Space-time DG for the wave equation: quasi-Trefftz and sparse versions

Andrea Moiola
https://euler.unipv.it/moiola/

UNIVERSITÀ DI PAVIA
Department of Mathematics
"Felice Casorati"

Joint work with:
L.M. Imbert-Gérard (Arizona) P. Bansal (Lugano), C. Schwab (Zürich) P. Stocker (Göttingen)
I. Perugia (Vienna)

Initial-boundary value problem

First-order initial-boundary value problem (Dirichlet): find (v, σ) s.t.

$$
\begin{cases}\nabla v+\partial_{t} \sigma=\mathbf{0} & \text { in } Q=\Omega \times(0, T) \subset \mathbb{R}^{n+1}, n \in \mathbb{N}, \\ \nabla \cdot \sigma+\frac{1}{c^{2}} \partial_{t} v=f & \text { in } Q, \\ v(\cdot, 0)=v_{0}, \quad \boldsymbol{\sigma}(\cdot, 0)=\sigma_{0} & \text { on } \Omega, \\ v(\mathbf{x}, \cdot)=g & \text { on } \partial \Omega \times(0, T) .\end{cases}
$$

From $-\Delta u+c^{-2} \partial_{t}^{2} u=f$, choose $v=\partial_{t} u$ and $\sigma=-\nabla u$.
Velocity $c=c(\mathbf{x})$ piecewise smooth.
$\Omega \subset \mathbb{R}^{n}$ Lipschitz bounded.

Initial-boundary value problem

First-order initial-boundary value problem (Dirichlet): find (v, σ) s.t.

$$
\begin{cases}\nabla v+\partial_{t} \sigma=\mathbf{0} & \text { in } Q=\Omega \times(0, T) \subset \mathbb{R}^{n+1}, n \in \mathbb{N}, \\ \nabla \cdot \sigma+\frac{1}{c^{2}} \partial_{t} v=f & \text { in } Q, \\ v(\cdot, 0)=v_{0}, \quad \sigma(\cdot, 0)=\sigma_{0} & \text { on } \Omega, \\ v(\mathbf{x}, \cdot)=g & \text { on } \partial \Omega \times(0, T) .\end{cases}
$$

From $-\Delta u+c^{-2} \partial_{t}^{2} u=f$, choose $v=\partial_{t} u$ and $\sigma=-\nabla u$.
Velocity $c=c(\mathbf{x})$ piecewise smooth. $\quad \Omega \subset \mathbb{R}^{n}$ Lipschitz bounded.

- Neumann $\boldsymbol{\sigma} \cdot \mathbf{n}=g \quad \& \quad$ Robin $\frac{\vartheta}{c} \boldsymbol{v}-\boldsymbol{\sigma} \cdot \mathbf{n}=g$ BCs
- more general coeff.'s $\quad-\nabla \cdot\left(\rho^{-1} \nabla u\right)+G \partial_{t}^{2} u=0$

Extensions: Maxwell equations

- elasticity
- $1^{\text {st }}$ order hyperbolic systems...

Space-time mesh and assumptions

Introduce space-time polytopic mesh \mathcal{T}_{h} on Q.
Assume: $c=c(\mathbf{x})$ smooth in each element.

Assume: each face $F=\partial K_{1} \cap \partial K_{2}$ with normal $\left(\mathbf{n}_{F}^{x}, n_{F}^{t}\right)$ is either

- space-like: $c\left|\mathbf{n}_{F}^{\chi}\right|<n_{F}^{t}, \quad F \subset \mathcal{F}_{h}^{\text {space }}$, or
- time-like: $n_{F}^{t}=0, \quad F \subset \mathcal{F}_{h}^{\text {time }}$.

Usual DG notation with averages $\{\{\cdot\}$,
\mathbf{n}^{x}-normal space jumps $\llbracket \cdot \rrbracket_{\mathbf{N}}, \quad n^{t}$-time jumps $\llbracket \cdot \rrbracket_{t}$.
Lateral boundary $\mathcal{F}_{h}^{\partial}:=\partial \Omega \times[0, T]$.

DG elemental equation and numerical fluxes

Multiply PDEs with test field $(\boldsymbol{w}, \boldsymbol{\tau})$ \& integrate by parts on $K \in \mathcal{T}_{h}$:

$$
\begin{aligned}
& -\int_{K}\left(v\left(\nabla \cdot \boldsymbol{\tau}+c^{-2} \partial_{t} w\right)+\boldsymbol{\sigma} \cdot\left(\nabla w+\partial_{t} \boldsymbol{\tau}\right)\right) \mathrm{d} V \\
& \quad+\int_{\partial K}\left((v \boldsymbol{v}+\boldsymbol{\sigma} w) \cdot \mathbf{n}_{K}^{x}+\left(\boldsymbol{\sigma} \cdot \boldsymbol{\tau}+c^{-2} v w\right) n_{K}^{t}\right) \mathrm{d} \boldsymbol{S}=\int_{K} f w \mathrm{~d} V
\end{aligned}
$$

DG elemental equation and numerical fluxes

Multiply PDEs with test field $(\boldsymbol{w}, \boldsymbol{\tau})$ \& integrate by parts on $K \in \mathcal{T}_{h}$:

$$
\begin{aligned}
& -\int_{K}\left(v\left(\nabla \cdot \boldsymbol{\tau}+c^{-2} \partial_{t} w\right)+\boldsymbol{\sigma} \cdot\left(\nabla w+\partial_{t} \boldsymbol{\tau}\right)\right) \mathrm{d} V \\
& \quad+\int_{\partial K}\left((v \boldsymbol{\tau}+\boldsymbol{\sigma} w) \cdot \mathbf{n}_{K}^{x}+\left(\boldsymbol{\sigma} \cdot \boldsymbol{\tau}+c^{-2} v w\right) n_{K}^{t}\right) \mathrm{d} \boldsymbol{S}=\int_{K} f w \mathrm{~d} V
\end{aligned}
$$

Approximate skeleton traces of $(\boldsymbol{v}, \boldsymbol{\sigma})$ with numerical fluxes $\left(\widehat{v}_{h}, \widehat{\sigma}_{h}\right)$, defined as

$$
\alpha, \beta \in L^{\infty}\left(\mathcal{F}_{h}^{\text {time }} \cup \mathcal{F}_{h}^{\partial}\right)
$$

$$
\begin{aligned}
& \begin{cases}v_{h}^{-} \\
v_{0} & \text { on } \mathcal{F}_{h}^{-} \\
\sigma_{h}^{\text {space }} \cup \mathcal{F}_{h}^{T}\end{cases} \\
& \widehat{v}_{h}:=\left\{\begin{array}{ll}
v_{h} & \text { on } \mathcal{F}_{h}^{0} \\
\left.\left\{v_{h}\right\}\right\}+\beta \llbracket \boldsymbol{\sigma}_{h} \rrbracket_{\mathbf{N}}
\end{array} \widehat{\boldsymbol{\sigma}}_{h}:= \begin{cases}\sigma_{0} & \text { on } \mathcal{F}_{h}^{\text {time }} \\
g & \left\{\boldsymbol{\sigma}_{h}\right\}+\alpha \llbracket v_{h} \rrbracket_{\mathbf{N}} \\
\boldsymbol{\sigma}_{h}-\alpha(\boldsymbol{v}-\boldsymbol{g}) \mathbf{n}_{\Omega}^{x} & \text { on } \mathcal{F}_{h}^{a}\end{cases} \right.
\end{aligned}
$$

"upwind in time, elliptic-DG in space".
$\alpha=\beta=0 \rightarrow$ KRETZSCHMAR-S.-T.-W., $\alpha \beta \geq \frac{1}{4} \rightarrow$ MONK-RICHTER.

Space-time DG formulation

Substitute the fluxes in the elemental equation, choose discrete space $\mathbf{V}_{p}\left(\mathcal{T}_{h}\right)$, sum over $K \rightarrow$ write $\mathbf{x} t$-DG as:

$$
\begin{aligned}
& \text { Seek }\left(\nu_{h}, \boldsymbol{\sigma}_{h}\right) \in \mathbf{V}_{p}\left(\mathcal{T}_{h}\right) \text { s.t., } \quad \forall(\boldsymbol{w}, \boldsymbol{\tau}) \in \mathbf{V}_{p}\left(\mathcal{T}_{h}\right) \text {, } \\
& \mathcal{A}\left(v_{h}, \sigma_{h} ; w, \boldsymbol{\tau}\right)=\ell(w, \boldsymbol{\tau}) \quad \text { where } \\
& \mathcal{A}\left(v_{h}, \boldsymbol{\sigma}_{h} ; \boldsymbol{w}, \boldsymbol{\tau}\right):=-\sum_{K \in \mathcal{T}_{h}} \int_{K}\left(v_{h}\left(\nabla \cdot \boldsymbol{\tau}+c^{-2} \partial_{t} w\right)+\boldsymbol{\sigma}_{h} \cdot\left(\nabla w+\partial_{t} \boldsymbol{\tau}\right)\right) \mathrm{d} V \\
& +\int_{\mathcal{F}_{h}^{\text {space }}}\left(\frac{v_{h}^{-} \llbracket w \rrbracket_{t}}{c^{2}}+\sigma_{h}^{-} \cdot \llbracket \tau \rrbracket_{t}+v_{h}^{-} \llbracket \tau \rrbracket_{\mathbf{N}}+\sigma_{h}^{-} \cdot \llbracket w \rrbracket_{\mathbf{N}}\right) \mathrm{d} S
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{\Omega \times\{T\}}\left(c^{-2} v_{h} w+\sigma_{h} \cdot \boldsymbol{\tau}\right) \mathrm{d} S+\int_{\mathcal{F}_{h}^{\partial}}\left(\boldsymbol{\sigma}_{h} \cdot \mathbf{n}_{\Omega}+\alpha v_{h}\right) w \mathrm{~d} S, \\
& \ell(w, \boldsymbol{\tau}):=\int_{\Omega} f w \mathrm{~d} V+\int_{\Omega \times\{0\}}\left(c^{-2} v_{0} w+\sigma_{0} \cdot \boldsymbol{\tau}\right) \mathrm{d} \boldsymbol{S}+\int_{\mathcal{F}_{h}^{\theta}} g\left(\alpha w-\boldsymbol{\tau} \cdot \mathbf{n}_{\Omega}\right) \mathrm{d} \boldsymbol{S} .
\end{aligned}
$$

This is an "ultra-weak" variational formulation (UWVF).

