Non-polynomial methods for the Helmholtz equation

Andrea Moiola

```
https://euler.unipv.it/moiola/
```

UNIVERSITÀ DI PAVIA
Department of Mathematics
"Felice Casorati"

Polynomials or not?

Goal:

Numerical approximation of BVPs for the Helmholtz eq. $\Delta u+\kappa^{2} u=0$.
Classical FEM \& BEM use piecewise-polynomial approximants.
Why polynomials?

- Easy \& cheap to evaluate, manipulate, differentiate, integrate. . .
- Approximation properties:
- Can approximate all functions
- Complete theory, convergence rates, only depend on smoothness

Why not polynomials?

- Can we do better?

Classical methods at large frequencies are not very satisfactory

- Not adapted to Helmholtz: polynomials are general-purpose tool
- Main goal: more accuracy for fewer DOFs

Everything can/might be extended to time-harmonic electromagnetic and elastic waves.

Outline

- FEM-type methods:
- Trefftz methods
- Meshless methods, method of fundamental solutions (MFS)
- Partition of unity (PUM)
- Trefftz discontinuous Galerkin (TDG/UWVF)
- Quasi-Trefftz
- Approximation properties
- Instability and possible remedy
- BEM-type methods:
(discretise BIE on $\partial \Omega$)
Hybrid-numerical asymptotics BEM (HNA BEM) (talk by F. Ecevit)

See also talk by T. Chaumont-Frelet on approximation by "Gaussian coherent states".

Part 1

FEM-type methods

Treffiz methods

HiptMair, M., Perugia 2016, A survey of Trefftz methods for the Helmholtz eq.
A Trefftz method is a finite-element-type scheme where all discrete functions are solutions of the PDE to be approximated in each element of a mesh.

Named after Erich Trefftz's 1926 paper.
E.g.: piecewise harmonic polynomials for Laplace equation $\Delta u=0$.

Main point: expect more accuracy for fewer DOFs.
Homogeneous Helmholtz eq. does not admit polynomial solutions: Trefftz methods for Helmholtz are non-polynomial.

Trefftz bases

Typical basis: (propagative) plane waves (PPWs):

$$
\mathbf{x} \mapsto \mathrm{e}^{\mathrm{i} \kappa \mathbf{d} \cdot \mathbf{x}} \quad \mathbf{d} \in \mathbb{R}^{n} \quad \mathbf{d} \cdot \mathbf{d}=1
$$

PPWs are just complex exponentials:
as easy \& cheap to manipulate, evaluate, differentiate, integrate. . . as polynomials
\rightarrow Usually preferred to other choices of Trefftz bases, e.g.:
circular waves
$J_{\ell}(\kappa r) \mathrm{e}^{\mathrm{i} \ell \theta}, \ell \in \mathbb{Z}$
corner waves
$J_{\xi}(\kappa r) \mathrm{e}^{\mathrm{i} \xi \theta}, \xi \notin \mathbb{Z}$
fundamental sol. wavebands
$\Phi_{\kappa}\left(\mathbf{x}, \mathbf{y}_{j}\right)$

$$
\int_{\varphi_{1}}^{\varphi_{2}} \mathrm{e}^{\mathrm{i} \kappa \mathbf{x} \cdot(\cos \sin \varphi)} \mathrm{d} \varphi
$$

Meshless methods and MFS

Trefftz basis functions cannot be "glued" across mesh elements. ∇

- Solution \#1: meshless methods.

Herrera, Zieliński, Zienkiewicz. . . since 1970s. Includes "Fokas transform method".

Prominent example:
Method of fundamental solutions (MFS)
Solution u approximated by

$$
u_{M F S}(\mathbf{x})=\sum_{j=1}^{N} a_{j} H_{0}^{(1)}\left(\kappa\left|\mathbf{x}-\mathbf{y}_{j}\right|\right)
$$

(Barnett, Betcke 2008)
Nodes \mathbf{y}_{j} on a curve exterior to domain.
Coefficients a_{j} computed by minimising error vs boundary conditions.

+ Simple, highly accurate, bounded or unbounded domains
- Delicate choice of nodes \mathbf{y}_{j}, little analysis, mostly 2D, instability.

Related: "Lightning method" for polygons (Gopal, Trefethen 2019).

Partition of unity method

Trefftz basis functions cannot be "glued" across mesh elements.

- Solution \#2: Partition of unity method (PUM/PUFEM)
(Melenk, Babuška, 1995-97)
Multiply
- Trefftz basis $\left\{\mathrm{e}^{\mathrm{i} \kappa \mathbf{d}_{m} \cdot \mathbf{x}}\right\}_{m=1, \ldots, M}$
- partition of unity $\left\{\varphi_{j}\right\}_{j=1, \ldots, J} \subset H^{1}(\Omega) \quad \rightarrow \quad \begin{aligned} & M \cdot J \text { TOfFs } \\ & \text { non Trefftz }\end{aligned}$

Simple choice of PU:

$V_{P U M}=\operatorname{span}\left\{\mathrm{e}^{\mathrm{i} \kappa \mathbf{d}_{m} \cdot \mathbf{x}} \varphi_{j}(\mathbf{x})\right\} \subset H^{1}(\Omega)$: can use classical variational form.:
e.g. $\int_{\Omega}\left(\nabla u \cdot \nabla \bar{v}-\kappa^{2} u \bar{v}\right)+\mathrm{i} \kappa \int_{\partial \Omega} u \bar{v}=\int_{\partial \Omega} g v \quad \forall v \in V_{P U M} \subset H^{1}(\Omega)$

Trefftz DG methods

Trefftz basis functions cannot be "glued" across mesh elements.

