \subset \mathcal{D}^{*}(\mathbb{R}^{n}),$$

$$H_0^s(\Gamma) \subset H^s(\Gamma) \subset \mathcal{D}^*(\Gamma)$$

When Γ is Lipschitz it holds that

$$\blacktriangleright \ \widetilde{H}^{s}(\Gamma) = (H^{-s}(\Gamma))^{*}$$

$$\blacktriangleright H^{s}(\Gamma) = H^{s}_{\overline{\Gamma}}$$

$$\blacktriangleright H_{\partial\Gamma}^{\pm 1/2} = \{0\}$$

▶ $\{H^s(\Gamma)\}_{s\in\mathbb{R}}$ and $\{\widetilde{H}^s(\Gamma)\}_{s\in\mathbb{R}}$ are interpolation scales

Duality

Theorem (Chandler-Wilde and Hewett, 2013)

Let Γ be any open subset of \mathbb{R}^n and let $s \in \mathbb{R}$. Then $(H^s(\Gamma))^* = \widetilde{H}^{-s}(\Gamma)$ and $(\widetilde{H}^s(\Gamma))^* = H^{-s}(\Gamma)$ with equal norms and $\langle u, w \rangle_{H^{-s}(\Gamma) \times \widetilde{H}^s(\Gamma)} = \langle U, w \rangle_{H^{-s} \times H^s}$ for any $U \in H^{-s}, U|_{\Gamma} = u$.

Well-known for Lipschitz but not in general case.

Main ideas of proof:

▶ *H* Hilbert, *V* ⊂ *H* closed ssp, *H* unitary realisation of *H*^{*}, then $(V^{\alpha,\mathcal{H}})^{\perp} = \{\psi \in \mathcal{H}, \langle \psi, \phi \rangle = 0 \ \forall \phi \in V\}^{\perp}$ is unitary realisation of *V*^{*}

$$\blacktriangleright \ H^{-s}_{\Gamma^c} = \{ u \in H^{-s} : u(\psi) = \langle u, \psi \rangle = 0 \ \forall \psi \in \mathcal{D}(\Gamma) \} = (\widetilde{H}^s(\Gamma))^{a, H^{-s}}$$

► Restriction operator $|_{\Gamma}$ is unitary isomorphism $|_{\Gamma} : (H_{\Gamma^c}^{-s})^{\perp} \to H^{-s}(\Gamma)$ (from identification of $H^{-s}(\Gamma)$ with $H^{-s}/H_{\Gamma^c}^{-s}$)

• Choose
$$V = \widetilde{H}^{s}(\Gamma)$$
, $H = H^{s}$, $\mathcal{H} = H^{-s}$

We will address the following questions:

- ▶ When does $E \subset \mathbb{R}^n$ support non-zero $u \in H^s$?
- When is $\widetilde{H}^{s}(\Gamma) = H^{s}_{\overline{\Gamma}}$?
- When is $H^{s}(\Gamma) = H_{0}^{s}(\Gamma)$?
- For which spaces is $|_{\Gamma}$ an isomorphism?
- When are $H^{s}(\Gamma)$ and $\widetilde{H}^{s}(\Gamma)$ interpolation scales?
- What's the limit of a sequence of Galerkin solutions to a variational problem on prefractals?

Part III

s-nullity

Definition

Given $s \in \mathbb{R}$ we say that a set $E \subset \mathbb{R}^n$ is *s*-null if there are no non-zero elements of H^s supported in *E*.

(I.e. if $H_F^s = \{0\}$ for every closed set $F \subset E$.)

Other terminology exists: "(-s)-polar" (Maz'ya, Littman), "set of uniqueness for H^{s} " (Maz'ya, Adams/Hedberg).

Relevance of s-nullity

For the screen scattering problem:

- ► For a compact screen K to be audible we need $H_K^{\pm 1/2} \neq \{0\}$.
- ► For the solution of the classical Dirichlet/Neumann BVP to be unique we need $H_{\partial\Gamma}^{\pm 1/2} = \{0\}$.
- Two screens Γ₁ and Γ₂ give the same scattered field for all incident waves if and only if Γ₁ ⊖ Γ₂ is ±1/2-null.