Coercivity in DG semi-norm

Key property, from integration by parts:

$$
\mathcal{A}(w, \boldsymbol{\tau} ; w, \boldsymbol{\tau}) \geq\| \|(w, \boldsymbol{\tau}) \|_{\mathrm{DG}}^{2}
$$

where

$$
\begin{aligned}
\|(w, \boldsymbol{\tau})\|_{\mathrm{DG}}^{2}: & \frac{1}{2}\left\|\left(\frac{1-\gamma}{n_{F}^{t}}\right)^{1 / 2} c^{-1} \llbracket w \rrbracket_{t}\right\|_{L^{2}\left(\mathcal{F}_{h}^{\text {space }}\right)}^{2}+\frac{1}{2}\left\|\left(\frac{1-\gamma}{n_{F}^{t}}\right)^{1 / 2} \llbracket \tau \rrbracket_{t}\right\|_{L^{2}\left(\mathcal{F}_{h}^{\text {space }}\right)^{n}}^{2} \\
& +\frac{1}{2}\left\|c^{-1} w\right\|_{L^{2}\left(\mathcal{F}_{h}^{0} \cup \mathcal{F}_{h}^{T}\right)}^{2}+\frac{1}{2}\|\tau\|_{L^{2}\left(\mathcal{F}_{h}^{0} \cup \mathcal{F}_{h}^{T}\right)^{n}}^{2} \\
& +\left\|\alpha^{1 / 2} \llbracket w \rrbracket_{N}\right\|_{L^{2}\left(\mathcal{F}_{h}^{\text {ime }}\right)^{n}}^{2}+\left\|\beta^{1 / 2} \llbracket \tau \rrbracket_{N}\right\|_{L^{2}\left(\mathcal{F}_{h}^{\text {ime }}\right)}^{2}+\left\|\alpha^{1 / 2} w\right\|_{L^{2}\left(\mathcal{F}_{h}^{\partial}\right)}^{2}
\end{aligned}
$$

$\gamma:=\frac{\|c\|_{C^{0}(F)}\left|n_{F}^{x}\right|}{n_{F}^{t} \mid} \in[0,1) \sim$ distance between space-like face F \& char. cone.
In general, |||($\boldsymbol{w}, \boldsymbol{\tau})\left|\left|\left.\right|_{\text {DG }}\right.\right.$ is only a semi-norm.

Special case: space-time Trefftz method

Assume c is constant in $K \subset \mathbb{R}^{n+1}$.
Consider homogeneous wave eq. $\quad-\Delta u+c^{-2} \partial_{t}^{2} u=0$ in K.
Can choose Trefftz space of polynomials of deg. $\leq p$ on element K :

$$
\begin{aligned}
\mathbb{U}^{p}(K) & :=\left\{u \in \mathbb{P}^{p}(K),-\Delta u+c^{-2} \partial_{t}^{2} u=0\right\}, \\
\mathbb{W}^{p}(K) & :=\left\{(v, \sigma)=\left(\partial_{t} u,-\nabla u\right), u \in \mathbb{U}^{p+1}(K)\right\} .
\end{aligned}
$$

Special case: space-time Trefftz method

Assume c is constant in $K \subset \mathbb{R}^{n+1}$.
Consider homogeneous wave eq. $-\Delta u+c^{-2} \partial_{t}^{2} u=0$ in K.
Can choose Trefftz space of polynomials of deg. $\leq p$ on element K :

$$
\begin{aligned}
\mathbb{U}^{p}(K) & :=\left\{u \in \mathbb{P}^{p}(K),-\Delta u+c^{-2} \partial_{t}^{2} u=0\right\} \\
\mathbb{W}^{p}(K) & :=\left\{(\boldsymbol{v}, \boldsymbol{\sigma})=\left(\partial_{t} \boldsymbol{u},-\nabla \boldsymbol{u}\right), u \in \mathbb{U}^{p+1}(K)\right\} .
\end{aligned}
$$

- Basis functions easily constructed, e.g. $\quad b_{j, \ell}(\mathbf{x}, t)=\left(\mathbf{d}_{j, \ell} \cdot \mathbf{x}-c t\right)^{j}$.
- Taylor $T^{p+1}[u] \in \mathbb{U}^{p}(K) \Rightarrow$ orders of approximation in h are for free. Much better accuracy for fewer DOFs: $\operatorname{dim}\left(\mathbb{U}^{p}(K)\right)=\mathcal{O}_{p \rightarrow \infty}\left(p^{n}\right) \ll \quad \operatorname{dim}\left(\mathbb{P}^{p}(K)\right)=\mathcal{O}_{p \rightarrow \infty}\left(p^{n+1}\right)$.
- With Trefftz test fields, volume terms in $\mathbf{x} t$-DG bilinear form vanish: quadrature on n-dimensional faces only.
- $\left\|\|\cdot\|_{\text {DG }}\right.$ is a norm: stability and error analysis. (M., PERUGIA 2018)

Global, implicit and explicit schemes

$1 \mathbf{x} t$-DG formulation is global in space-time domain Q : large linear system! Might be good for adaptivity and DD.

Global, implicit and explicit schemes

$1 \mathbf{x} t$-DG formulation is global in space-time domain Q : large linear system!

Might be good for adaptivity and DD.

2 If mesh is partitioned in time-slabs
$\Omega \times\left(t_{j-1}, t_{j}\right)$, matrix is block lower-triangular: for each time-slab a system can be solved sequentially: implicit method.

Global, implicit and explicit schemes

$1 \mathbf{x} t$-DG formulation is global in space-time domain Q :
large linear system! Might be good for adaptivity and DD.

2 If mesh is partitioned in time-slabs
$\Omega \times\left(t_{j-1}, t_{j}\right)$, matrix is block lower-triangular: for each time-slab a system can be solved sequentially: implicit method.

(3) If mesh is suitably chosen, DG solution can be \uparrow computed with a sequence of local systems: explicit method, allows parallelism!
"Tent pitching" method of Üngör-Sheffer,

Monk-Richter, Gopalakrishnan-Monk-Sepúlveda,...
Trefftz requires quadrature on faces only: easier tent-pitching.
Versions 1-2-3 are algebraically equivalent (on the same mesh).

Tent-pitched elements

Tent-pitched elements/patches obtained from regular space meshes in 2+1D give parallelepipeds or octahedra+tetrahedra:

More complicated shapes from unstructured meshes:

(from Gopalakrishnan, SchÖberl, Wintersteiger 2016)
Simplices around a tent pole can be merged in macroelement.
Trefftz requires quadrature on faces only: only the shape of space elements matters.

Bibliography

Proposed $\mathbf{x} t$-DG formulation comes from:

- (MONK, RICHTER 2005), linear symmetric hyperbolic systems, tent-pitched meshes, \mathbb{P}^{p} spaces, $\alpha \beta \geq \frac{1}{4}$
- (Kretzschmar, Schnepp et Al. 2014-16) Maxwell eq.s, Trefftz
- (M., Perugia 2018)

Trefftz error analysis

- (Perugia, Schoeberl, Stocker, Wintersteiger 2020) Trefftz \& tents

This presentation:

- (Imbert-Gérard, M. . Stocker 2020 — arXiv:2011.04617) pw-smooth c, quasi-Trefftz
- (BANSAL, M., Perugia, Schwab 2021) tensor-product grids, corner singularities, sparse version

Related works:

- (Barucq, Calandra, Diaz, Shishenina 2020)
elasticity
- (GÓmez, M. 2021 - arXiv:2106.04724)

Part I

Quasi-Trefftz $\mathbf{x} t$-DG

Imbert-Gérard, Moiola, Stocker

Trefftz doesn'† like smooth coefficients

Homogeneous wave equation $-\Delta u+c^{-2} \partial_{t}^{2} u=0, \quad c=$ wavespeed.
Trefftz-DG is clear for piecewise-constant c : basis functions are polynomial local solution of wave eq. How to extend to piecewise-smooth $c=c(\mathbf{x})$?
No analytical solutions are available.

Trefftz doesn'† like smooth coefficients

Homogeneous wave equation $-\Delta u+c^{-2} \partial_{t}^{2} u=0, \quad c=$ wavespeed.
Trefftz-DG is clear for piecewise-constant c : basis functions are polynomial local solution of wave eq. How to extend to piecewise-smooth $c=c(\mathbf{x})$?
No analytical solutions are available.