- Solution \#3:

Allow discrete functions to be discontinous across mesh face: discontinuous Galerkin (DG) method.

Variational formulation weakly enforces continuity and boundary conditions.

Examples: UWVF, TDG/PWDG, DEM, VTCR, WBM, LS, FLAME, . . .
NGSolve code by P. Stocker: https://paulst.github.io/NGSTrefftz

A concrete Trefftz methods depends on 2 choices:

- DG formulation
- discrete space

TDG: sketch of the derivation

Consider Helmholtz equation with impedance (Robin) b.c.:

$$
\begin{aligned}
-\Delta u-\kappa^{2} u=0 & \text { in } \Omega \subset \mathbb{R}^{n} \text { bdd., Lip., } n=2,3 \\
\nabla u \cdot \mathbf{n}+\mathbf{i} \kappa u=g & \in L^{2}(\partial \Omega) ;
\end{aligned}
$$

(1) Partition Ω with a mesh \mathcal{T}_{h}, choose discrete Trefftz space $V_{p}\left(\mathcal{T}_{h}\right)$

2 Multiply with test v, integrate by parts twice on element $K \in \mathcal{T}_{h}$
("ultraweak" formulation): $\quad \forall v_{p} \in V_{p}\left(\mathcal{T}_{h}\right)$

$$
\int_{K} u_{p} \underbrace{\overline{\left(-\Delta v_{p}-\kappa^{2} v_{p}\right)}}_{=0} \mathrm{~d} V+\int_{\partial K}\left(-\partial_{\mathbf{n}} u_{p} \overline{v_{p}}+u_{p} \overline{\partial_{\mathbf{n}} v_{p}}\right) \mathrm{d} S=0
$$

3 Replace traces on ∂K with "numerical fluxes" to weakly enforce inter-element continuity and BCs:

$$
\begin{aligned}
u_{p} & \rightarrow\left\{\left\{u_{p}\right\}-\frac{\beta}{\mathbf{i} \kappa} \llbracket \nabla_{h} u_{p} \rrbracket_{N} \quad \alpha, \beta>0\right. \\
\nabla u_{p} & \rightarrow\left\{\left\{\nabla_{h} u_{p}\right\}\right\}-\alpha \mathbf{i} \kappa \llbracket u_{p} \rrbracket_{N}
\end{aligned}
$$

$\{\cdot\}=$ averages, $\quad \llbracket \cdot \rrbracket_{N}=$ normal jumps on the interfaces

TDG quasi-optimality

Summing over K we get variational formulation:

$$
\begin{gathered}
\text { find } u_{p} \in V_{p}\left(\mathcal{T}_{h}\right) \quad \text { s.t. } \quad \mathcal{A}_{h}\left(u_{p}, v_{p}\right)=\mathcal{F}\left(v_{p}\right) \quad \forall v_{p} \in V_{p}\left(\mathcal{T}_{h}\right) \\
V_{p}\left(\mathcal{T}_{h}\right) \subset T\left(\mathcal{T}_{h}\right):=\left\{v \in L^{2}(\Omega):-\Delta v-\kappa^{2} v=0 \text { in each } K \in \mathcal{T}_{h}\right\}
\end{gathered}
$$

$$
\forall v, w \in T\left(\mathcal{T}_{h}\right):
$$

$\Rightarrow \quad$ Well-posedness \&

$$
\operatorname{Im} \mathcal{A}_{h}(v, v)=\| \| v\| \|_{\mathcal{F}_{h}}^{2}
$$ quasi-optimality:

$$
\left.\left|\mathcal{A}_{h}(w, v)\right| \leq 2\left|\|w\|_{\mathcal{F}_{h}^{+}}\right|\|v\|_{\mathcal{F}_{h}}\right\}\left|\left\|u-u_{p}\left|\left\|_{\mathcal{F}_{h}} \leq 3 \inf _{v_{p} \in V_{p}\left(\mathcal{T}_{h}\right)}\left|\left\|u-v_{p} \mid\right\|_{\mathcal{F}_{h}^{+}}\right.\right.\right.\right.\right.
$$