For general Sobolev space results:

- $\blacktriangleright \ H^s_{F_1} = H^s_{F_2} \iff F_1 \ominus F_2 \text{ is } s\text{-null}.$
- $\blacktriangleright \ \widetilde{H}^s(\Gamma_1) = \widetilde{H}^s(\Gamma_2) \iff \Gamma_1 \ominus \Gamma_2 \text{ is } (-s) \text{-null.}$
- ▶ If $\operatorname{int}(\overline{\Gamma}) \setminus \Gamma$ is not (-s)-null then $\widetilde{H}^{s}(\Gamma) \subsetneq H^{s}_{\overline{\Gamma}}$.
- We'll see many more uses of nullity...

- ▶ A subset of an *s*-null set is *s*-null.
- If E is s-null and t > s then E is t-null.
- ▶ If *E* is *s*-null then has empty interior.
- ▶ If s > n/2 then *E* is *s*-null \iff int $(E) = \emptyset$.
- For s < -n/2 there are no non-empty *s*-null sets.

Non-trivial results:

▶ The union of finitely many *s*-null closed sets is *s*-null.

► The union of countably many *s*-null Borel sets is *s*-null if $s \le 0$. Union of non-closed *s*-null sets for s > 0 is not *s*-null: counterexample is $E_1 = \mathbb{Q}^n, E_2 = \mathbb{R}^n \setminus \mathbb{Q}^n, s > n/2$. For every $E \subset \mathbb{R}^n$ with $int(E) = \emptyset$ there exists $s_E \in [-n/2, n/2]$ such that *E* is *s*-null for $s > s_E$ and not *s*-null for $s < s_E$. We call s_E the nullity threshold of *E*.

Q1: Given $E \subset \mathbb{R}^n$, can we determine s_E ?

Q2: Given $s \in [-n/2, n/2]$, can we find some $E \subset \mathbb{R}^n$ for which $s_E = s$?

Q3: When is $E s_E$ -null? (i.e. is the maximum regularity attained?)

We study separately sets with zero and positive Lebesgue measure.

Zero Lebesgue measure $\Rightarrow s_K \in [-n/2, 0]$

Let $K \subset \mathbb{R}^n$ be non-empty and compact. Then:

•
$$H_K^0 = L^2(K) = \{0\} \iff m(K) = 0.$$

- If m(K) = 0 then $H_K^s = \{0\}$ for $s \ge 0$ (i.e. $s_K \le 0$).
- ▶ If K is countable then $s_K = -n/2$ ($H_K^s = \{0\} \Leftrightarrow s \ge -n/2$).

Theorem

If
$$m(K) = 0$$
, then $s_K = \frac{\dim_H K - n}{2}$.
(dim_H =Hausdorff dimension, m =Lebesgue measure)

$$\dim_{\mathbf{H}} K = \inf \left\{ d > 0 : H_K^{(d-n)/2} = \{0\} \right\}$$

This does not tell us if K is s_K -null; examples of both cases are possible. Sharpens previous results by Littman (1967) and Triebel (1997).

Examples

Let $\Gamma \subset \mathbb{R}^n$ be non-empty and open.

- If Γ is C^0 then $s_{\partial\Gamma} \in [-1/2, 0]$.
- ▶ If Γ is $C^{0,\alpha}$ for some $0 < \alpha < 1$ then $s_{\partial \Gamma} \in [-1/2, -\alpha/2]$ (sharp).
- ▶ If Γ is Lipschitz then $s_{\partial\Gamma} = -1/2$ (and $H_{\partial\Gamma}^{-1/2} = \{0\}$).
- If K is boundary of Koch snowflake, $s_K = \frac{\log 2}{\log 3} 1 \approx -0.37$.

