
AUGSBURG, SCATTERING BY RANDOM HETEROGENEOUS MEDIA, 13–15 SEPTEMBER 2021

Space–time DG
for the wave equation:

quasi-Trefftz and sparse versions

Andrea Moiola
https://euler.unipv.it/moiola/

Joint work with:
L.M. Imbert-Gérard (Arizona)
P. Stocker (Göttingen)

P. Bansal (Lugano), C. Schwab (Zürich)
I. Perugia (Vienna)

1

https://euler.unipv.it/moiola/


Initial–boundary value problem

First-order initial–boundary value problem (Dirichlet): find (v,σ) s.t.



∇v + ∂tσ = 0 in Q = Ω× (0,T ) ⊂ Rn+1, n ∈ N,

∇ · σ +
1
c2 ∂tv = f in Q,

v(·,0) = v0, σ(·,0) = σ0 on Ω,

v(x, ·) = g on ∂Ω× (0,T ).

From −∆u + c−2∂2
t u = f , choose v = ∂tu and σ = −∇u.

Velocity c = c(x) piecewise smooth. Ω ⊂ Rn Lipschitz bounded.

Extensions:

I Neumann σ · n = g & Robin ϑ
c v−σ · n = g BCs

I more general coeff.’s −∇ · (ρ−1∇u) + G ∂2
t u = 0

I Maxwell equations
I elasticity
I 1st order hyperbolic systems. . .
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Space–time mesh and assumptions

Introduce space–time polytopic mesh Th on Q.
Assume: c = c(x) smooth in each element.

t

x0

T

Knx
K

F time
h Fspace

h

Assume: each face F = ∂K1 ∩ ∂K2

with normal (nx
F ,n

t
F ) is either

I space-like: c|nx
F | < nt

F , F ⊂ Fspace
h ,

or
I time-like: nt

F = 0, F ⊂ F time
h .

Usual DG notation with averages {{·}},
nx -normal space jumps [[·]]N, nt -time jumps [[·]]t .
Lateral boundary F∂h := ∂Ω× [0,T ].
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DG elemental equation and numerical fluxes

Multiply PDEs with test field (w, τ ) & integrate by parts on K ∈ Th :

−
∫

K

(
v
(
∇ · τ + c−2∂tw

)
+ σ ·

(
∇w + ∂tτ

))
dV

+

∫
∂K

(
(v τ + σ w) · nx

K +
(
σ · τ + c−2v w

)
nt

K

)
dS =

∫
K

fw dV .

Approximate skeleton traces of (v,σ) with numerical fluxes (v̂h , σ̂h),
defined as α, β ∈ L∞(F time

h ∪ F∂h )

v̂h :=


v−h
v0

{{vh}}+ β[[σh ]]N

g

σ̂h :=


σ−h on Fspace

h ∪ FT
h

σ0 on F0
h

{{σh}}+ α[[vh ]]N on F time
h

σh − α(v − g)nx
Ω on F∂h

“upwind in time, elliptic-DG in space”.
α = β = 0→ KRETZSCHMAR–S.–T.–W., αβ ≥ 1

4 → MONK–RICHTER.
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Space–time DG formulation

Substitute the fluxes in the elemental equation,
choose discrete space Vp(Th), sum over K → write xt-DG as:

Seek (vh ,σh) ∈ Vp(Th) s.t., ∀(w, τ ) ∈ Vp(Th),

A(vh ,σh ;w, τ ) = `(w, τ ) where

A(vh ,σh ;w, τ ) :=−
∑

K∈Th

∫
K

(
vh

(
∇ · τ + c−2∂tw

)
+ σh ·

(
∇w + ∂tτ

))
dV

+

∫
Fspace

h

(v−h [[w]]t

c2 + σ−h · [[τ ]]t + v−h [[τ ]]N + σ−h · [[w]]N
)
dS

+

∫
F time

h

(
{{vh}}[[τ ]]N + {{σh}} · [[w]]N + α[[vh ]]N · [[w]]N + β[[σh ]]N[[τ ]]N

)
dS

+

∫
Ω×{T}

(c−2vhw + σh · τ )dS +

∫
F∂

h

(
σh · nΩ + αvh

)
w dS,

`(w, τ ) :=
∫

Q
fw dV +

∫
Ω×{0}

(c−2v0w + σ0 · τ )dS +

∫
F∂

h

g(αw − τ · nΩ)dS.