Holds for all discrete Trefftz spaces $V_{p}\left(\mathcal{T}_{h}\right) \subset T\left(\mathcal{T}_{h}\right)$

$$
\begin{aligned}
& \|v\|\left\|_{\mathcal{F}_{h}}^{2}:=\frac{1}{\kappa}\right\| \sqrt{\beta} \llbracket \nabla_{h} v \rrbracket_{N}\left\|_{\mathcal{F}_{h}^{I}}^{2}+\kappa\right\| \sqrt{\alpha} \llbracket v \rrbracket_{N}\left\|_{\mathcal{F}_{h}^{I}}^{2}+\frac{1}{\kappa}\right\| \sqrt{\delta} \partial_{\mathbf{n}} v\left\|_{\partial \Omega}^{2}+\kappa\right\| \sqrt{1-\delta} v \|_{\partial \Omega}^{2} \\
& \|v\|_{\mathcal{F}_{h}^{+}}^{2}:=\|v\|\left\|_{\mathcal{F}_{h}}^{2}+\kappa\right\| \beta^{-1 / 2}\{v\}\left\|_{\mathcal{F}_{h}^{I}}^{2}+\frac{1}{\kappa}\right\| \alpha^{-1 / 2}\left\{\nabla_{h} v\right\}\left\|_{\mathcal{F}_{h}^{I}}^{2}+\kappa\right\| \delta^{-1 / 2} v \|_{\partial \Omega}^{2}
\end{aligned}
$$

Duality technique of (MONK, WANG 1999) allows to control L^{2} norm of the error: $\quad\left\|u-u_{p}\right\|_{L^{2}(\Omega)} \leq C(\kappa)\left\|u-u_{p}\right\| \|_{\mathcal{F}_{h}}$

Part II

Approximation in Trefftz spaces

Best approximation estimates

The analysis of any plane wave Trefftz method requires best approximation estimates:

$$
\begin{gathered}
-\Delta u-\kappa^{2} u=0 \quad \text { in } D \in \mathcal{T}_{h}, \quad u \in H^{k+1}(D) \\
\operatorname{diam}(D)=h, \quad p \in \mathbb{N}, \quad \mathbf{d}_{1}, \ldots, \mathbf{d}_{p} \in \mathbb{S}^{N-1}
\end{gathered}
$$

$$
\inf _{\vec{\alpha} \in \mathbb{C}^{p}}\left\|u-\sum_{\ell=1}^{p} \alpha_{\ell} \mathrm{e}^{\mathrm{i} \kappa \mathbf{d}_{\ell} \cdot \mathbf{x}}\right\|_{H^{j}(D)} \leq C \epsilon(h, p)\|u\|_{H^{k+1}(D)}
$$

Want to study convergence rate: $\quad \epsilon(h, p) \xrightarrow[p \rightarrow \infty]{h \rightarrow 0} 0$
2 techniques:

- Show that $\forall u \in T\left(\mathcal{T}_{h}\right), \exists u_{p} \in V_{p}(K)$ with the same Taylor polynomial at a given \mathbf{x}_{K}
(Cessenat, Després 1998)
- Vekua theory
(Melenk 1995, M., Hiptmair, Perugia 2011)

Approximation by plane waves: Vekua theory

Analytical tool from (VekUA 1942, 1967)
Allows to reduce approximation of Helmholtz solution by plane and circular waves \downarrow
approximation of harmonic functions by harmonic polynomials (Melenk 1995, Moiola 2011)

Vekua operators

$D \subset \mathbb{R}^{n}$ star-shaped wrt. $\mathbf{0}$.
Define two continuous functions:

$$
\begin{array}{rlr}
M_{1}(\mathbf{x}, t) & =-\frac{\kappa|\mathbf{x}|}{2} \frac{\sqrt{t}^{n-2}}{\sqrt{1-t}} J_{1}(\omega|\mathbf{x}| \sqrt{1-t}) & M_{1}, M_{2}: D \times[0,1] \rightarrow \mathbb{R} \\
M_{2}(\mathbf{x}, t)=-\frac{i \kappa|\mathbf{x}|}{2} \frac{\sqrt{t}^{n-3}}{\sqrt{1-t}} J_{1}(i \omega|\mathbf{x}| \sqrt{t(1-t)}) & J_{1}=\text { Bessel } \mathrm{f} . \\
& V[\phi](\mathbf{x}):=\phi(\mathbf{x})+\int_{0}^{1} M_{1}(\mathbf{x}, t) \phi(t \mathbf{x}) \mathrm{d} t & \\
& V_{2}[\phi](\mathbf{x}):=\phi(\mathbf{x})+\int_{0}^{1} M_{2}(\mathbf{x}, t) \phi(t \mathbf{x}) \mathrm{d} t & \mathbf{x} \in D
\end{array}
$$

$V: C^{0}(D) \rightarrow C^{0}(D)$ is linear operator such that:

- $V_{2}=V^{-1}$
- $\Delta \phi=0 \quad \Longleftrightarrow \quad\left(-\Delta-\kappa^{2}\right) V[\phi]=0$
- $P=\underset{\text { polynomial }}{\text { harmonic }} \Longleftrightarrow V[P]=\begin{gathered}\text { circular/spherical } \\ \text { wave }\end{gathered}$
- V, V^{-1} continuous in Sobolev norms, explicit in $\kappa\left(H^{j}(D), W^{j, \infty}(D)\right)$