For $0 < \alpha < 1/2$ let $\mathcal{C}_{\alpha} \subset [0, 1]$ be the Cantor set with $l_{j} = \alpha^{j}, j \in \mathbb{N}_{0}$: $\overbrace{l_{0} = 1}^{H}$ $\overbrace{l_{1} = \alpha}^{H}$ $l_{2} \stackrel{H}{=} \alpha^{2}$ $l_{3} \stackrel{H}{=} \alpha^{3}$ Let $\mathcal{C}_{\alpha}^{2} := \mathcal{C}_{\alpha} \times \mathcal{C}_{\alpha} \subset \mathbb{R}^{2}$ denote the associated "Cantor dust": $s_{\mathcal{C}_{\alpha}^{n}} = -\frac{n}{2} \left(1 + \frac{\log 2}{\log \alpha}\right) \in \left(-\frac{n}{2}, 0\right)$ Choose $\alpha = 2^{-n/(2s+n)}$ to have $s_{\mathcal{C}_{\alpha}^{n}} = s$.

Can also define "thin" Cantor dusts which have $s_K = -n/2$

Our proofs rely on the following equivalence, which follows from results by Grusin 1962, Littman 1967, Adams and Hedberg 1996 and Maz'ya 2011:

Theorem

For s > 0, K compact, $H_K^{-s} = \{0\} \iff \operatorname{cap}_s(K) = 0$, where

 $\operatorname{cap}_{s}(K) := \inf\{ \|u\|_{H^{s}}^{2} : u \in C_{0}^{\infty}(\mathbb{R}^{n}) \text{ and } u \geq 1 \text{ on } K \}.$

This allows us to apply well-known results relating $\operatorname{cap}_s(E)$ to $\dim_{\mathrm{H}}(E)$ (see e.g. Adams and Hedberg 1996). Requires relating different set capacities.

Theorem (Polking, 1972)

There exists a compact set K for which $s_K = n/2$. Also, $H_K^{n/2} \neq \{0\}$.

Maximal nullity threshold is achieved. Proof is constructive: "Swiss cheese set". Also "open minus countable-dense" (e.g. $\mathbb{R}^n \setminus \mathbb{Q}^n$) are not n/2-null.

Open question: Do there exist sets *K* for which $s_K \in (0, n/2)$?

Our contribution:

Theorem

 $orall s_* \in (0,1/2)$ the "fat" Cantor set $\mathcal{C}_{lpha,eta} \subset \mathbb{R}$ with

$$\alpha \in (0, 2^{-1/(1-2s_*)}), \quad \beta \in (0, 1-2\alpha), \quad l_j = \frac{1}{2^j} \left(1 - \beta \frac{1 - (2\alpha)^j}{1 - 2\alpha}\right)$$

has nullity threshold $s_{\mathcal{C}_{\alpha,\beta}} \geq s_*$ (and $\chi_{\mathcal{C}_{\alpha,\beta}} \in H^{s_*}$).

Sketch of proof

Write $E = \mathcal{C}_{\alpha,\beta}$. Want $\|\chi_E\|_{H^s}^2 = \int_{\mathbb{R}} (1+|\xi|^2)^s |\widehat{\chi_E}(\xi)|^2 d\xi < \infty$. Suffices to show $|\xi|^{2s} |\widehat{\chi_E}(\xi)|^2 = \mathcal{O}\left(|\xi|^{-(1+\varepsilon)}\right), \xi \to \infty$. Trick: $\widehat{\chi_E}(\xi) = \frac{1}{2} \left(1 - e^{ia\xi}\right) \widehat{\chi_E}(\xi) = \frac{1}{2} (\widehat{\chi_E - \chi_E + a})(\xi), \qquad a = \frac{\pi}{|\xi|}.$ $\Rightarrow |\widehat{\chi_E}(\xi)| \le \frac{1}{2\sqrt{2\pi}} \|\chi_E - \chi_{E+a}\|_{L^1}$