Helmholtz equation: $\Delta u+k^{2} u=0$.

- Constant wavenumber $k \in \mathbb{R} \rightarrow$ plane waves $b_{J}(\mathbf{x})=\mathrm{e}^{\mathrm{i} k \mathbf{d}_{j} \cdot \mathbf{x}},\left|\mathbf{d}_{j}\right|=1$.
- Smooth wavenumber $k=k(\mathbf{x})$

IMBERT-GÉRARD, ≈ 2013 : generalised plane waves $b_{J}(\mathbf{x})=\mathrm{e}^{P_{j}(\mathbf{x})}$ s.t.

$$
D^{\boldsymbol{i}}\left(\Delta b_{J}+k^{2} b_{J}\right)\left(\mathbf{x}_{K}\right)=0 \quad \forall|\boldsymbol{i}|<q \quad\left(\mathbf{x}_{K}=\text { centre of element } K\right) .
$$

Treffiz doesn'† like smooth coefficients

Homogeneous wave equation $-\Delta u+c^{-2} \partial_{t}^{2} u=0, \quad c=$ wavespeed.
Trefftz-DG is clear for piecewise-constant c :
basis functions are polynomial local solution of wave eq.
How to extend to piecewise-smooth $c=c(\mathbf{x})$?
No analytical solutions are available.

Helmholtz equation: $\quad \Delta u+k^{2} u=0$.

- Constant wavenumber $k \in \mathbb{R} \rightarrow$ plane waves $b_{J}(\mathbf{x})=\mathrm{e}^{\mathrm{i} k \mathbf{d}_{j} \cdot \mathbf{x}},\left|\mathbf{d}_{j}\right|=1$.
- Smooth wavenumber $k=k(\mathbf{x})$

IMBERT-GÉRARD, ≈ 2013 : generalised plane waves $b_{J}(\mathbf{x})=\mathrm{e}^{P_{j}(\mathbf{x})}$ s.t.

$$
D^{\mathbf{i}}\left(\Delta b_{J}+k^{2} b_{J}\right)\left(\mathbf{x}_{K}\right)=0 \quad \forall|\boldsymbol{i}|<q \quad\left(\mathbf{x}_{K}=\text { centre of element } K\right) .
$$

Order-q Taylor polynomial vanishes in a given point.
\pm Provides high-order h-convergence for DG.

- Basis construction, implementation, analysis are complicated.

Treffiz doesn'† like smooth coefficients

Homogeneous wave equation $-\Delta u+c^{-2} \partial_{t}^{2} u=0, \quad c=$ wavespeed.
Trefftz-DG is clear for piecewise-constant c :
basis functions are polynomial local solution of wave eq.
How to extend to piecewise-smooth $c=c(\mathbf{x})$?
No analytical solutions are available.

Helmholtz equation: $\quad \Delta u+k^{2} u=0$.

- Constant wavenumber $k \in \mathbb{R} \rightarrow$ plane waves $b_{J}(\mathbf{x})=\mathrm{e}^{\mathrm{i} k \mathbf{d}_{j} \cdot \mathbf{x}},\left|\mathbf{d}_{j}\right|=1$.
- Smooth wavenumber $k=k(\mathbf{x})$

IMBERT-GÉRARD, ≈ 2013 : generalised plane waves $b_{J}(\mathbf{x})=\mathrm{e}^{P_{j}(\mathbf{x})}$ s.t.

$$
D^{\mathbf{i}}\left(\Delta b_{J}+k^{2} b_{J}\right)\left(\mathbf{x}_{K}\right)=0 \quad \forall|\boldsymbol{i}|<q \quad\left(\mathbf{x}_{K}=\text { centre of element } K\right) .
$$

Order-q Taylor polynomial vanishes in a given point.

+ Provides high-order h-convergence for DG.
- Basis construction, implementation, analysis are complicated.

Our goal: extend this idea to wave equation, without pain!

Quasi-Trefftz space

Define wave operator $\quad \square_{G} u:=\Delta u-G \partial_{t}^{2} u, \quad G(\mathbf{x})=c^{-2}$ smooth. Fix $\left(\mathbf{x}_{K}, t_{K}\right) \in K \subset \mathbb{R}^{n+1}$.

Define quasi-Trefftz (polynomial) space

$$
\begin{aligned}
\mathbb{Q U}^{p}(K):= & \left\{u \in \mathbb{P}^{p}(K): \quad D^{i} \square_{G} u\left(\mathbf{x}_{K}, t_{K}\right)=0, \quad \forall|\boldsymbol{i}| \leq p-2\right\} \\
& \mathbb{Q W W}^{p}(K):=\left\{\left(\partial_{t} u,-\nabla u\right), u \in \mathbb{Q U}^{p+1}(K)\right\}
\end{aligned}
$$

Quasi-Trefftz space

Define wave operator $\quad \square_{G} u:=\Delta u-G \partial_{t}^{2} u, \quad G(\mathbf{x})=c^{-2}$ smooth. Define quasi-Trefftz (polynomial) space

$$
\begin{aligned}
\mathbb{Q U}^{p}(K):= & \left\{u \in \mathbb{P}^{p}(K): \quad D^{i} \square_{G} u\left(\mathbf{x}_{K}, t_{K}\right)=0, \quad \forall|\boldsymbol{i}| \leq p-2\right\} \\
& \mathbb{Q W V}^{p}(K):=\left\{\left(\partial_{t} u,-\nabla u\right), u \in \mathbb{Q U}^{p+1}(K)\right\}
\end{aligned}
$$

Theorem: approximation properties

$$
\text { If } u \in C^{p+1}(K), \quad \square_{G} u=0, \quad 0 \leq j \leq p, \quad K \text { star-shaped wrt }\left(\mathbf{x}_{K}, t_{K}\right)
$$

$$
\inf _{P \in \mathbb{Q}^{p}(K)}\|u-P\|_{C^{j}(K)} \leq h^{p+1-j} \frac{n^{p+1-j}}{(p+1-j)!}|u|_{C^{p+1}(K)}
$$

Main idea: Taylor polynomial $T_{\left(\mathbf{x}_{K}, t_{K}\right)}^{p+1}[u] \in \mathbb{Q U}^{p}(K)$.
In condition " $|\boldsymbol{i}| \leq q$ ", why $q=p-2$?
If $q<p-2$, space is too big, larger than Trefftz for constant G. If $q>p-2$, space loses approximation properties.

Generalised Trefftz basis

The local discrete space is clear. How to construct a basis for it?

Choose two \mathbf{x}-only polynomial basis:

$$
\left.\left\{\widehat{b}_{J}\right\}_{J=1, \ldots,\binom{p+n}{n}} \text { for } \mathbb{P}^{p}\left(\mathbb{R}^{n}\right), \quad\left\{\widetilde{b}_{J}\right\}_{J=1, \ldots,(p-1+n}^{n}\right) \text { for } \mathbb{P}^{p-1}\left(\mathbb{R}^{n}\right)
$$

Generalised Trefftz basis

The local discrete space is clear. How to construct a basis for it?

Choose two \mathbf{x}-only polynomial basis:

$$
\left.\left\{\widehat{b}_{J}\right\}_{J=1, \ldots,\binom{p+n}{n}} \text { for } \mathbb{P}^{p}\left(\mathbb{R}^{n}\right), \quad\left\{\widetilde{b}_{J}\right\}_{J=1, \ldots,(p-1+n}^{n}\right) \text { for } \mathbb{P}^{p-1}\left(\mathbb{R}^{n}\right)
$$

Construct a basis for $\mathbb{Q U}^{p}(K)$ "evolving" \widehat{b}_{J} and \widetilde{b}_{J} in time:

$$
\begin{aligned}
& \left\{b_{J} \in \mathbb{Q U}^{p}(K): \begin{array}{ll}
b_{J}\left(\cdot, t_{K}\right)=\widehat{b}_{J}, \quad \partial_{t} b_{J}\left(\cdot, t_{K}\right)=0, & \text { for } J \leq\binom{ p+n}{n} \\
b_{J}\left(\cdot, t_{K}\right)=0, \quad \partial_{t} b_{J}\left(\cdot, t_{K}\right)=\widetilde{b}_{J-\binom{p+n}{n}}, & \text { for }\binom{p+n}{n}<J
\end{array}\right\} \\
& \text { for } J=1, \ldots,\binom{p+n}{n}+\binom{p-1+n}{n}
\end{aligned}
$$

We prove that this defines a basis and show how to compute $\left\{b_{J}\right\}$.

Computation of basis coefficients

Fix $n=1$ (for simplicity). Denote $G(x)=\sum_{m=0}^{\infty} g_{m}\left(\boldsymbol{x}-x_{K}\right)^{m} . \quad g_{0}>0$. Monomial expansion of basis element:

$$
b_{J}(x, t)=\sum_{i_{x}+i_{t} \leq p} a_{i_{x}, i_{t}}\left(x-x_{K}\right)^{i_{x}}\left(t-t_{K}\right)^{i_{t}}
$$

Cauchy conditions ($b_{J}\left(\cdot, t_{K}\right), \partial_{t} b_{J}\left(\cdot, t_{K}\right)$) determine $a_{i_{x}, 0}, a_{i_{x}, 1}$.