This is an “ultra-weak” variational formulation (UWVF).
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Coercivity in DG semi-norm

Key property, from integration by parts:

A(w, τ ; w, τ ) ≥ |||(w, τ )|||2DG

where

|||(w, τ )|||2DG :=
1
2

∥∥∥∥(1− γ
nt

F

)1/2
c−1[[w]]t

∥∥∥∥2

L2(Fspace
h )

+
1
2

∥∥∥∥(1− γ
nt

F

)1/2
[[τ ]]t

∥∥∥∥2

L2(Fspace
h )n

+
1
2

∥∥∥c−1w
∥∥∥2

L2(F0
h∪F

T
h )

+
1
2

∥∥∥τ∥∥∥2

L2(F0
h∪F

T
h )n

+
∥∥∥α1/2[[w]]N

∥∥∥2

L2(F time
h )n

+
∥∥∥β1/2[[τ ]]N

∥∥∥2

L2(F time
h )

+
∥∥∥α1/2w

∥∥∥2

L2(F∂
h )

γ :=
‖c‖C0(F)

|nx
F |

nt
F

∈ [0,1) ∼ distance between space-like face F & char. cone.

In general, |||(w, τ )|||DG is only a semi-norm.
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Special case: space–time Trefftz method

Assume c is constant in K ⊂ Rn+1.
Consider homogeneous wave eq. −∆u + c−2∂2

t u = 0 in K .

Can choose Trefftz space of polynomials of deg. ≤ p on element K :

Up(K) :=
{
u ∈ Pp(K), −∆u + c−2∂2

t u = 0
}
,

Wp(K) :=
{

(v,σ) = (∂tu,−∇u), u ∈ Up+1(K)
}
.

I Basis functions easily constructed, e.g. bj,`(x, t) = (dj,` · x− ct)j.

I Taylor Tp+1[u] ∈ Up(K)⇒ orders of approximation in h are for free.

Much better accuracy for fewer DOFs:
dim

(
Up(K)

)
= Op→∞(pn) � dim

(
Pp(K)

)
= Op→∞(pn+1).

I With Trefftz test fields, volume terms in xt-DG bilinear form vanish:
quadrature on n-dimensional faces only.

I ||| · |||DG is a norm: stability and error analysis. [M., PERUGIA 2018]
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Global, implicit and explicit schemes

1 xt-DG formulation is global in space–time domain Q:
large linear system! Might be good for adaptivity and DD.

2 If mesh is partitioned in time-slabs
Ω× (tj−1, tj), matrix is block lower-triangular:
for each time-slab a system can be solved
sequentially: implicit method.

t

x
S1

S2

S3

3 If mesh is suitably chosen, DG solution can be
computed with a sequence of local systems:
explicit method, allows parallelism!

“Tent pitching” method of ÜNGÖR–SHEFFER,

t

x
MONK–RICHTER, GOPALAKRISHNAN–MONK–SEPÚLVEDA, . . .

Trefftz requires quadrature on faces only: easier tent-pitching.

Versions 1–2–3 are algebraically equivalent (on the same mesh).
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Tent-pitched elements
Tent-pitched elements/patches obtained from regular space meshes
in 2+1D give parallelepipeds or octahedra+tetrahedra:

2
3

1 1
2 2

3 3 3
1 1 1

2 2 2
33

2
3

1 1 1 1
2 2 2

3 3 3 3
1 1 1

2 2 2
3 3

t

1 1
2

3

2
1

2
1

23
12

23
2

1
2

2
3

1

32
2

3
23

1
2

2
32

21
32

1
23

12
23

2
3

2
3

t

More complicated shapes from unstructured meshes:

[from GOPALAKRISHNAN, SCHÖBERL, WINTERSTEIGER 2016]

Simplices around a tent pole can be merged in macroelement.