$$\leq \frac{1}{2\sqrt{2\pi}} \left(\|\chi_E - \chi_{E_j}\|_{L^1} + \|\chi_{E_j} - \chi_{E_j+a}\|_{L^1} + \|\chi_{E_j+a} - \chi_{E+a}\|_{L^1} \right)$$

where E_j is *j*th iteration in construction of *E*. Pick largest *j* such that $a = \frac{\pi}{|\xi|} \leq \text{Gap}_j$ (smallest gap between subintervals of E_j). Find that

$$|\widehat{\chi_E}(\xi)| \le C(\alpha, \beta) |\xi|^{-1 - \frac{\log 2}{\log \alpha}}$$

So $\chi_E = \chi_{\mathcal{C}_{\alpha,\beta}} \in H^s(\mathbb{R})$ for $s < \frac{1}{2} + \frac{\log 2}{\log \alpha} \in (-\frac{1}{2}, \frac{1}{2})$, thus $H^s_E \neq \{0\}$.

Open question: What is $s_{\mathcal{C}_{\alpha,\beta}}$ for the fat Cantor set?

Nullity of Cartesian products of sets

Let $N \in \mathbb{N}$, $s_j \in \mathbb{R}$, $n_j \in \mathbb{N}$, and $u_j \in H^{s_j}(\mathbb{R}^{n_j})$ for $j = 1, \dots, N$. Then

 $u_1 \otimes \cdots \otimes u_N \in H^s(\mathbb{R}^{n_1 + \cdots + n_N}), \quad \text{for } s < s_* := egin{cases} \min_{j=1,\dots,N} s_j & \text{if } s_j \geq 0 \ orall j, \ \sum_{j \text{ s.t. } s_j < 0} s_j & \text{otherwise.} \end{cases}$

If $u_1 \notin H^s(\mathbb{R}^{n_1})$, then $u_1 \otimes \cdots \otimes u_N \notin H^t(\mathbb{R}^{n_1+\cdots+n_N})$ for any t > s.

Let $n_1, n_2 \in \mathbb{N}$, and let $E_1 \subset \mathbb{R}^{n_1}$ and $E_2 \subset \mathbb{R}^{n_2}$ be Borel. Then

$$\begin{split} & s_{-} \leq s_{E_{1} \times E_{2}} \leq s_{+}, \quad \text{where} \\ & s_{-} := \min\left\{s_{E_{1}}, \ s_{E_{2}}, \ s_{E_{1}} + s_{E_{2}}\right\}, \\ & s_{+} := \begin{cases} \min\left\{s_{E_{1}}, \ s_{E_{2}}\right\} & \text{if } m(E_{1} \times E_{2}) = 0, \\ \min\left\{s_{E_{1}} + \frac{n_{2}}{2}, \ s_{E_{2}} + \frac{n_{1}}{2}\right\} & \text{if } m(E_{1} \times E_{2}) > 0. \end{cases} \end{split}$$

 $s_-
eq s_+$ is needed because s_{E_1}, s_{E_2} do not determine $s_{E_1 \times E_2}$: $\exists E_j \subset \mathbb{R}$ such that $s_{E_1} = s_{E_2} = s_{E_3} = s_{E_1 \times E_2} = -1/2 \neq s_{E_3 \times E_3} = -1.$ Almost all of our results generalise to 1 .

$$\begin{split} H^{s,p} &:= \{ u \in \mathcal{S}^*(\mathbb{R}^n) : \mathcal{J}_s u \in L^p(\mathbb{R}^n) \}, \\ \| u \|_{H^{s,p}} &:= \| \mathcal{J}_s u \|_{L^p(\mathbb{R}^n)}, \\ \mathcal{J}_s u(\mathbf{x}) &:= \mathcal{F}^{-1} \big((1 + |\boldsymbol{\xi}|^2)^{s/2} \hat{u}(\boldsymbol{\xi}) \big) (\mathbf{x}) = (J_s * u)(\mathbf{x}), \end{split}$$

$$J_{s}(\mathbf{x}) = \begin{cases} \frac{2^{1+s/2}}{(2\pi)^{n/2}\Gamma(-s/2)} |\mathbf{x}|^{-\frac{n+s}{2}} K_{\frac{n+s}{2}}(|\mathbf{x}|), & s \neq 0, 2, 4, \dots, \\ (1-\Delta)^{s/2} \delta_{0}, & s = 0, 2, 4, \dots \end{cases}$$