Computation of basis coefficients

Fix $n=1$ (for simplicity). Denote $G(\boldsymbol{x})=\sum_{m=0}^{\infty} g_{m}\left(\boldsymbol{x}-x_{K}\right)^{m} . \quad g_{0}>0$. Monomial expansion of basis element:

$$
b_{J}(x, t)=\sum_{i_{x}+i_{t} \leq p} a_{i_{x}, i_{t}}\left(x-x_{K}\right)^{i_{x}}\left(t-t_{K}\right)^{i_{t}}
$$

Cauchy conditions ($b_{J}\left(\cdot, t_{K}\right), \partial_{t} b_{J}\left(\cdot, t_{K}\right)$) determine $a_{i_{x}, 0}, a_{i_{x}, 1}$.
To be in $\mathbb{Q U}^{p}$, coeff.s have to satisfy: for $i_{x}+i_{t} \leq p-2$

$$
\partial_{x}^{i_{x}} \partial_{t}^{i_{t}} \square_{G} b_{J}\left(x_{K}, t_{K}\right)=\left(i_{x}+2\right)!i_{t}!a_{i_{x}+2, i_{t}}-\sum_{j_{x}=0}^{i_{x}} i_{x}!\left(i_{t}+2\right)!g_{i_{x}-j_{x}} a_{j_{x}, i_{t}+2} \stackrel{!}{=} 0
$$

Linear system for coeff.s $a_{i_{x}, i_{t}}$.

Computation of basis coefficients

Fix $n=1$ (for simplicity). Denote $G(x)=\sum_{m=0}^{\infty} g_{m}\left(\boldsymbol{x}-x_{K}\right)^{m} . \quad g_{0}>0$. Monomial expansion of basis element:

$$
b_{J}(x, t)=\sum_{i_{x}+i_{t} \leq p} a_{i_{x}, i_{t}}\left(x-x_{K}\right)^{i_{x}}\left(t-t_{K}\right)^{i_{t}},
$$

Cauchy conditions $\left(b_{J}\left(\cdot, t_{K}\right), \partial_{t} b_{J}\left(\cdot, t_{K}\right)\right.$) determine $a_{i_{x}, 0}, a_{i_{x}, 1}$.
To be in $\mathbb{Q U}^{p}$, coeff.s have to satisfy: for $i_{x}+i_{t} \leq p-2$

$$
\partial_{x}^{i_{x}} \partial_{t}^{i_{t}} \square_{G} b_{J}\left(x_{K}, t_{K}\right)=\left(i_{x}+2\right)!i_{t}!a_{i_{x}+2, i_{t}}-\sum_{j_{x}=0}^{i_{x}} i_{x}!\left(i_{t}+2\right)!g_{i_{x}-j_{x}} a_{j_{x}, i_{t}+2} \stackrel{!}{=} 0
$$

Linear system for coeff.s $a_{i_{x}, i_{t}}$.
Compute $a_{i_{k}, i_{t}+2} \bigcirc$ from coefficients • :
first loop across diagonals \nearrow, then along diagonals \nwarrow.

Basis construction: algorithm $-n=1$

Data: $\left(g_{m}\right)_{m \in \mathbb{N}_{0}}, x_{K}, t_{K}, p$.
Choose favourite polynomial bases $\left\{\widehat{b}_{J}\right\},\left\{\widetilde{b}_{J}\right\}$ in \mathbf{x},
\rightarrow coeff's $a_{k_{x}, 0}, a_{k_{x}, 1}$.
For each J (i.e. for each basis function), construct b_{J} as follows:
for $\ell=2$ to p
(loop across diagonals \nearrow) do for $i_{t}=0$ to $\ell-2 \quad$ (loop along diagonals \nwarrow) do set $i_{x}=\ell-i_{t}-2$ and compute

$$
a_{i_{x}, i_{t}+2}=\frac{\left(i_{x}+2\right)\left(i_{x}+1\right)}{\left(i_{t}+2\right)\left(i_{t}+1\right) g_{0}} a_{i_{x}+2, i_{t}}-\sum_{j_{x}=0}^{i_{x}-1} \frac{g_{i_{x}-j_{x}}}{g_{0}} a_{j_{x}, i_{t}+2}
$$

end

end

$$
b_{J}(x, t)=\sum_{0<k_{x}+k_{t} \leq p} a_{k_{x}, k_{t}}\left(x-x_{K}\right)^{k_{x}}\left(t-t_{K}\right)^{k_{t}}
$$

Basis construction: algorithm $-n>1$

In higher space dimensions $n>1$, with $G(\mathbf{x})=\sum_{i_{\mathbf{x}}}\left(\mathbf{x}-\mathbf{x}_{K}\right)^{i_{\mathbf{x}}} g_{i_{\mathbf{x}}}$, the algorithm is the same with a further inner loop:

for $\ell=2$ to $p \quad$ (loop across $\left\{\left|\boldsymbol{i}_{\mathbf{x}}\right|+i_{t}=\ell-2\right\}$ hyperplanes, \nearrow) do for $i_{t}=0$ to $\ell-2$ (loop across constant-t hyperplanes \uparrow) do for $\boldsymbol{i}_{\mathbf{x}}$ with $\left|\boldsymbol{i}_{\mathbf{x}}\right|=\ell-\boldsymbol{i}_{t}-2$ do

$$
a_{i_{\mathbf{x}}, i_{t}+2}=\sum_{l=1}^{n} \frac{\left(i_{x_{l}}+2\right)\left(i_{x_{l}}+1\right)}{\left(i_{t}+2\right)\left(i_{t}+1\right) g_{\mathbf{0}}} a_{i_{\mathbf{x}}+2 \mathbf{e}_{l}, i_{t}}-\sum_{\boldsymbol{j}_{\mathbf{x}}<i_{\mathbf{x}}} \frac{g_{i_{\mathbf{x}}-j_{\mathbf{x}}}}{g_{\mathbf{x}}} a_{\mathbf{j}_{\mathbf{x}}, i_{t}+2}
$$

end
end
end

Quasi-Trefftz xt-DG

Use $\prod_{K \in \mathcal{T}_{h}} \mathbb{Q} W^{p}(K)$ with $\mathbf{x} t$-DG for IBVP with piecewise-smooth c.
Use idea of (IMBERT-GÈRARD, Monk 2017): add volume penalty term
$\sum_{K \in \mathcal{T}_{h}} \int_{K} \mu_{1}\left(\nabla \cdot \boldsymbol{\sigma}+c^{-2} \partial_{t} \boldsymbol{v}\right)\left(\nabla \cdot \boldsymbol{\tau}+c^{-2} \partial_{t} \boldsymbol{w}\right)+\mu_{2}\left(\partial_{t} \boldsymbol{\sigma}+\nabla \boldsymbol{v}\right) \cdot\left(\partial_{t} \boldsymbol{\tau}+\nabla \boldsymbol{w}\right)$.

- Coercivity in DG norm (with volume terms)
- Well-posedness
- Quasi-optimality
- Error bounds (high-order h-convergence, optimal rates, explicit)

$$
\left\|\left\|(v, \sigma)-\left(v_{h}, \sigma_{h}\right)\right\|_{\mathrm{DG}} \leq C \sup _{K \in \mathcal{T}_{h}} h_{K, c}^{p+1 / 2}|u|_{C_{c}^{p+2}(K)} .\right.
$$

Same DOF saving as for Helmholtz or constant $c\left(\mathcal{O}\left(p^{n}\right)\right.$ vs $\left.\mathcal{O}\left(p^{n+1}\right)\right)$.

More general IBVPs

Everything extends to 2 piecewise-smooth material parameters ρ, G :

$$
\nabla \boldsymbol{v}+\rho \partial_{t} \boldsymbol{\sigma}=\mathbf{0}, \quad \nabla \cdot \boldsymbol{\sigma}+G \partial_{t} \boldsymbol{v}=0
$$

Wavespeed is $c=(\rho G)^{-1 / 2}$.

$$
-\nabla \cdot\left(\frac{1}{\rho} \nabla u\right)+G \partial_{t}^{2} u=0
$$

Second-order version:

$$
\left(v=\partial_{t} u, \sigma=-\frac{1}{\rho} \nabla u\right) .
$$

Basis coefficient algorithm needs some more terms.

More general IBVPs

Everything extends to 2 piecewise-smooth material parameters ρ, G :

$$
\nabla v+\rho \partial_{t} \boldsymbol{\sigma}=\mathbf{0}, \quad \nabla \cdot \boldsymbol{\sigma}+G \partial_{t} \boldsymbol{v}=0
$$

Wavespeed is $c=(\rho G)^{-1 / 2}$.

$$
-\nabla \cdot\left(\frac{1}{\rho} \nabla u\right)+G \partial_{t}^{2} u=0
$$

Second-order version:

$$
\left(v=\partial_{t} u, \sigma=-\frac{1}{\rho} \nabla u\right) .
$$

Basis coefficient algorithm needs some more terms.

If the 1st-order IBVP does not come from a 2nd-order one, we use

$$
\mathbb{Q T}^{p}(K):=\left\{\begin{array}{ll}
(\boldsymbol{w}, \boldsymbol{\tau}) \in \mathbb{P}^{p}(K)^{n+1} \left\lvert\, \begin{array}{l}
D^{\boldsymbol{i}}\left(\nabla w+\rho \partial_{t} \boldsymbol{\tau}\right)\left(\mathbf{x}_{K}, t_{K}\right)=\mathbf{0} \\
D^{\boldsymbol{i}}\left(\nabla \cdot \boldsymbol{\tau}+G \partial_{t} \boldsymbol{w}\right)\left(\mathbf{x}_{K}, t_{K}\right)=0 \\
\forall|\boldsymbol{i}| \leq p-1
\end{array}\right.
\end{array}\right\}
$$

This space is only slightly larger $\left(\approx \frac{n+1}{2} \times\right.$, still $\mathcal{O}_{p \rightarrow \infty}\left(p^{n}\right)$ DOFs $)$ and allows the same analysis.