Approximation by circular/spherical waves

Approximation of u by

$$
\begin{array}{ll}
\operatorname{span}\left\{J_{\ell}(\kappa|\mathbf{x}|) \mathrm{e}^{\mathrm{i} \ell \theta}\right\}_{|\ell| \leq L} & 2 \mathrm{D} \\
\operatorname{span}\left\{\mathrm{j}_{\ell}(\kappa|\mathbf{x}|) Y_{\ell}^{m}\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right)\right\}_{0 \leq \ell \leq L,|m| \leq \ell} & \text { 3D }
\end{array}
$$

$$
\underset{\substack{\inf \\ \text { parmonic } \\ \text { of degnomialis }}}{ }\|\underbrace{u-V[P]}_{=V\left[V^{-1}[u]-P\right]}\|_{j, \kappa, D} \leq C \inf _{P}\left\|V^{-1}[u]-P\right\|_{j, \kappa, D} \quad \text { contin. of } V,
$$

$$
\begin{array}{ll}
\leq C \epsilon(h, L)\left\|V^{-1}[u]\right\|_{k+1, \kappa, D} & \begin{array}{c}
\text { harmonic } \\
\text { approx. results, }
\end{array} \\
\leq C \epsilon(h, L)\|u\|_{k+1, \kappa, D} & \text { contin. of } V^{-1} .
\end{array}
$$

\Rightarrow Orders of convergence for Helmholtz-by-CWs are the same as harmonic functions-by-harmonic polynomials:

$$
\epsilon(h, L) \sim L^{\lambda(k+1-j)} h^{k+1-j}
$$

The constant C depends explicitly on κh :

$$
C=C \cdot(1+\kappa h)^{j+6} \mathrm{e}^{\frac{3}{4} \kappa h}
$$

Approximation of circular waves by plane waves

Link between plane waves and circular/spherical waves: Jacobi-Anger expansion

We need the other way round:
circular wave \approx linear combination of plane waves

- truncation of J-A expansion
- careful choice of directions (in 3D)
- solution of a linear system
\rightarrow explicit error bound
- residual estimates

Final approximation by plane waves

$\forall u \in H^{k+1}(D), \quad-\Delta u-\kappa^{2} u=0, \quad D \subset \mathbb{R}^{n}, \quad n \in\{2,3\}$,

$$
\inf _{\vec{\alpha} \in \mathbb{C}^{p}}\left\|u-\sum_{\ell=1}^{p} \alpha_{\ell} \mathrm{e}^{\mathrm{i} \kappa \mathbf{x} \cdot \mathbf{d}_{\ell}}\right\|_{H^{j}(D)} \leq C(\kappa h) h^{k+1-j} p^{-\frac{\lambda(k+1-j)}{n-1}}\|u\|_{H^{k+1}(D)}
$$

$h=\operatorname{diam}(D), \quad p=$ PPW space dimension,$\quad D=$ mesh element
Better rates than polynomials!
If u extends outside D : exponential convergence.

Smooth-coefficient PDEs: quasi-Trefftz methods

All this is for constant-coefficients Helmholtz eq.: $\quad \Delta u+\kappa^{2} u=0$.
What about $\quad \mathcal{L} u=\nabla \cdot(a(\mathbf{x}) \nabla u)+\kappa^{2} n(\mathbf{x}) u=0$?
We don'† know exact solutions \rightarrow no Trefftz method possible.
Quasi-Trefftz idea:
(Imbert-GÉRARD 2014-. . .) use discrete functions that are approximate PDE solutions, $\mathcal{L} u_{h} \approx 0$.

More precisely, degree- q Taylor polynomial (centred at a given \mathbf{x}_{K}) of $\mathcal{L} v_{h}$ is 0 :
$T_{\mathbf{x}_{K}}^{q+1}\left[\mathcal{L} u_{h}\right]=0 \quad \Rightarrow$ Small residual: $\quad \mathcal{L} v_{h}(\mathbf{x})=\mathcal{O}\left(\left|\mathbf{x}-\mathbf{x}_{K}\right|^{q+1}\right), \quad \mathbf{x} \in K$
Can construct quasi-Trefftz spaces

- with polynomials, or
- with generalised plane waves: $\mathrm{e}^{\mathrm{i} \kappa P(\mathbf{x})}$

Basis construction and h-approximation properties are available

PPW instability

Plane-wave-based Trefftz-DG methods

- have great approximation properties
- are quasi-optimal (\rightarrow convergence is guaranteed)
- are simple (exponential basis)

So why isn'† everybody using plane waves?

The issue is "instability". Increasing \# of PPWs, at some point convergence stagnates.

Discrete space contains an accurate approximation, but linear system cannot find it.

Numerical phenomenon: due to computer arithmetic+cancellation.
PPW instability already observed in all PPW-based Trefftz methods. Usually described and treated as ill-conditioning issue.

Part III

PPW instability and evanescent PWs

E. Parolin, D. Huybrechs, A. Moiola
arXiv:2202.05658
Stable approximation of Helmholtz solutions by evanescent plane waves Julia code on:
https://github.com/EmileParolin/evanescent-plane-wave-approx

Adcock-Huybrechs theory

Ben Adcock, DaAn Huybrechs, SiRev 2019 \& JFAA 2020, "Frames and numerical approximation I \& II"

Goal: Approximate some $v \in V$ with linear combination of $\left\{\phi_{m}\right\} \subset V$.
Result: If there exists $\sum_{m=1}^{M} a_{m} \phi_{m}$ with good approximation of v,

- small coefficients a_{m},
then the approximation of v in computer arithmetic is stable, if one uses oversampling and SVD regularization.