 $\begin{array}{l} \text{Special case of Triebel-Lizorkin } H^{s,p} = F^s_{p,2}; \\ H^{s,2} = H^s, H^{0,p} = L^p. \\ \mathcal{J}_s \mathcal{J}_t = \mathcal{J}_{s+t}; \quad \mathcal{J}_t : H^{s,p} \xrightarrow{\sim} H^{s-t,p}. \end{array}$

(s, p)-nullity

We say that $E \subset \mathbb{R}^n$ is (s, p)-null if $H_F^{s, p} = \{0\}$ for any closed $F \subset E$. Nullity threshold function: $s_E(r) = \inf\{s, E \text{ is } (s, 1/r)$ -null}.

The graph of $s_E(r)$ lies in the parallelogram $n(r-1) \leq s_E(r) \leq nr$.

 s_E is Lipschitz with $0 \leq s'_E(r) \leq n$ a.e. $r \in (0, 1)$.

If m(E) = 0 then $s_E(r) = (n - \dim_{\mathrm{H}} E)(r - 1)$.

Using Cantor sets, we have obtained a sharp characterisation of all possible threshold-nullity behaviours when m(K) = 0: if $E \subset \mathbb{R}^n$, m(E) = 0, then there exists a Cantor dust $\mathcal{C} \subset \mathbb{R}^n$ s.t. $\forall (s, p) E$ is (s, p)-null iff \mathcal{C} is.

Not clear which s_E are actually achieved for m(E) > 0(except $s_E(r) = nr$).

Part IV

Zero trace spaces

Comparison of the "zero trace" subspaces of \mathbb{R}^n

Recall definitions: for open $\Gamma \subset \mathbb{R}^n$

$$\begin{split} \widetilde{H}^{s}(\Gamma) &:= \overline{\mathcal{D}(\Gamma)}^{H^{s}} & \widetilde{H}^{s}(\Gamma) \subset H^{s}_{\overline{\Gamma}} \subset H^{s} \\ H^{s}_{\overline{\Gamma}} &:= \{ u \in H^{s} : \operatorname{supp} u \subset \overline{\Gamma} \} & \text{When is } \widetilde{H}^{s}(\Gamma) = H^{s}_{\overline{\Gamma}} \end{split}$$

Classical result (e.g. McLean)

Let $\Gamma \subset \mathbb{R}^n$ be C^0 . Then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}}$.

For smooth $(C^{k,1})$ domains and s > 1/2, $s - 1/2 \notin \mathbb{N}$, these spaces are kernel of trace operators. Intuition fails for negative s: if s < -n/2, $\delta_{\mathbf{x}_0} \in \widetilde{H}^s(\Gamma)$ for any $\mathbf{x}_0 \in \partial \Gamma$.

Theorem (negative example)

For every $n \in \mathbb{N}$, there exists a bounded open set $\Gamma \subset \mathbb{R}^n$ such that,

$$\begin{array}{ll} \forall s \geq -n/2 & \widetilde{H}^s(\Gamma) \subsetneqq H^s_{\overline{\Gamma}}, \\ \forall s > 0 & \widetilde{H}^s(\Gamma) \subsetneq \{u \in H^s : u = 0 \text{ a.e. in } \Gamma^c\} \subsetneq H^s_{\overline{\Gamma}}. \end{array}$$

Set Γ constructed using Cantor and Polking sets.