Numerics

- Implemented in NGSolve.
- Both Cartesian and tent-pitched meshes.
- Volume penalty term not needed in computations.
- DG flux coefficients $\alpha^{-1}=\beta=\boldsymbol{c}$, but even $\alpha=\beta=0$ works.
- Good conditioning.
- Monomial bases $\left\{\widehat{b}_{J}\right\},\left\{\widetilde{b}_{J}\right\}$ outperform Legendre/Chebyshev.

Numerics 1: convergence

Compare quasi-Trefftz, full polynomials, $\operatorname{Trefftz}\left(\left.c\right|_{K}=c\left(\mathbf{x}_{K}\right)\right)$ spaces

$$
\begin{aligned}
& \mathbb{Q W W}^{p}\left(\mathcal{T}_{h}\right):=\left\{(w, \boldsymbol{\tau}) \in \mathbf{H}\left(\mathcal{T}_{h}\right):\left.\boldsymbol{w}\right|_{K}=\partial_{t} \boldsymbol{u},\left.\boldsymbol{\tau}\right|_{K}=-\nabla u, u \in \mathbb{Q U}^{p+1}(K)\right\} \\
& \mathbb{Y}^{p}\left(\mathcal{T}_{h}\right):=\left\{(\boldsymbol{w}, \boldsymbol{\tau}) \in \mathbf{H}\left(\mathcal{T}_{h}\right):\left.\boldsymbol{w}\right|_{K}=\partial_{t} \boldsymbol{u},\left.\boldsymbol{\tau}\right|_{K}=-\nabla \boldsymbol{u}, \boldsymbol{u} \in \mathbb{P}^{p+1}(K)\right\} \\
& \mathbb{W}^{p}\left(\mathcal{T}_{h}\right):=\left\{(\boldsymbol{w}, \boldsymbol{\tau}) \in \mathbf{H}\left(\mathcal{T}_{h}\right):\left.\boldsymbol{w}\right|_{K}=\partial_{t} u,\left.\boldsymbol{\tau}\right|_{K}=-\nabla \boldsymbol{u}, u \in \mathbb{P}^{p+1}(K),\right. \\
& \left.-\Delta u+c^{-2}\left(\mathbf{x}_{K}\right) \partial_{t}^{2} u=0 \text { in } K\right\} .
\end{aligned}
$$

Numerics 1: convergence

Compare quasi-Trefftz, full polynomials, $\operatorname{Trefftz}\left(\left.c\right|_{K}=c\left(\mathbf{x}_{K}\right)\right)$ spaces

$$
\begin{aligned}
& \mathbb{Q W W}^{p}\left(\mathcal{T}_{h}\right):=\left\{(w, \boldsymbol{\tau}) \in \mathbf{H}\left(\mathcal{T}_{h}\right):\left.\boldsymbol{w}\right|_{K}=\partial_{t} \boldsymbol{u},\left.\boldsymbol{\tau}\right|_{K}=-\nabla u, u \in \mathbb{Q U}^{p+1}(K)\right\} \\
& \mathbb{Y}^{p}\left(\mathcal{T}_{h}\right):=\left\{(\boldsymbol{w}, \boldsymbol{\tau}) \in \mathbf{H}\left(\mathcal{T}_{h}\right):\left.\boldsymbol{w}\right|_{K}=\partial_{t} \boldsymbol{u},\left.\boldsymbol{\tau}\right|_{K}=-\nabla \boldsymbol{u}, \boldsymbol{u} \in \mathbb{P}^{p+1}(K)\right\} \\
& \mathbb{W}^{p}\left(\mathcal{T}_{h}\right):=\left\{(\boldsymbol{w}, \boldsymbol{\tau}) \in \mathbf{H}\left(\mathcal{T}_{h}\right):\left.\boldsymbol{w}\right|_{K}=\partial_{t} \boldsymbol{u},\left.\boldsymbol{\tau}\right|_{K}=-\nabla \boldsymbol{u}, u \in \mathbb{P}^{p+1}(K),\right. \\
& \left.-\Delta u+c^{-2}\left(\mathbf{x}_{K}\right) \partial_{t}^{2} u=0 \text { in } K\right\} .
\end{aligned}
$$

DG-norm error: optimal order in h, exponential in p.

$n=2, \quad G=\left(x_{1}+x_{2}+1\right)^{-1}, \quad u=\left(x_{1}+x_{2}+1\right)^{2.5} \mathrm{e}^{-\sqrt{7.5} t}, \quad Q=(0,1)^{3}$.

Numerics 2: DOF \& computational time

Quasi-Trefftz wins > 1 order of magnitude against full polynomials:

$$
\begin{aligned}
& h=2^{-3}, 2^{-4}, \quad p=1,2,3,4 . \\
& n=2, \quad G=x_{1}+x_{2}+1, \quad u=\operatorname{Ai}\left(-x_{1}-x_{2}-1\right) \cos (\sqrt{2} t), \quad Q=(0,1)^{3} .
\end{aligned}
$$

Numerics 3: tent pitching

($n=2$) Final-time error, computational time (sequential), speedup: (\#dof ${ }^{-1 / 3} \sim h$)

Numerics 4: energy conservation

Plane wave through medium with $G=1+x_{2}$ in $(0,1)^{3}$:

$\mathcal{E}=\frac{1}{2} \int_{\Omega}\left(c^{-2} v^{2}+|\sigma|^{2}\right) \mathrm{d} S$
DG scheme is (provably) dissipative. For $p=3, h=2^{-7}$, only 0.076% loss.

Part 1: summary

Quasi-Trefftz DG:

- Extend Trefftz scheme to piecewise-smooth coefficients. Basis are PDE solution "up to given order in h ".
- Simple construction of basis functions: same "Cauchy data" at element centre as for Trefftz.
- Use in $\mathbf{x t}$-DG, stability and error analysis.

High orders of convergence in h, much fewer DOFs than standard polynomial spaces.
(Imbert-GÉRARd, M., Stocker, arXiv:2011.04617, 2020)

Part II

$\mathbf{x t}$-DG with point singularities

Bansal, Moiola, Perugia, Schwab

Wave solutions on polygons are singular

Fix $n=2$.
Piecewise-constant c, on polygonal partition of Ω. Denote by $\left\{\mathbf{c}_{i}\right\}_{i=1, \ldots, M}$ the vertices of this partition.

Wave solutions on polygons are singular

irFix $n=2$.
Piecewise-constant c, on polygonal partition of Ω. Denote by $\left\{\mathbf{c}_{i}\right\}_{i=1, \ldots, M}$ the vertices of this partition.

Even for smooth initial conditions \& source term, homogeneous BCs, the IBVP solution in polygon $\times(0, T)$ lives in corner-weigthed spaces:

$$
\begin{aligned}
& \quad(v, \sigma)=\left(\partial_{t} \boldsymbol{u},-\nabla \boldsymbol{u}\right) \in C^{k_{t}-1}\left([\mathbf{O}, \boldsymbol{T}] ; H_{\delta}^{k_{x}+1,2}(\Omega)\right) \times C^{k_{t}}\left([0, T] ; H_{\delta}^{k_{x}, 1}(\Omega)^{2}\right) \\
& \|u\|_{H_{\delta}^{k_{k}, \ell}(\Omega)}^{2}:=\|u\|_{H^{\ell-1}(\Omega)}^{2}+\sum_{m=\ell}^{k} \int_{\Omega}\left(\prod_{i=1}^{M}\left|\mathbf{x}-\mathbf{c}_{i}\right|^{\delta_{i}} \sum_{\substack{\alpha \in \mathbb{N}_{0}^{2} \\
\alpha_{1}+\alpha_{2}=m}}\left|D^{\alpha} u\right|^{2}\right) \\
& \text { KOKOTOV, PLAMENEVSKIĬ 1999-2004 } \rightarrow \text { MüLLER, SCHWAB 2015-18. }
\end{aligned}
$$

- This means $v(\cdot, t) \notin H^{2}(\Omega), \sigma(\cdot, t) \notin H^{1}(\Omega)^{2}$.
+ Diffraction singularities are confined (in space) to the corners \mathbf{c}_{i} and have smooth time-dependence.

Wave solutions on polygons are singular

irFix $n=2$.
Piecewise-constant c, on polygonal partition of Ω. Denote by $\left\{\mathbf{c}_{i}\right\}_{i=1, \ldots, M}$ the vertices of this partition.