Trefftz requires quadrature on faces only:
only the shape of space elements matters.
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Part I

Quasi-Trefftz xt-DG
Imbert-Gérard, Moiola, Stocker



Trefftz doesn’t like smooth coefficients
Homogeneous wave equation −∆u + c−2∂2

t u = 0, c =wavespeed.

Trefftz-DG is clear for piecewise-constant c:
basis functions are polynomial local solution of wave eq.

How to extend to piecewise-smooth c = c(x)?
No analytical solutions are available.

Helmholtz equation: ∆u + k2u = 0.
I Constant wavenumber k ∈ R→ plane waves bJ (x) = eikdj·x, |dj|=1.
I Smooth wavenumber k = k(x)
IMBERT-GÉRARD, ≈2013: generalised plane waves bJ (x) = ePj(x) s.t.

Di(∆bJ + k2bJ )(xK) = 0 ∀|i| < q (xK = centre of element K).

Order-q Taylor polynomial vanishes in a given point.
+ Provides high-order h-convergence for DG.
– Basis construction, implementation, analysis are complicated.

Our goal: extend this idea to wave equation, without pain!
11
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Quasi-Trefftz space
Define wave operator �Gu := ∆u −G∂2

t u, G(x) = c−2 smooth.
Fix (xK , tK) ∈ K ⊂ Rn+1. Define quasi-Trefftz (polynomial) space

QUp(K) :=
{
u ∈ Pp(K) : Di�Gu(xK , tK) = 0, ∀|i| ≤ p − 2

}
QWp(K) :=

{
(∂tu,−∇u),u ∈ QUp+1(K)

}
Theorem: approximation properties
If u ∈ Cp+1(K), �Gu = 0, 0 ≤ j ≤ p, K star-shaped wrt (xK , tK)

inf
P∈QUp(K)

‖u − P‖C j(K) ≤ hp+1−j np+1−j

(p + 1− j)!
|u|C p+1(K)

Main idea: Taylor polynomial Tp+1
(xK ,tK)[u] ∈ QUp(K).

In condition “|i| ≤ q”, why q = p − 2?
If q < p − 2, space is too big, larger than Trefftz for constant G.
If q > p − 2, space loses approximation properties.
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Generalised Trefftz basis

The local discrete space is clear.
How to construct a basis for it?

Choose two x-only polynomial basis:
{b̂J}J=1,...,( p+n

n ) for Pp(Rn), {b̃J}J=1,...,
(

p−1+n
n

) for Pp−1(Rn).

Construct a basis for QUp(K) “evolving” b̂J and b̃J in time:

{
bJ ∈ QUp(K) :

bJ (·, tK) = b̂J , ∂tbJ (·, tK) = 0, for J ≤ ( p+n
n )

bJ (·, tK) = 0, ∂tbJ (·, tK) = b̃J−( p+n
n )

, for ( p+n
n ) < J

}

for J = 1, . . . , ( p+n
n ) +

(
p−1+n

n

)
.

We prove that this defines a basis and show how to compute {bJ}.
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Computation of basis coefficients
Fix n = 1 (for simplicity). Denote G(x) =

∑∞
m=0 gm(x − xK)m . g0 > 0.

Monomial expansion of basis element:

bJ (x , t) =
∑

ix+it≤p

aix ,it (x − xK)ix (t − tK)it ,

Cauchy conditions (bJ (·, tK), ∂tbJ (·, tK)) determine aix ,0, aix ,1.

To be in QUp, coeff.s have to satisfy: for ix + it ≤ p − 2

∂ ix
x ∂

it
t �GbJ (xK , tK) = (ix + 2)! it ! aix +2,it −

ix∑
jx =0

ix ! (it + 2)! gix−jx ajx ,it+2
!
= 0

Linear system for coeff.s aix ,it .

Compute aix ,it+2

from coefficients :

first loop across diagonals↗,
then along diagonals↖.

p

aix+2,it

aix ,it+2

ix

it

Cauchy
data
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Basis construction: algorithm — n = 1

Data: (gm)m∈N0 , xK , tK , p.