Zero trace spaces and $\operatorname{int}(\overline{\Gamma})\setminus\Gamma$

We consider two classes of open sets. First, open Γ that is a "nice domain minus small holes".

Lemma

If $\operatorname{int}(\overline{\Gamma})$ is C^0 then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}} \iff \operatorname{int}(\overline{\Gamma}) \setminus \Gamma$ is (-s)-null. (Holds more generally for Γ s.t. $\widetilde{H}^s(\operatorname{int}(\overline{\Gamma})) = H^s_{\overline{\Gamma}}$.)

Suppose that $\Gamma \subsetneqq \operatorname{int}(\overline{\Gamma})$ and that $\operatorname{int}(\overline{\Gamma})$ is C^0 . Then $\exists \widetilde{s}_{\Gamma} \in [-n/2, n/2] \text{ s.t. } \quad \widetilde{H}^{s_-}(\Gamma) = H^{s_-}_{\overline{\Gamma}}, \quad \widetilde{H}^{s_+}(\Gamma) \subsetneqq H^{s_+}_{\overline{\Gamma}} \quad \forall s_- < \widetilde{s}_{\Gamma} < s_+.$

If $m(\operatorname{int}(\overline{\Gamma}) \setminus \Gamma) = 0$ then $\widetilde{s}_{\Gamma} = \frac{n - \dim_{\mathrm{H}}(\operatorname{int}(\overline{\Gamma}) \setminus \Gamma)}{2}$.

If $\operatorname{int}(\overline{\Gamma}) \setminus \Gamma$ is a Lipschitz manifold, then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}} \iff s \le 1/2$. E.g. $\Gamma \ a \ C^0$ set minus a slit. Second, we want to understand whether $\widetilde{H}^{s}(\Gamma) = H^{s}_{\overline{\Gamma}}$ for Γ "regular except at a few points", e.g. prefractal.

Theorem

Fix $|s| \leq 1$ if $n \geq 2$, $|s| \leq 1/2$ if n = 1. Let open $\Gamma \subset \mathbb{R}^n$ be C^0 except at $P \subset \partial \Gamma$, where P is closed, countable, with at most finitely many limit points in every bounded subset of $\partial \Gamma$. Then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}}$.

E.g. union of disjoint C^0 open sets, whose closures intersect only in P.

Proof uses sequence of special Tartar's cutoffs (for n = 2, easier for $n \ge 3$) for s = 1, then duality and interpolation.

Examples of sets with $\widetilde{H}^{s}(\Gamma) = H^{s}_{\overline{\Gamma}}, |s| \leq 1$

Examples of non- C^0 sets for which $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}'} |s| \leq 1$:

Sierpinski triangle prefractal, (unbounded) checkerboard, double brick, inner and outer (double) curved cusps, spiral, Fraenkel's "rooms and passages".

Part V

Relations between different spaces

When is $H_0^s(\Gamma) = H^s(\Gamma)$?

What about relation between spaces with and without "zero trace"? Recall: $H_0^s(\Gamma) := \overline{\mathcal{D}(\Gamma)}^{H^s(\Gamma)} \subset H^s(\Gamma) := \{u|_{\Gamma} : u \in H^s\} \subset \mathcal{D}^*(\Gamma).$

Lemma

 $\textit{For open } \Gamma \subset \mathbb{R}^n, \, s \in \mathbb{R}, \ \ H^s_0(\Gamma) = H^s(\Gamma) \iff \widetilde{H}^{-s}(\Gamma) \cap H^{-s}_{\partial \Gamma} = \{0\}.$

Corollary

For any open $\emptyset \neq \Gamma \subsetneqq \mathbb{R}^n$, there exists $0 \le s_0(\Gamma) \le n/2$ such that

 $H^{s_-}_0(\Gamma) = H^{s_-}(\Gamma) \quad \text{and} \quad H^{s_+}_0(\Gamma) \subsetneqq H^{s_+}(\Gamma) \qquad \text{for all } s_- < s_0(\Gamma) < s_+.$