Even for smooth initial conditions \& source term, homogeneous BCs, the IBVP solution in polygon $\times(0, T)$ lives in corner-weigthed spaces:

$$
\begin{aligned}
& \quad(v, \sigma)=\left(\partial_{t} \boldsymbol{u},-\nabla \boldsymbol{u}\right) \in C^{k_{t}-1}\left([\mathbf{O}, \boldsymbol{T}] ; H_{\delta}^{k_{x}+1,2}(\Omega)\right) \times C^{k_{t}}\left([0, T] ; H_{\delta}^{k_{x}, 1}(\Omega)^{2}\right) \\
& \|u\|_{H_{\delta}^{k_{k} \ell \ell}(\Omega)}^{2}:=\|u\|_{H^{\ell-1}(\Omega)}^{2}+\sum_{m=\ell}^{k} \int_{\Omega}\left(\prod_{i=1}^{M}\left|\mathbf{x}-\mathbf{c}_{i}\right|^{\delta_{i}} \sum_{\substack{\alpha \in \mathbb{N}_{0}^{2} \\
\alpha_{1}+\alpha_{2}=m}}\left|D^{\alpha} u\right|^{2}\right) \\
& \text { KOKOTOV, PLAMENEVSKIĬ 1999-2004 } \rightarrow \text { MÜLLER, SCHWAB 2015-18. }
\end{aligned}
$$

- This means $v(\cdot, t) \notin H^{2}(\Omega), \sigma(\cdot, t) \notin H^{1}(\Omega)^{2}$.
+ Diffraction singularities are confined (in space) to the corners \mathbf{c}_{i} and have smooth time-dependence.
\rightarrow Suggests local mesh refinement in space only.

Locally-refined product meshes

Locally-refined mesh in space \times quasi-uniform mesh in time:

Space-like faces are horizontal.
To avoid short time steps, corner elements will be "tall\&thin": \rightarrow implicit method.

Can'† use Trefftz spaces as they requires some $\mathbf{x} t$-shape regularity.

$$
\mathbf{V}_{\mathbf{p}}\left(\mathcal{T}_{h}\right)=\prod_{K=K_{\mathbf{x}} \times I_{n} \in \mathcal{T}_{h}}\left(\mathbb{P}_{p_{x, K}^{v}}^{v}\left(K_{\mathbf{x}}\right) \otimes \mathbb{P}_{t, K}^{v}\left(I_{n}\right)\right) \times\left(\mathbb{P}_{x, K}^{\sigma}\left(K_{\mathbf{x}}\right) \otimes \mathbb{P}^{p_{t, K}^{\sigma}}\left(I_{n}\right)\right)^{2}
$$

Locally-refined product meshes

Locally-refined mesh in space \times quasi-uniform mesh in time:

Space-like faces are horizontal.
To avoid short time steps, corner elements will be "tall\&thin": \rightarrow implicit method.

Can'† use Trefftz spaces as they requires some $\mathbf{x} t$-shape regularity.
$\mathbf{V}_{\mathbf{p}}\left(\mathcal{T}_{h}\right)=\prod_{K=K_{\mathbf{x}} \times I_{n} \in \mathcal{T}_{h}}\left(\mathbb{P}^{p_{x, K}^{v}}\left(K_{\mathbf{z}}\right) \otimes \mathbb{P}_{t, K}^{v}\left(I_{n}\right)\right) \times\left(\mathbb{P}_{x, K}^{p_{x, K}}\left(K_{\mathbf{x}}\right) \otimes \mathbb{P}^{p_{t, K}^{\sigma}}\left(I_{n}\right)\right)^{2}$.
DG semi-norm is not a norm on $\mathbf{V}_{\mathbf{p}}\left(\mathcal{T}_{h}\right)$:
"coercivity analysis" is not enough for well-posedness.

Well-posedness

In general, assume that "PDEs map local discrete space into itself":

$$
\left(\nabla \cdot \boldsymbol{\tau}_{h}+c^{-2} \partial_{t} w_{h}, \nabla w_{h}+\partial_{t} \boldsymbol{\tau}_{h}\right) \in \mathbf{V}_{\mathbf{p}}\left(\mathcal{T}_{h}\right) \quad \forall\left(w_{h}, \boldsymbol{\tau}_{h}\right) \in \mathbf{V}_{\mathbf{p}}\left(\mathcal{T}_{h}\right)
$$

Holds, e.g., for $\mathbf{V}_{\mathbf{p}}\left(\mathcal{T}_{h}\right)$ with $\quad\left|p_{x, K}^{\sigma}-p_{x, K}^{v}\right| \leq 1, \quad p_{t, K}^{\sigma}=p_{t, K}^{v}$.
This ensures that the method is well-posed

Well-posedness

In general, assume that "PDEs map local discrete space into itself":

$$
\left(\nabla \cdot \boldsymbol{\tau}_{h}+c^{-2} \partial_{t} w_{h}, \nabla w_{h}+\partial_{t} \boldsymbol{\tau}_{h}\right) \in \mathbf{V}_{\mathbf{p}}\left(\mathcal{T}_{h}\right) \quad \forall\left(w_{h}, \boldsymbol{\tau}_{h}\right) \in \mathbf{V}_{\mathbf{p}}\left(\mathcal{T}_{h}\right)
$$

Holds, e.g., for $\mathbf{V}_{\mathbf{p}}\left(\mathcal{T}_{h}\right)$ with $\quad\left|p_{x, K}^{\sigma}-p_{x, K}^{v}\right| \leq 1, \quad p_{t, K}^{\sigma}=p_{t, K}^{v}$.
This ensures that the method is well-posed:

- Assume $\mathcal{A}\left(\left(v_{h}, \boldsymbol{\sigma}_{h}\right),\left(w_{h}, \boldsymbol{\tau}_{h}\right)\right)=0 \quad \forall\left(w_{h}, \boldsymbol{\tau}_{h}\right) \in \mathbf{V}_{\mathbf{p}}\left(\mathcal{T}_{h}\right)$.
- $0=\mathcal{A}\left(\left(v_{h}, \sigma_{h}\right),\left(v_{h}, \sigma_{h}\right)\right)=\| \|\left(v_{h}, \sigma_{h}\right) \|_{\mathrm{DG}}^{2}$
\Rightarrow jump and boundary traces of $\left(v_{h}, \sigma_{h}\right)$ vanish.
- After IBP, only volume terms are left in $\mathcal{A}\left(\left(v_{h}, \sigma_{h}\right),\left(w_{h}, \boldsymbol{\tau}_{h}\right)\right)$:

$$
\begin{aligned}
& 0=\mathcal{A}\left(\left(v_{h}, \boldsymbol{\sigma}_{h}\right),\left(w_{h}, \boldsymbol{\tau}_{h}\right)\right)= \\
& -\sum_{K \in \mathcal{T}_{h}} \int_{K}\left(\left(\nabla \cdot \boldsymbol{\sigma}_{h}+c^{-2} \partial_{t} v_{h}\right) w_{h}+\left(\nabla v_{h}+\partial_{t} \boldsymbol{\sigma}_{h}\right) \cdot \boldsymbol{\tau}_{h}\right) \mathrm{d} V
\end{aligned}
$$

- Choose $w_{h}=\nabla \cdot \sigma_{h}+c^{-2} \partial_{t} v_{h}$ and $\tau_{h}=\nabla v_{h}+\partial_{t} \sigma_{h}$: (v_{h}, σ_{h}) solves homogeneous IBVP.
- $\Rightarrow\left(v_{h}, \sigma_{h}\right)=(0, \mathbf{0})$.

Quasi-optimality and unconditional stability

Under the same assumption,
DG norm of error is controlled by error of L^{2}-projection on $\mathbf{V}_{\mathbf{p}}\left(\mathcal{T}_{h}\right)$:

$$
\left\|\left\|(v, \sigma)-\left(v_{h}, \sigma_{h}\right)\right\|\right\|_{\mathrm{DG}} \leq\left(3+p_{x, L}^{\sigma}\right)\| \|(v, \sigma)-\left(\Pi_{L^{2}} v, \Pi_{L^{2}} \sigma\right) \mid \|_{\mathrm{DG}^{+}}
$$

Here $\left|||\cdot|| \|_{\mathrm{DG}^{+}}\right.$is a skeleton seminorm, stronger than ||| • ||| ${ }_{\mathrm{DG}}$.
It includes $\left\|\alpha^{-1 / 2}\left(\boldsymbol{\sigma}-\Pi_{L^{2}} \boldsymbol{\sigma}\right) \cdot \mathbf{n}_{x}\right\|_{L^{2}\left(F_{t}, L^{1}\left(F_{\mathbf{x}}\right)\right)}$ terms on time-like faces of corner elements, to accomodate $H_{\delta}^{1,1}$ arguments.
$p_{x, L}^{\sigma}$ is the polynomial degree in \mathbf{x} used in corner elements (from inverse \& trace estimates for $H_{\delta}^{1,1}$)

Quasi-optimality and unconditional stability

Under the same assumption,
DG norm of error is controlled by error of L^{2}-projection on $\mathbf{V}_{\mathbf{p}}\left(\mathcal{T}_{h}\right)$:

$$
\begin{aligned}
& \frac{1}{2}\left\|c^{-1}\left(v-v_{h}\right)\right\|_{L^{2}\left(\Omega \times\left\{t_{n}\right\}\right)}+\frac{1}{2}\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{L^{2}\left(\Omega \times\left\{t_{n}\right\}\right)^{2}} \leq \\
& \left\|(v, \sigma)-\left(v_{h}, \sigma_{h}\right)\right\|\left\|_{\mathrm{DG}} \leq\left(3+p_{x, L}^{\sigma}\right)\right\|(v, \sigma)-\left(\Pi_{L^{2}} v, \Pi_{L^{2}} \sigma\right) \|_{\mathrm{DG}^{+}}
\end{aligned}
$$

Here $\left|||\cdot|| \|_{\mathrm{DG}^{+}}\right.$is a skeleton seminorm, stronger than ||| • ||| ${ }_{\mathrm{DG}}$.
It includes $\left\|\alpha^{-1 / 2}\left(\boldsymbol{\sigma}-\Pi_{L^{2}} \boldsymbol{\sigma}\right) \cdot \mathbf{n}_{x}\right\|_{L^{2}\left(F_{t}, L^{1}\left(F_{\mathbf{x}}\right)\right)}$ terms on time-like faces of corner elements, to accomodate $H_{\delta}^{1,1}$ arguments.
$p_{x, L}^{\sigma}$ is the polynomial degree in \mathbf{x} used in corner elements (from inverse \& trace estimates for $H_{\delta}^{1,1}$)

Bound controls also $L^{2}(\Omega)$ error at discrete times.