Choose favourite polynomial bases {b̂J}, {b̃J} in x,
→ coeff’s akx ,0, akx ,1.

For each J (i.e. for each basis function), construct bJ as follows:
for ` = 2 to p (loop across diagonals↗) do

for it = 0 to `− 2 (loop along diagonals↖) do
set ix = `− it − 2 and compute

aix ,it+2 =
(ix + 2)(ix + 1)

(it + 2)(it + 1)g0
aix+2,it −

ix−1∑
jx=0

gix−jx

g0
ajx ,it+2

end
end
bJ (x , t) =

∑
0<kx+kt≤p

akx ,kt (x − xK)kx (t − tK)kt

15



Basis construction: algorithm — n > 1

In higher space dimensions n > 1,
with G(x) =

∑
ix

(x− xK)ixgix ,
the algorithm is the same
with a further inner loop:

kx1

kx2

kt

0

ix1

ix1
+ 2

`+ 2

it

it + 2

`+ 2

for ` = 2 to p (loop across {|ix|+ it = `− 2} hyperplanes,↗) do
for it = 0 to `− 2 (loop across constant-t hyperplanes ↑) do

for ix with |ix| = `− it − 2 do

aix,it+2 =

n∑
l=1

(ixl + 2)(ixl + 1)

(it + 2)(it + 1)g0
aix+2el ,it −

∑
jx<ix

gix−jx

g0
ajx,it+2

end
end

end
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Quasi-Trefftz xt-DG

Use
∏

K∈Th
QWp(K) with xt-DG for IBVP with piecewise-smooth c.

Use idea of [IMBERT-GÈRARD, MONK 2017]: add volume penalty term∑
K∈Th

∫
K
µ1(∇ · σ + c−2∂tv)(∇ · τ + c−2∂tw) + µ2(∂tσ +∇v) · (∂tτ +∇w).

I Coercivity in DG norm (with volume terms)
I Well-posedness
I Quasi-optimality
I Error bounds (high-order h-convergence, optimal rates, explicit)

|||(v,σ)− (vh ,σh)|||DG ≤ C sup
K∈Th

hp+1/2
K,c |u|Cp+2

c (K)
.

Same DOF saving as for Helmholtz or constant c (O(pn) vs O(pn+1)).

17



More general IBVPs
Everything extends to 2 piecewise-smooth material parameters ρ,G:

∇v + ρ∂tσ = 0, ∇ · σ + G∂tv = 0,

Wavespeed is c = (ρG)−1/2. Second-order version:

−∇ ·
(1
ρ
∇u
)

+ G ∂2
t u = 0 (v = ∂tu, σ = −1

ρ
∇u).

Basis coefficient algorithm needs some more terms.

If the 1st-order IBVP does not come from a 2nd-order one, we use

QTp(K) :=

(w, τ ) ∈ Pp(K)n+1
∣∣∣ Di(∇w + ρ∂tτ )(xK , tK) = 0

Di(∇ · τ + G∂tw)(xK , tK) = 0
∀|i| ≤ p − 1


This space is only slightly larger (≈ n+1

2 ×, still Op→∞(pn) DOFs)
and allows the same analysis.
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Numerics

I Implemented in NGSolve.
I Both Cartesian and tent-pitched meshes.
I Volume penalty term not needed in computations.
I DG flux coefficients α−1 = β = c, but even α = β = 0 works.
I Good conditioning.

I Monomial bases {b̂J}, {b̃J} outperform Legendre/Chebyshev.
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Numerics 1: convergence

Compare quasi-Trefftz, full polynomials, Trefftz (c|K = c(xK)) spaces

QWp(Th) :=
{

(w, τ ) ∈ H(Th) : w|K = ∂tu, τ |K = −∇u, u ∈ QUp+1(K)
}

Yp(Th) :=
{

(w, τ ) ∈ H(Th) : w|K = ∂tu, τ |K = −∇u, u ∈ Pp+1(K)
}

Wp(Th) :=
{

(w, τ ) ∈ H(Th) : w|K = ∂tu, τ |K = −∇u, u ∈ Pp+1(K),

−∆u + c−2(xK)∂2
t u = 0 in K

}
.