- ▶ $s_0(\Gamma) \ge -s_{\partial\Gamma}$ (nullity threshold), with equality if Γ is C^0 .
- ► $s_0(\Gamma) \ge (n \dim_{\mathrm{H}} \partial \Gamma)/2.$
- If Γ is C^0 , then $0 \le s_0(\Gamma) \le 1/2$.
- If Γ is $C^{0,\alpha}$ then $\alpha/2 \leq s_0(\Gamma) \leq 1/2$.
- If Γ is Lipschitz, then $s_0(\Gamma) = 1/2$.
- ▶ If $\Gamma = \mathbb{R}^n \setminus F$, *F* countable, $s_0(\Gamma) = n/2$.

All bounds on s_0 can be achieved. Improvement on Caetano 2000.

Relations between "global" and "local" spaces

The relations between subspaces of $\mathcal{D}^*(\mathbb{R}^n)$ and $\mathcal{D}^*(\Gamma)$ are described by the restriction operator $|_{\Gamma} : \mathcal{D}^*(\mathbb{R}^n) \to \mathcal{D}^*(\Gamma)$.

- ▶ $|_{\Gamma}: H^{s}(\mathbb{R}^{n}) \rightarrow H^{s}(\Gamma)$ is continuous with norm one;
- $\blacktriangleright |_{\Gamma} : (H^s_{\Gamma^c})^{\perp} \to H^s(\Gamma) \text{ is a unitary isomorphism } (H^s_{\Gamma^c} = \ker |_{\Gamma});$
- ▶ For $s \ge 0$, $|_{\Gamma} : \tilde{H}^s(\Gamma) \to H^s_0(\Gamma)$ is injective and has dense image; if $s \in \mathbb{N}_0$ then it is isomorphism;

▶ If Γ is finite union of disjoint Lipschitz open sets, $\partial\Gamma$ is bounded, $s > -1/2, s + 1/2 \notin \mathbb{N}$, then $|_{\Gamma} : \widetilde{H}^{s}(\Gamma) \to H_{0}^{s}(\Gamma)$ is isomorphism;

Open question: for which s is $|_{\Gamma} : \widetilde{H}^{s}(\Gamma) \to H_{0}^{s}(\Gamma)$ isomorphism?

- ▶ If Γ is bounded, or Γ^c is bounded with non-empty interior, then $|_{\Gamma} : \widetilde{H}^s(\Gamma) \to H^s_0(\Gamma)$ is a unitary isomorphism $\iff s \in \mathbb{N}_0$ (equivalent to say that H^s norm is local only for $s \in \mathbb{N}_0$);
- ▶ If Γ^c is s-null, then $|_{\Gamma} : \widetilde{H}^s(\Gamma) \to H^s_0(\Gamma)$ is a unitary isomorphism.

(If one defines $H_{00}^{s}(\Gamma)$, $s \geq 0$, from interpolation of $H_{0}^{k}(\Gamma)$, $k \in \mathbb{N}_{0}$, then for sufficiently smooth Γ (e.g. Lipschitz) $H_{00}^{s}(\Gamma) = \widetilde{H}^{s}(\Gamma)|_{\Gamma}$.) It is well-known that, for $s_0, s_1 \in \mathbb{R}$, 0 < heta < 1, and $s = s_0(1- heta) + s_1 heta$,

 $(H^{s_0}(\mathbb{R}^n), H^{s_1}(\mathbb{R}^n))_{\theta} = H^s(\mathbb{R}^n)$ with equal norms.

In McLean's book Strongly Elliptic Systems and Boundary Integral Equations it is claimed (in Theorem B.8) that the same holds for $H^{s}(\Gamma) := \{u|_{\Gamma} : u \in H^{s}(\mathbb{R}^{n})\}$, for arbitrary open sets $\Gamma \subset \mathbb{R}^{n}$.

THIS RESULT IS FALSE!

The interpolation result only holds for Γ sufficiently smooth (e.g. Lipschitz) and even then, equality of norms does not hold in general.