Denoting $P_{\left\{\phi_{m}\right\}}^{\epsilon}$ the truncated SVD projection with truncation ϵ,

$$
\left\|v-P_{\left\{\phi_{m}\right\}}^{\epsilon} v\right\|_{V} \leq \inf _{\mathbf{a} \in \mathbb{C}^{M}}\left(\left\|v-\sum_{m=1}^{M} a_{m} \phi_{m}\right\|_{V}+\sqrt{\epsilon}\|\mathbf{a}\|_{\mathbb{C}^{M}}\right)
$$

(Improvement: $\sqrt{\epsilon} \rightarrow \epsilon$ using oversampling.)
Stability does not depend on (LS, Galerkin,...) matrix conditioning.

Fourier-Bessel basis on the disc

Let us focus on the unit disc $B_{1} \subset \mathbb{R}^{2}$.
Separable solutions in polar coordinates:

$$
b_{p}(r, \theta):=\beta_{p} J_{p}(\kappa r) \mathrm{e}^{\mathrm{i} p \theta} \quad \forall p \in \mathbb{Z}, \quad(r, \theta) \in B_{1}
$$

$\beta_{p}=$ normalization, e.g. in $H^{1}\left(B_{1}\right)$ norm.

$$
\beta_{p} \sim \kappa\left(\frac{2|p|}{\mathrm{e} \kappa}\right)^{|p|} \text { as } p \rightarrow \infty .
$$

Propagative mode

$$
p=32=2 \kappa
$$

Evanescent mode
$\left\{b_{p}\right\}_{p \in \mathbb{Z}}$ is orthonormal basis of $\quad \mathcal{B}:=\left\{u \in H^{1}\left(B_{1}\right):-\Delta u-\kappa^{2} u=0\right\}$

Stable PPW approximation is impossible

The Jacobi-Anger expansion relates PPWs and circular waves b_{p} :

$$
\mathrm{PW}_{\varphi}(\mathbf{x}):=\mathrm{e}^{\mathrm{i} \kappa \mathbf{d} \cdot \mathbf{x}}=\sum_{p \in \mathbb{Z}}\left(\mathrm{i}^{p} \mathrm{e}^{-\mathrm{i} p \varphi} \beta_{p}^{-1}\right) b_{p}(r, \theta)
$$

Modulus of Fourier coefficient
$\left|\mathrm{i}^{p} \mathrm{e}^{-\mathrm{i} p \varphi} \beta_{p}^{-1}\right|=\left|\beta_{p}^{-1}\right| \sim|p|^{-|p|} \quad$ indep. of φ.
Approximation of $u=\sum_{p} \widehat{u}_{p} b_{p} \in \mathcal{B}$ requires exponentially large coefficients.
$u \in H^{s}\left(B_{1}\right), s \geq 1 \quad \Longleftrightarrow \quad\left|\widehat{u}_{p}\right| \sim o\left(|p|^{-s+\frac{1}{2}}\right)$ but $\left|\beta_{p}^{-1}\right| \sim|p|^{-|p|}$ is much smaller!

$$
\underset{\substack{\forall p \in \mathbb{Z} \\ \forall M \in \mathbb{N} \\ \forall \boldsymbol{N} \in \mathbb{C}^{M} \\ \forall \eta \in(0,1)}}{\forall M} b_{p}-\sum_{m=1}^{M} \mu_{m} \mathrm{PW}_{\frac{2 \pi m}{M}}\left\|_{\mathcal{B}} \leq \eta \quad \Longrightarrow \quad\right\| \boldsymbol{\mu} \|_{\ell^{1}\left(\mathbb{C}^{M}\right)} \geq(1-\eta) \underbrace{\left|\beta_{p}\right|}_{\sim|p||\nu|}
$$

Evanescent plane waves

Idea: use PPWs \& evanescent plane waves (EPW)

$$
\mathrm{e}^{\mathrm{i} \kappa \mathbf{d} \cdot \mathrm{x}} \quad \mathbf{d} \in \mathbb{C}^{2} \quad \mathbf{d} \cdot \mathbf{d}=1
$$

Complex d!
Again: exponential Helmholtz solutions.