DG-norm error: optimal order in h, exponential in p.
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10−6

10−5

10−4

10−3

10−2

10−1

100

p

|||
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h
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n = 2, G = (x1 + x2 + 1)−1, u = (x1 + x2 + 1)2.5e−
√

7.5t , Q = (0,1)3.
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Numerics 2: DOF & computational time

Quasi-Trefftz wins > 1 order of magnitude against full polynomials:
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n = 2, G = x1 + x2 + 1, u = Ai(−x1 − x2 − 1) cos(

√
2t), Q = (0,1)3.
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Numerics 3: tent pitching

(n = 2) Final-time error, computational time (sequential), speedup:
(#dof−1/3 ∼ h)
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Numerics 4: energy conservation

Plane wave through medium with G = 1 + x2 in (0,1)3:

E = 1
2

∫
Ω

(c−2v2 + |σ|2) dS

DG scheme is (provably) dissipative.
For p = 3, h = 2−7, only 0.076% loss.

0 0.2 0.4 0.6 0.8 1

6

8

10

time(s)

en
er
gy

h = 2−5

h = 2−6

h = 2−7
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Part 1: summary

Quasi-Trefftz DG:
I Extend Trefftz scheme to piecewise-smooth coefficients.

Basis are PDE solution “up to given order in h”.
I Simple construction of basis functions:

same “Cauchy data” at element centre as for Trefftz.
I Use in xt-DG , stability and error analysis.

High orders of convergence in h,
much fewer DOFs than standard polynomial spaces.

[IMBERT-GÉRARD, M., STOCKER, arXiv:2011.04617, 2020]

24
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Part II

xt-DG with point singularities
Bansal, Moiola, Perugia, Schwab



Wave solutions on polygons are singular

Fix n = 2.
Piecewise-constant c, on polygonal partition of Ω.
Denote by {ci}i=1,...,M the vertices of this partition.

Even for smooth initial conditions & source term, homogeneous BCs,
the IBVP solution in polygon×(0,T ) lives in corner-weigthed spaces:

(v,σ) =
(
∂tu,−∇u

)
∈ Ckt−1([0,T ]; Hkx+1,2

δ (Ω)
)
× Ckt

(
[0,T ]; Hkx ,1

δ (Ω)
2)

‖u‖2Hk,`
δ

(Ω)
:= ‖u‖2H`−1(Ω) +

∑k
m=`

∫
Ω

(
∏M

i=1 |x− ci |δi
∑

α∈N2
0

α1+α2=m
|Dαu|2)

KOKOTOV, PLAMENEVSKĬI 1999–2004 → MÜLLER, SCHWAB 2015–18.

– This means v(·, t) /∈ H2(Ω),σ(·, t) /∈ H1(Ω)
2.

+ Diffraction singularities are confined (in space) to the corners ci
and have smooth time-dependence.

→ Suggests local mesh refinement in space only.
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Locally-refined product meshes

Locally-refined mesh in space × quasi-uniform mesh in time:

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

×

0

t1

t2

T
Space-like faces are horizontal.

To avoid short time steps,
corner elements will be “tall&thin”:
→implicit method.

Can’t use Trefftz spaces as they
requires some xt-shape regularity.

Vp(Th) =
∏

K=Kx×In∈Th

(
Ppv

x,K (Kx)⊗ Ppv
t,K (In)

)
×
(
Ppσ

x,K (Kx)⊗ Ppσ
t,K (In)

)2
.

DG semi-norm is not a norm on Vp(Th):
“coercivity analysis” is not enough for well-posedness.
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Well-posedness

In general, assume that “PDEs map local discrete space into itself”:(
∇ · τ h + c−2∂twh , ∇wh + ∂tτ h

)
∈ Vp(Th) ∀(wh , τ h) ∈ Vp(Th).

Holds, e.g., for Vp(Th) with |pσ
x,K − pv

x,K | ≤ 1, pσ
t,K = pv

t,K .