Simple counterexamples:

for a cusp domain in \mathbb{R}^2 , $\{H^s(\Gamma), 0 \le s \le 2\}$ is not interpolation scale; for open interval in \mathbb{R} , no normalisation of $(\widetilde{H}^0(\Gamma), \widetilde{H}^1(\Gamma))_{1/2}$ can give norm equal to $\widetilde{H}^{1/2}(\Gamma)$.

Spaces on nested sets and FEM on fractals

Proposition

Consider a sequence of nested open sets $\{\Gamma_j\}_{j\in\mathbb{N}}, \Gamma_j \subset \Gamma_{j+1}$, and a collection of closed sets $\{F_j\}_{j\in\mathfrak{J}}$. Then

$$\widetilde{H}^{s}\big(\bigcup_{j\in\mathbb{N}}\Gamma_{j}\big)=\overline{\bigcup_{j\in\mathbb{N}}\widetilde{H}^{s}(\Gamma_{j})},\qquad H^{s}_{\bigcap_{j\in\mathfrak{J}}F_{j}}=\bigcap_{j\in\mathfrak{J}}H^{s}_{F_{j}}$$

Together with Céa's Lemma, this allows to prove convergence of Galerkin methods on sets with fractal boundaries.

Example: Laplace–Dirichlet problem on Γ =Koch snowflake (open).

- $\Gamma_j = \text{Lipschitz prefractal approximation of level } j$,
- ► $\{V_{j,k}\}_{j,k\in\mathbb{N}}$ nested FE spaces, $V_{j,k} \subset V_{j+1,k}$, $\widetilde{H}^1(\Gamma_j) = \overline{\bigcup_{k\in\mathbb{N}} V_{j,k}}$,
- $\blacktriangleright f \in H^{-1}(\mathbb{R}^2) \text{,}$
- ▶ $u_{jj} \in V_{j,j}$ solution of the FEM $\int_{\Gamma_j} \nabla u_{jj} \cdot \nabla v = \langle f, v \rangle \ \forall v \in V_{j,j}$,

Then u_{jj} converges in H^1 norm to $u \in \widetilde{H}^1(\Gamma)$, solution of $\int_{\Gamma} \nabla u \cdot \nabla v \, d\mathbf{x} = \langle f, v \rangle \, \forall v \in \widetilde{H}^1(\Gamma).$

Summary

We have studied (classical, fractional, Bessel-potential, Hilbert) Sobolev spaces on general open and closed subset of \mathbb{R}^n .

In particular we contributed to the questions:

- ▶ What are the duals of these spaces?
- ▶ When does $E \subset \mathbb{R}^n$ support non-zero $u \in H^s$?
- When is $\widetilde{H}^{s}(\Gamma) = H^{s}_{\overline{\Gamma}}$?
- When is $H^{s}(\Gamma) = H_{0}^{s}(\Gamma)$?
- ▶ For which spaces is $|_{\Gamma}$ an isomorphism?

Some of these are relevant for screen scattering problems and Galerkin (FEM/BEM) methods on fractals.

Plenty of questions are still open!

Bibliography

- SNCW, DPH, Acoustic scattering by fractal screens: mathematical formulations and wavenumber- explicit continuity and coercivity estimates. University of Reading preprint MPS-2013-17.
- (2) SNCW, DPH, AM, Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples, Mathematika, 61 (2015), pp. 414–443.
- (3) DPH, AM, On the maximal Sobolev regularity of distributions supported by subsets of Euclidean space, arXiv:1507.02698 (2015).
- (4) DPH, AM, A note on properties of the restriction operator on Sobolev spaces, arXiv:1607.01741 (2016).
- (5) SNCW, DPH, AM, Sobolev spaces on non-Lipschitz subsets of ℝⁿ with application to boundary integral equations on fractal screens, arXiv:1607.01994 (2016).
- (6) SNCW, DPH, Acoustic scattering by fractal screens. In preparation.