L^{2}-projection \& Galerkin error bounds

To obtain concrete error bound, we need approximation bounds for the $L^{2}(K)$ projection on $\mathbb{P}^{p_{x}}\left(K_{\mathbf{x}}\right) \times \mathbb{P}^{p_{t}}\left(t_{n-1}, t_{n}\right)$, in Bochner norms, via Peetre-Tartar lemma':

$$
\begin{aligned}
\left\|\varphi-\Pi_{L^{2}} \varphi\right\|_{L^{2}\left(I_{n} ; L^{2}\left(K_{\mathbf{x}}\right)\right)} & +h_{n}\left|\varphi-\Pi_{L^{2}} \varphi\right|_{H^{1}\left(I_{n} ; L^{2}\left(K_{\mathbf{x}}\right)\right)}+h_{K_{\mathbf{x}}}\left|\varphi-\Pi_{L^{2}} \varphi\right|_{L^{2}\left(I_{n} ; H^{1}\left(K_{\mathbf{x}}\right)\right)} \\
& \lesssim h_{n}^{s_{t}+1}|\varphi|_{H^{s_{t}+1}\left(I_{n} ; L^{2}\left(K_{\mathbf{x}}\right)\right)}+h_{K_{\mathbf{x}}}^{s_{x}+1}|\varphi|_{L^{2}\left(I_{n} ; H^{s_{x}+1}\left(K_{\mathbf{x}}\right)\right)}
\end{aligned}
$$

and similarly for weighted spaces.
${ }^{1} A: X \rightarrow Y$ injective, $T: X \rightarrow Z$ compact, $\|x\|_{X} \lesssim\|A x\|_{Y}+\|T x\|_{Z} \Rightarrow\|x\|_{X} \lesssim\|A x\|_{Y}$.
Here, $X=H^{s_{t}+1}\left(I ; L^{2}\left(K_{\mathbf{x}}\right)\right) \cap L^{2}\left(I ; H^{s_{x}+1}\left(K_{\mathbf{x}}\right)\right) \stackrel{T}{\hookrightarrow} L^{2}(K)$,

$$
X \xrightarrow{A=\left(\Pi_{L^{2}}, \partial_{t}^{s_{t}+1}, D_{\mathbf{x}}^{s_{x}+1}\right)}\left(\mathbb{P}^{s_{x}}\left(K_{\mathbf{x}}\right) \otimes \mathbb{P}^{s_{t}}(I)\right) \times L^{2}(K) \times L^{2}(K)^{s_{x}+2}
$$

L^{2}-projection \& Galerkin error bounds

To obtain concrete error bound, we need approximation bounds for the $L^{2}(K)$ projection on $\mathbb{P}^{p_{x}}\left(K_{\mathbf{x}}\right) \times \mathbb{P}^{p_{t}}\left(t_{n-1}, t_{n}\right)$, in Bochner norms, via Peetre-Tartar lemma':

$$
\begin{aligned}
\left\|\varphi-\Pi_{L^{2}} \varphi\right\|_{L^{2}\left(I_{n} ; L^{2}\left(K_{\mathbf{x}}\right)\right)} & +h_{n}\left|\varphi-\Pi_{L^{2}} \varphi\right|_{H^{1}\left(I_{n} ; L^{2}\left(K_{\mathbf{x}}\right)\right)}+h_{K_{\mathbf{x}}}\left|\varphi-\Pi_{L^{2}} \varphi\right|_{L^{2}\left(I_{n} ; H^{1}\left(K_{\mathbf{x}}\right)\right)} \\
& \lesssim h_{n}^{s_{t}+1}|\varphi|_{H^{s_{t}+1}\left(I_{n} ; L^{2}\left(K_{\mathbf{x}}\right)\right)}+h_{K_{\mathbf{x}}}^{s_{x}+1}|\varphi|_{L^{2}\left(I_{n} ; H^{s_{x}+1}\left(K_{\mathbf{x}}\right)\right)}
\end{aligned}
$$

and similarly for weighted spaces.
For smooth solutions + quasi-uniform meshes + uniform degree p :

$$
\left\|c^{-1}\left(v-v_{h}\right)\right\|_{L^{2}\left(\Omega \times\left\{t_{n}\right\}\right)}+\left\|\sigma-\sigma_{h}\right\|_{L^{2}\left(\Omega \times\left\{t_{n}\right\}\right)^{2}} \lesssim h^{p+\frac{1}{2}}
$$

$\frac{1}{2}$-order suboptimal: h^{p+1} from numerics.
${ }^{1} A: X \rightarrow Y$ injective, $T: X \rightarrow Z$ compact, $\|x\|_{X} \lesssim\|A x\|_{Y}+\|T x\|_{Z} \Rightarrow\|x\|_{X} \lesssim\|A x\|_{Y}$. Here, $X=H^{s_{t}+1}\left(I ; L^{2}\left(K_{\mathbf{x}}\right)\right) \cap L^{2}\left(I ; H^{s_{x}+1}\left(K_{\mathbf{x}}\right)\right) \stackrel{T}{\hookrightarrow} L^{2}(K)$,

$$
X \xrightarrow{A=\left(\Pi_{L^{2}}, \partial_{t}^{s_{t}+1}, D_{\mathbf{x}}^{s_{x}+1}\right)}\left(\mathbb{P}^{s_{x}}\left(K_{\mathbf{x}}\right) \otimes \mathbb{P}^{s_{t}}(I)\right) \times L^{2}(K) \times L^{2}(K)^{s_{x}+2}
$$

Error bounds: singular solutions \& graded meshes

- $(v, \sigma) \in C^{k-1}\left([0, T] ; H_{\delta}^{k+1,2}(\Omega)\right) \times C^{k}\left([0, T] ; H_{\delta}^{k, 1}(\Omega)^{2}\right)$,

$$
k_{x} \geq 1, k_{t} \geq 2
$$

- graded mesh $\mathcal{T}_{h_{\mathbf{x}}}^{\mathbf{x}}$ in \mathbf{x} (GASPOZ-MORIN), max size $h_{\mathbf{x}}$, refinement of uniform $\mathcal{T}_{0}^{\mathbf{x}}$ with $\# \mathcal{T}_{h_{\mathbf{x}}}^{\mathbf{x}}-\# \mathcal{T}_{0}^{\mathbf{x}} \leq C h_{\mathbf{x}}^{-2}$
- $h_{\mathbf{x}} \sim h_{t} \sim h$
- uniform polynomial degrees p
- numerical flux parameters $\alpha^{-1}=\beta=c \frac{h_{F_{\mathbf{x}}}}{h_{\mathbf{x}}}=c \frac{\text { local }}{\text { global }}$

$$
\Rightarrow \quad\left\|c^{-1}\left(v-v_{h}\right)\right\|_{L^{2}\left(\Omega \times\left\{t_{n}\right\}\right)}+\left\|\sigma-\sigma_{h}\right\|_{L^{2}\left(\Omega \times\left\{t_{n}\right\}\right)^{2}} \lesssim h^{\min \left\{k-\frac{1}{2}, p+\frac{1}{2}\right\}}
$$

$c=1$	$c=3$
$c=3$	$c=1$

Again, numerics on L-shape give h^{p+1} rates.

Sparse $x t-D G$

Want to use a sparse grid approach in space-time.
Take initial mesh $\mathcal{T}_{0,0}$ of size $h_{0, x}, h_{0, t}$. For $\left(l_{x}, l_{t}\right) \in \mathbb{N}_{0}^{2}$, denote $\mathcal{T}_{l_{x}, l_{t}}$ a refinement of $\mathcal{T}_{0,0}$ with

$$
h_{l_{x}, x}=2^{-l_{x}} h_{0, x}, \quad h_{l_{t}, t}=2^{-l_{t}} h_{0, t}
$$

$\mathbf{w}_{l_{x}, l_{t}}=$ corresponding DG solution (same polynomial space \forall element).

Sparse $\mathbf{x} t$-DG

Want to use a sparse grid approach in space-time.
Take initial mesh $\mathcal{T}_{0,0}$ of size $h_{0, x}, h_{0, t}$.
For $\left(l_{x}, l_{t}\right) \in \mathbb{N}_{0}^{2}$, denote $\mathcal{T}_{l_{x}, l_{t}}$ a refinement of $\mathcal{T}_{0,0}$ with

$$
h_{l_{x}, x}=2^{-l_{x}} h_{0, x}, \quad h_{l_{t}, t}=2^{-l_{t}} h_{0, t}
$$

$\mathbf{w}_{l_{x}, l_{t}}=$ corresponding DG solution (same polynomial space \forall element).