This ensures that the method is well-posed:
I Assume A((vh ,σh), (wh , τ h)) = 0 ∀(wh , τ h) ∈ Vp(Th).
I 0 = A((vh ,σh), (vh ,σh)) = |||(vh ,σh)|||2DG
⇒ jump and boundary traces of (vh ,σh) vanish.

I After IBP, only volume terms are left in A((vh ,σh), (wh , τ h)):
0 = A((vh ,σh), (wh , τ h)) =

−∑K∈Th

∫
K

((
∇ · σh + c−2∂tvh

)
wh +

(
∇vh + ∂tσh

)
· τ h

)
dV

I Choose wh = ∇ · σh + c−2∂tvh and τ h = ∇vh + ∂tσh :
(vh ,σh) solves homogeneous IBVP.

I ⇒ (vh ,σh) = (0,0).
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Quasi-optimality and unconditional stability

Under the same assumption,
DG norm of error is controlled by error of L2-projection on Vp(Th):

1
2

∥∥c−1(v − vh)
∥∥

L2(Ω×{tn}) + 1
2 ‖σ − σh‖L2(Ω×{tn})2 ≤

|||(v,σ)− (vh ,σh)|||DG ≤ (3 + pσ
x,∠)|||(v,σ)− (ΠL2v,ΠL2σ)|||DG+

Here ||| · |||DG+ is a skeleton seminorm, stronger than ||| · |||DG.

It includes
∥∥α−1/2(σ −ΠL2σ) · nx

∥∥
L2(Ft ,L1(Fx))

terms on time-like faces of

corner elements, to accomodate H1,1
δ arguments.

pσ
x,∠ is the polynomial degree in x used in corner elements

(from inverse & trace estimates for H1,1
δ )

Bound controls also L2(Ω) error at discrete times.
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L2-projection & Galerkin error bounds

To obtain concrete error bound, we need approximation bounds
for the L2(K) projection on Ppx (Kx)× Ppt (tn−1, tn),
in Bochner norms, via Peetre–Tartar lemma1:

‖ϕ−ΠL2ϕ‖L2(In ;L2(Kx)) + hn |ϕ−ΠL2ϕ|H1(In ;L2(Kx))+ hKx |ϕ−ΠL2ϕ|L2(In ;H1(Kx))

. hst+1
n |ϕ|Hst+1(In ;L2(Kx)) + hsx+1

Kx
|ϕ|L2(In ;Hsx+1(Kx)) ,

and similarly for weighted spaces.

For smooth solutions + quasi-uniform meshes + uniform degree p:∥∥c−1(v − vh)
∥∥

L2(Ω×{tn}) + ‖σ − σh‖L2(Ω×{tn})2 . hp+ 1
2

1
2 -order suboptimal: hp+1 from numerics.

1A : X → Y injective, T : X → Z compact, ‖x‖X . ‖Ax‖Y +‖Tx‖Z ⇒ ‖x‖X . ‖Ax‖Y .

Here, X = Hst+1(I ; L2(Kx)) ∩ L2(I ;Hsx +1(Kx))
T
↪→ L2(K),

X
A=(ΠL2 ,∂

st+1
t ,Dsx+1

x )
−−−−−−−−−−−−−−−→ (Psx (Kx)⊗ Pst (I))× L2(K)× L2(K)sx +2
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Error bounds: singular solutions & graded meshes

I (v,σ) ∈ Ck−1
(
[0,T ]; Hk+1,2

δ (Ω)
)
× Ck

(
[0,T ]; Hk,1

δ (Ω)
2),

kx ≥ 1, kt ≥ 2,
I graded mesh T x

hx
in x (GASPOZ–MORIN), max size hx,

refinement of uniform T x
0 with #T x

hx
−#T x

0 ≤ Ch−2
x

I hx ∼ ht ∼ h
I uniform polynomial degrees p (in x&t, v&σ, K)

I numerical flux parameters α−1 = β = c hFx
hx

= c local
global

⇒
∥∥c−1(v − vh)

∥∥
L2(Ω×{tn}) + ‖σ − σh‖L2(Ω×{tn})2 . hmin{k− 1

2 ,p+ 1
2}

c=3

c=3 c=1

c=1

Again, numerics on L-shape give hp+1 rates.
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Sparse xt-DG

Want to use a sparse grid approach in space–time.