$\zeta=0$
$\zeta=0.1$
$\zeta=0.2$
$\zeta=1 \quad \kappa=16$
Parametrised by $\quad \varphi=$ direction, $\zeta=$ "evanescence". $\uparrow^{\zeta} Y$
Parametric cylinder:

$$
\mathbf{y}:=(\varphi, \zeta) \in Y:=[0,2 \pi) \times \mathbb{R} .
$$

$$
\mathbf{d}(\mathbf{y}):=(\cos (\varphi+\mathbf{i} \zeta), \sin (\varphi+\mathbf{i} \zeta)) \in \mathbb{C}^{2}
$$

EPW modal analysis

Jacobi-Anger expansion holds also for EPWs:

$$
\mathrm{EW}_{\mathbf{y}}(\mathbf{x})=\mathrm{e}^{\mathrm{i} \kappa \mathbf{d}(\mathbf{y}) \cdot \mathbf{x}}=\sum_{p \in \mathbb{Z}}\left(\mathrm{i}^{p} \mathrm{e}^{-\mathrm{i} p \varphi} \mathrm{e}^{p \zeta} \beta_{p}^{-1}\right) b_{p}(\mathbf{x})
$$

Absolute values of Fourier coefficients $\quad\left|\mathrm{i}^{p} \mathrm{e}^{-\mathrm{i} p \varphi} \mathrm{e}^{p \zeta} \beta_{p}^{-1}\right|, \quad \kappa=16$:

Looks promising!
We can hope to approximate large- p Fourier modes with EPWs
\& small coefficients v_{m} :

$$
b_{p}(\mathbf{x}) \approx \sum_{m=1}^{M} v_{m} \mathrm{EW}_{\mathbf{y}_{m}}(\mathbf{x})
$$

Helmholtz solutions are EPW superpositions

We want to represent $u \in \mathcal{B}$ as continuous superposition of EPWs:

$$
u(\mathbf{x})=\int_{Y} \mathrm{EN}_{\mathbf{y}}(\mathbf{x}) v(\mathbf{y}) w^{2}(\mathbf{y}) \mathrm{d} \mathbf{y}=:(T v)(\mathbf{x}) \quad \mathbf{x} \in B_{1}
$$

with density $v \in L^{2}\left(Y ; w^{2}\right)$ and weight $w^{2}=\mathrm{e}^{-2 \kappa \sinh |\zeta|+\frac{1}{2}|\zeta|}$

Parametric space

Herglotz density

$$
v \in \mathcal{A}=\overline{\operatorname{span}\left\{a_{p}\right\}} \subset L^{2}\left(Y ; w^{2}\right)
$$

Physical space

Helmholtz solution

$$
u \in \mathcal{B}=\overline{\operatorname{span}\left\{b_{p}\right\}} \subset H^{1}\left(B_{1}\right)
$$

Every Helmholtz solution is (continuous) linear combination of EPWs with small coefficients: $\quad\|v\|_{\mathcal{A}} \leq \tau_{-}^{-1}\|u\|_{\mathcal{B}}$

How to sample \mathcal{A} ? How to choose $\left\{\mathbf{y}_{m}\right\}_{m} \in Y$?

Idea from (COhen, Migliorati 2017).

Fix $P \in \mathbb{N}$, set $\mathcal{A}_{P}:=\operatorname{span}\left\{a_{p}\right\}_{|p| \leq P} \subset \mathcal{A}$.

$$
\rho(\mathbf{y}):=\frac{w^{2}}{2 P+1} \sum_{|p| \leq P}\left|a_{p}(\mathbf{y})\right|^{2} \quad \text { on } Y
$$

Define probability density

$$
\rho^{-1}=\begin{gathered}
\text { "Christoffel } \\
\text { function" }
\end{gathered}
$$

Generate $M \in \mathbb{N}$ nodes $\left\{\mathbf{y}_{m}\right\}_{m=1, \ldots, M} \subset Y$ distributed according to ρ :

We expect that any $u \in \operatorname{span}\left\{b_{p}\right\}_{|p| \leq P}$ can be approximated by EPWs with parameters $\left\{\mathbf{y}_{m}\right\}$ with small coefficients.
\rightarrow Stable approx. in computer arithmetic using SVD \& oversampling.
The M-dimensional EPW space depends on truncation parameter P : the space is tuned to approximate the Fourier modes b_{p} with $|p| \leq P$.

Approximation of b_{p} by PPWs and by EPWs

$\kappa=16$,
$\epsilon=10^{-14}$,
$S=\max \{2 M, 2|p|\}$
$p=8$

$$
p=40
$$

$b_{p}, p=8$, residual $\left\|A \boldsymbol{\xi}_{\epsilon}-\mathbf{c}\right\| / /\|\mathbf{c}\|$

Mode number p

III-conditioning does not spoil EPW accuracy

Approximation of general Helmholtz solution

$$
u=\sum_{|p| \leq P} \hat{u}_{p} b_{p}, \quad \hat{u}_{p} \sim(\max \{1,|p|-\kappa\})^{-1 / 2}, \quad \kappa=100, \quad P=2 \kappa, \quad M=802
$$

$$
\Re\{u\}
$$

$\|u-P P W\|_{L^{\infty}} \gtrsim 7 \cdot 10^{9}\|u-E P W\|_{L^{\infty}}$
DOFs/wavelength $=\lambda \sqrt{M /\left|B_{1}\right|} \approx 1$

Convex polygon, same discrete space

$\kappa=16, \quad M=200, \quad u=$ fundamental solution at distance 0.25

$\Re\{u\}$

$$
|u-P P W|
$$

$$
|u-E P W|
$$

Part IV

BEM-type methods: HNA

Hybrid numerical-asymptotic approach

- FEM/BEM approximates u by a piecewise polynomial on a mesh.
- GO/GTD approximates u by a sum of WKB solutions (corresponding to incident, reflected, diffracted waves):

$$
u(\mathbf{x}) \sim \sum_{j=1}^{J} v_{j}(\mathbf{x}) \mathrm{e}^{\mathrm{i} \kappa \phi_{j}(\mathbf{x})}, \quad \kappa \rightarrow \infty
$$

Phases ϕ_{j} and amplitudes v_{j} found by ray tracing, solving ODEs along rays, and asymptotic matching.