Combination formula:

$$
\widehat{\mathbf{w}}_{L}:=+\sum_{l=0}^{L} \mathbf{w}_{l, L-l}-\sum_{l=0}^{L-1} \mathbf{w}_{l, L-1-l}
$$

Combines fine-in- t-coarse-in-x \& fine-in-x-coarse-in- t discretizations. Never use fine-in-t-fine-in-x.

Sparse vs full $\mathbf{x} t$-DG: accuracy and \#DOFs

We observe comparable accuracy for full-tensor $\mathbf{w}_{L, L}$ and sparse $\widehat{\mathbf{w}}_{L}$:

$$
\left\|(v, \boldsymbol{\sigma})-\mathbf{w}_{L, L}\right\|_{L^{2}(\Omega \times\{T\})} \approx\left\|(v, \boldsymbol{\sigma})-\widehat{\mathbf{w}}_{L}\right\|_{L^{2}(\Omega \times\{T\})} .
$$

Consistent with sparse grid theory, which we can't apply here.
So why is it convenient?

Sparse vs full $\mathbf{x t - D G}$: accuracy and \#DOFs

We observe comparable accuracy for full-tensor $\mathbf{w}_{L, L}$ and sparse $\widehat{\mathbf{w}}_{L}$:

$$
\left\|(v, \boldsymbol{\sigma})-\mathbf{w}_{L, L}\right\|_{L^{2}(\Omega \times\{T\})} \approx\left\|(v, \boldsymbol{\sigma})-\widehat{\mathbf{w}}_{L}\right\|_{L^{2}(\Omega \times\{T\})} .
$$

Consistent with sparse grid theory, which we can't apply here.

So why is it convenient?
\#DOFs ${ }^{\text {full }}=\mathcal{O}\left(p^{3} 2^{3 L}\right)=\mathcal{O}\left(p^{3} h_{L}^{-3 L}\right)$,
\#DOFs ${ }^{\text {sparse }}=\mathcal{O}\left(p^{3} 2^{2 L}\right)=\mathcal{O}\left(p^{3} h_{L}^{-2 L}\right)$.

Same accuracy but cheaper!

$$
\left(h_{0, x}=h_{0, t}\right)
$$

Sparse vs full $\mathbf{x} t$-DG: accuracy and \#DOFs

We observe comparable accuracy for full-tensor $\mathbf{w}_{L, L}$ and sparse $\widehat{\mathbf{w}}_{L}$:

$$
\left\|(v, \boldsymbol{\sigma})-\mathbf{w}_{L, L}\right\|_{L^{2}(\Omega \times\{T\})} \approx\left\|(v, \boldsymbol{\sigma})-\widehat{\mathbf{w}}_{L}\right\|_{L^{2}(\Omega \times\{T\})} .
$$

Consistent with sparse grid theory, which we can't apply here.
So why is it convenient? Same accuracy but cheaper!

$$
\text { \#DOFs }{ }^{\text {full }}=\mathcal{O}\left(p^{3} 2^{3 L}\right)=\mathcal{O}\left(p^{3} h_{L}^{-3 L}\right)
$$

$$
\left(h_{0, x}=h_{0, t}\right)
$$

\#DOFs ${ }^{\text {sparse }}=\mathcal{O}\left(p^{3} 2^{2 L}\right)=\mathcal{O}\left(p^{3} h_{L}^{-2 L}\right)$.

Singular solution on L-shape, mesh locally refined in \mathbf{x}. \rightarrow \#DOFs is not where sparse scheme wins. . .

Sparse vs full $\mathbf{x t}$-DG: complexity

Not only \#DOFs differ but also sizes \& numbers of linear systems.
Full-tensor $\mathbf{w}_{L, L}$ requires:
$O\left(2^{L}\right) \times$ solves of size $O\left(2^{2 L}\right)$ Sparse $\widehat{\mathbf{w}}_{L}$ requires:

$\mathcal{O}(1) \times$ solves of size $\mathcal{O}\left(2^{2 L}\right)$
$\mathcal{O}(2) \times$ solves of size $\mathcal{O}\left(2^{2(L-1)}\right)$
关 $\mathcal{O}\left(2^{L}\right) \times$ solves of size $\mathcal{O}(1)$
Total complexity is the same as
single elliptic solve in $\Omega\left(\subset \mathbb{R}^{2}\right) \times$ logarithmic terms.
Includes CFL-violating solves:
requires unconditionally stable formulation.

Part 2: summary

- Unconditionally stable $\mathbf{x} t$-DG formulation, discrete functions are tensor-product polynomials.
- Well-posedness and error control also for solutions with point singularities.
- $h^{p+\frac{1}{2}}$ convergence rates for smooth solutions and quasi-uniform meshes, for singular solutions and refined meshes.
- Sparse version: same accuracy, fewer DOFs, lower complexity.

Main future work: sparse $\mathbf{x} t$-DG error analysis.

> (BANSAL, M., Perugia, Schwab, IMA JNA, 2021)

Part 2: summary

- Unconditionally stable $\mathbf{x t}$-DG formulation, discrete functions are tensor-product polynomials.
- Well-posedness and error control also for solutions with point singularities.
- $h^{p+\frac{1}{2}}$ convergence rates for smooth solutions and quasi-uniform meshes, for singular solutions and refined meshes.
- Sparse version: same accuracy, fewer DOFs, lower complexity.

Main future work: sparse $\mathbf{x} t$-DG error analysis.

(BANSAL, M., Perugia, Schwab, IMA JNA, 2021)

Thank you!

Quasi-optimality

In non-Trefftz case, assume

$$
\left(\nabla \cdot \boldsymbol{\tau}_{h}+c^{-2} \partial_{t} w_{h}, \nabla w_{h}+\partial_{t} \boldsymbol{\tau}_{h}\right) \in \mathbf{V}_{\mathbf{p}}\left(\mathcal{T}_{h}\right) \quad \forall\left(w_{h}, \boldsymbol{\tau}_{h}\right) \in \mathbf{V}_{\mathbf{p}}\left(\mathcal{T}_{h}\right) ;
$$

Then

$$
\begin{aligned}
& \left|\left(\Pi_{L^{2}} v, \Pi_{L^{2}} \boldsymbol{\sigma}\right)-\left(v_{h}, \boldsymbol{\sigma}_{h}\right)\right|_{\mathrm{DG}\left(\Theta_{n}\right)}^{2} \\
& =\mathcal{A}_{\mathrm{DG}\left(\Theta_{n}\right)}\left(\left(\Pi_{L^{2}} v, \Pi_{L^{2}} \boldsymbol{\sigma}\right)-\left(v_{h}, \sigma_{h}\right) ;\left(\Pi_{L^{2}} v, \Pi_{L^{2}} \boldsymbol{\sigma}\right)-\left(v_{h}, \boldsymbol{\sigma}_{h}\right)\right) \\
& =\mathcal{A}_{\mathrm{DG}\left(\Theta_{n}\right)}\left(\left(\Pi_{L^{2}} v, \Pi_{L^{2}} \boldsymbol{\sigma}\right)-(v, \boldsymbol{\sigma}) ;\left(\Pi_{L^{2}} v, \Pi_{L^{2}} \boldsymbol{\sigma}\right)-\left(v_{h}, \boldsymbol{\sigma}_{h}\right)\right) \\
& \leq 2 \boldsymbol{C}_{\infty \mid 2}\left|\left(\Pi_{L^{2}} v, \Pi_{L^{2}} \boldsymbol{\sigma}\right)-(v, \boldsymbol{\sigma})\right|_{\mathrm{DG}\left(\Omega_{n}\right)}+\left|\left(\Pi_{L^{2}} v, \Pi_{L^{2}} \boldsymbol{\sigma}\right)-\left(v_{h}, \boldsymbol{\sigma}_{h}\right)\right|_{\mathrm{DG}\left(\Theta_{n}\right)} .
\end{aligned}
$$

Last ineq. uses inverse inequality on corner elements and cancellation of volume terms due to choice of L^{2} projection.

$$
\begin{aligned}
& \frac{1}{2}\left\|c^{-1}\left(\boldsymbol{v}-v_{h}\right)\right\|_{L^{2}\left(\Omega \times\left\{t_{n}\right\}\right)}+\frac{1}{2}\left\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right\|_{L^{2}\left(\Omega \times\left\{t_{n}\right\}\right)^{2}} \\
& \leq\left|(\boldsymbol{v}, \boldsymbol{\sigma})-\left(\boldsymbol{v}_{h}, \boldsymbol{\sigma}_{h}\right)\right|_{\mathrm{DG}\left(\Theta_{n}\right)} \\
& \leq\left|(\boldsymbol{v}, \boldsymbol{\sigma})-\left(\Pi_{L^{2}} \boldsymbol{v}, \Pi_{L^{2}} \boldsymbol{\sigma}\right)\right|_{\mathrm{DG}\left(\Theta_{n}\right)}+\left|\left(\Pi_{L^{2}} \boldsymbol{v}, \Pi_{L^{2}} \boldsymbol{\sigma}\right)-\left(\boldsymbol{v}_{h}, \boldsymbol{\sigma}_{h}\right)\right|_{\mathrm{DG}\left(\Theta_{n}\right)} \\
& \leq\left(1+2 C_{\infty \mid 2}\right)\left|(\boldsymbol{v}, \boldsymbol{\sigma})-\left(\Pi_{L^{2}} \boldsymbol{v}, \Pi_{L^{2}} \boldsymbol{\sigma}\right)\right|_{\mathrm{DG}\left(\Omega_{n}\right)^{+}}
\end{aligned}
$$