Take initial mesh T0,0 of size h0,x , h0,t .
For (lx , lt) ∈ N2

0,
denote Tlx ,lt a refinement of T0,0 with

hlx ,x = 2−lx h0,x , hlt ,t = 2−lt h0,t ,

wlx ,lt = corresponding DG solution
(same polynomial space ∀ element).

Combination formula:

ŵL := +

L∑
l=0

wl,L−l −
L−1∑
l=0

wl,L−1−l

lx

lt

x

t

0 1 2 3

T00 T10

T01 T11

T33

Combines fine-in-t–coarse-in-x & fine-in-x–coarse-in-t discretizations.
Never use fine-in-t–fine-in-x.
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Sparse vs full xt-DG: accuracy and #DOFs

We observe comparable accuracy for full-tensor wL,L and sparse ŵL :

‖(v,σ)−wL,L‖L2(Ω×{T}) ≈ ‖(v,σ)− ŵL‖L2(Ω×{T}) .

Consistent with sparse grid theory, which we can’t apply here.

So why is it convenient? Same accuracy but cheaper!

#DOFsfull = O(p323L) = O(p3h−3L
L ), (h0,x = h0,t)

#DOFssparse = O(p322L) = O(p3h−2L
L ).
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← p = 2

Singular solution on L-shape, mesh locally refined in x.
→ #DOFs is not where sparse scheme wins. . .
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Sparse vs full xt-DG: complexity

Not only #DOFs differ but also sizes & numbers of linear systems.

Full-tensor wL,L requires:

O(2L)× solves of size O(22L)

Sparse ŵL requires:

O(1)× solves of size O(22L)

O(2)× solves of size O(22(L−1))
...

O(2L)× solves of size O(1)

Total complexity is the same as
single elliptic solve in Ω(⊂ R2) × logarithmic terms.

Includes CFL-violating solves:
requires unconditionally stable formulation.
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Part 2: summary

I Unconditionally stable xt-DG formulation,
discrete functions are tensor-product polynomials.

I Well-posedness and error control
also for solutions with point singularities.

I hp+ 1
2 convergence rates

for smooth solutions and quasi-uniform meshes,
for singular solutions and refined meshes.

I Sparse version: same accuracy, fewer DOFs, lower complexity.

Main future work: sparse xt-DG error analysis.

[BANSAL, M., PERUGIA, SCHWAB, IMA JNA, 2021]

Thank you!
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Quasi-optimality
In non-Trefftz case, assume(

∇ · τ h + c−2∂twh , ∇wh + ∂tτ h

)
∈ Vp(Th) ∀(wh , τ h) ∈ Vp(Th);

Then

|(ΠL2v,ΠL2σ)− (vh ,σh)|2DG(Qn)

= ADG(Qn)

(
(ΠL2v,ΠL2σ)− (vh ,σh); (ΠL2v,ΠL2σ)− (vh ,σh)

)
= ADG(Qn)

(
(ΠL2v,ΠL2σ)− (v,σ); (ΠL2v,ΠL2σ)− (vh ,σh)

)
≤ 2C∞|2 |(ΠL2v,ΠL2σ)− (v,σ)|DG(Qn)+ |(ΠL2v,ΠL2σ)− (vh ,σh)|DG(Qn) .

Last ineq. uses inverse inequality on corner elements and
cancellation of volume terms due to choice of L2 projection.

1
2

∥∥c−1(v − vh)
∥∥

L2(Ω×{tn}) + 1
2 ‖σ − σh‖L2(Ω×{tn})2

≤ |(v,σ)− (vh ,σh)|DG(Qn)

≤ |(v,σ)− (ΠL2v,ΠL2σ)|DG(Qn) + |(ΠL2v,ΠL2σ)− (vh ,σh)|DG(Qn)

≤ (1 + 2C∞|2) |(v,σ)− (ΠL2v,ΠL2σ)|DG(Qn)+ .
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