- HNA methods use a FEM/BEM approximation space incorporating oscillatory basis functions, with GO/GTD phases and numerically computed piecewise-polynomial amplitudes.

Goal: Controllable accuracy and $O(1)$ computational cost as $\kappa \rightarrow \infty$.

Sound-soft convex polygonal scatterer

HNA survey: (Chandler-Wilde, Graham, Langdon, Spence 2012) This setting: (CHANDLER-WILDE, LANGDON 2007)

$$
\Delta u+\kappa^{2} u=0
$$

$$
u^{\mathrm{Scat}}=u-u^{i}
$$

outgoing at infinity

Green's representation theorem:

$$
\Phi(\mathbf{x}, \mathbf{y}):=\frac{i}{4} H_{0}^{(1)}(\kappa|\mathbf{x}-\mathbf{y}|)
$$

$$
u(\mathbf{x})=u^{i}(\mathbf{x})-\int_{\Gamma} \Phi(\mathbf{x}, \mathbf{y}) \partial_{\mathbf{n}} u(\mathbf{y}) \mathrm{d} s(\mathbf{y}), \quad \mathbf{x} \in \mathbb{R}^{2} \backslash \bar{\Omega}
$$

Taking traces gives a boundary integral equation for $\partial_{\mathbf{n}} u(\mathbf{y})$, e.g.

$$
\int_{\Gamma} \Phi(\mathbf{x}, \mathbf{y}) \partial_{\mathbf{n}} u(\mathbf{y}) \mathrm{d} s(\mathbf{y})=u^{i}(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega
$$

Incident, reflected and diffracted waves

According to geometric theory of diffraction (GTD), for $\kappa \rightarrow \infty$

where s is the arclength along the boundary.

Higher-order multiply-diffracted waves have the same phases $\mathrm{e}^{\mathrm{ \pm i} \mathrm{\kappa s}}$, but amplitudes A, B are harder to compute.

Hybrid numerical-asymptotic BEM

On each side Γ_{j}, HNA BEM uses the ansatz

$$
\begin{aligned}
\partial_{\mathbf{n}} u(\mathbf{x}(\mathbf{s})) & =\underbrace{\left[\begin{array}{c}
2 \partial_{\mathbf{n}} u^{i} \\
0
\end{array}\right]}_{G O}+\underbrace{v_{j}^{+}(s) \mathrm{e}^{\mathrm{i} \kappa s}+v_{j}^{-}\left(L_{j}-s\right) \mathrm{e}^{-\mathrm{i} \kappa s}}_{\text {GTD }} \quad \mathbf{x} \in \Gamma_{j} \\
& \approx\left[\begin{array}{c}
2 \partial_{\mathbf{n}} u^{i} \\
0
\end{array}\right]+w_{j}^{+}(s) \mathrm{e}^{\mathrm{i} \kappa s}+w_{j}^{-}\left(L_{j}-s\right) \mathrm{e}^{-\mathrm{i} \kappa s}=\psi_{H N A}(\mathbf{s})
\end{aligned}
$$

where $w_{j}^{ \pm}$are piecewise-polynomials.
$v_{j}^{ \pm}(s)$ are analytic in $\Re\{s\}>0$, slowly oscillating, singular only at $s=0$:
\rightarrow approximated by piecewise-polynomials $w_{j}^{ \pm}$
on two overlapping geometric meshes, graded towards the corners:

$$
\begin{gathered}
w_{j}^{-}\left(L_{j}-\mathbf{s}\right) H \\
w_{j}^{+}(\mathbf{s}) \longmapsto
\end{gathered}
$$

Convergence of $h p-H N A ~ B E M$

(Gibbs, Hewett, Huybrechs, Parolin 2020)
" $h p$ " approximation strategy: increase polynomial degree p simultaneously with the number of layers n in the mesh ($n=c p$)

Hewett, Langdon, Melenk 2013

$$
\left\|\partial_{\mathbf{n}} u-\psi_{H N A}\right\|_{L^{2}(\Gamma)}+\frac{\left\|u-u_{H N A}\right\|_{L^{\infty}(D)}}{\|u\|_{L^{\infty}(D)}} \leq C \kappa^{5 / 2} \mathrm{e}^{-\tau p} .
$$

\#DOFs $=\mathcal{O}(n(p+1)) \sim \log ^{2} \kappa \quad$ is enough to maintain any given accuracy for $\kappa \rightarrow \infty$
In practice, the method is κ-independent!
Analysis assumes the use of the "star-combined formulation"

Problems treated with HNA or related methods

- Smooth scatterers
(Ecevit, Graham. ..)
- Flat screens in 2D and 3D
- Some non-convex polygons
- Multiple obstacles
- Transmission problems
- Curvilinear polygons
- ...

Summary

- FEM-type methods:
- Trefftz methods
- Meshless methods, method of fundamental solutions (MFS)
- Partition of unity (PUM)
- Trefftz discontinuous Galerkin (TDG/UWVF)
- Quasi-Trefftz
- Approximation properties of plane/circular/spherical waves
- Instability and possible remedy, evanescent plane waves
- BEM-type methods: HNA

Thank you!

Not discussed:

- Choice of PW directions: a priori \& a posteriori adaptivity
- Other Trefftz formulations, UWVF framework
- Virtual elements (VEM): PUM and Trefftz versions (Perugia. ..)

Part V

Extras

TDG: derivation - I

1 Consider Helmholtz equation with impedance (Robin) b.c.:

$$
\begin{aligned}
&-\Delta u-\kappa^{2} u=0 \\
& \nabla u \cdot \Omega \subset \mathbb{R}^{n} \text { bdd., Lip., } n=2,3 \\
& \nabla u \cdot \mathbf{n}+\mathbf{i} \kappa u=g \in L^{2}(\partial \Omega) ;
\end{aligned}
$$

(2) introduce a mesh \mathcal{T}_{h} on Ω;
(3) multiply the Helmholtz equation with a test function v and integrate by parts on a single element $K \in \mathcal{T}_{h}$:

$$
\int_{K}\left(\nabla u \cdot \nabla \bar{v}-\kappa^{2} u \bar{v}\right) \mathrm{d} V-\int_{\partial K}(\mathbf{n} \cdot \nabla u) \bar{v} \mathrm{~d} S=0
$$

4 integrate by parts again: ultraweak step

$$
\int_{K}\left(-u \Delta \bar{v}-\kappa^{2} u \bar{v}\right) \mathrm{d} V+\int_{\partial K}(-\mathbf{n} \cdot \nabla u \bar{v}+u \mathbf{n} \cdot \nabla \bar{v}) \mathrm{d} S=0
$$

5 choose a discrete Trefftz space $V_{p}(K)$, denote u_{p} the discrete solution;

TDG: derivation - II

6 replace traces on ∂K with numerical fluxes \widehat{u}_{p} and $\widehat{\sigma}_{p}$:

$$
u \rightarrow \widehat{u}_{p}, \quad \frac{\nabla u}{\mathbf{i} \kappa} \rightarrow \widehat{\boldsymbol{\sigma}}_{p}
$$

7 use the Trefftz property: $\forall v_{p} \in V_{p}(K)$

$$
\int_{K} u_{p} \underbrace{\overline{\left(-\Delta v_{p}-\kappa^{2} v_{p}\right)}}_{=0} \mathrm{~d} V+\underbrace{\int_{\partial K} \widehat{u}_{p} \overline{\nabla v_{p} \cdot \mathbf{n}} \mathrm{~d} S-\int_{\partial K} \mathrm{i} \kappa \widehat{\sigma}_{p} \cdot \mathbf{n} \bar{v}_{p} \mathrm{~d} S=0}_{\text {TDG eq. on } 1 \text { element }} ;
$$

8 Sum this equation over the elements $K \in \mathcal{T}_{h}$.
TDG numerical fluxes on interior faces:

$$
\left\{\begin{array}{l}
\widehat{\sigma}_{p}=\frac{1}{\mathrm{i} \kappa}\left\{\left\{\nabla_{h} u_{p}\right\}-\alpha \llbracket u_{p} \rrbracket_{N}\right. \\
\widehat{u}_{p}=\left\{\left\{u_{p}\right\}-\beta \frac{1}{\mathrm{i} \kappa} \llbracket \nabla_{h} u_{p} \rrbracket_{N}\right.
\end{array}\right.
$$

$\{\cdot\}\}=$ averages,$\quad \llbracket \cdot \rrbracket_{N}=$ normal jumps on the interfaces,
$\alpha, \beta>0$.

Variational formulation of the TDG

The TDG method reads: \quad find $u_{p} \in V_{p}\left(\mathcal{T}_{h}\right)$ s.t.

$$
\mathcal{A}_{h}\left(u_{p}, v_{p}\right)=\mathbf{i} \kappa^{-1} \int_{\partial \Omega} \delta g \overline{\nabla_{h} v_{p} \cdot \mathbf{n}} \mathrm{~d} S+\int_{\partial \Omega}(1-\delta) g \overline{v_{p}} \mathrm{~d} S
$$

$\forall v_{p} \in V_{p}\left(\mathcal{T}_{h}\right)$ where
($\mathcal{F}_{h}^{I}=$ interior skeleton)

$$
\begin{aligned}
\mathcal{A}_{h}(u, v): & \left.\int_{\mathcal{F}_{h}^{I}} \llbracket u\right\} \rrbracket\left[\overline{\nabla_{h} v} \rrbracket_{N} \mathrm{~d} S\right. & & +\mathrm{i} \kappa^{-1} \int_{\mathcal{F}_{h}^{\prime}} \beta \llbracket \nabla_{h} u \rrbracket_{N} \llbracket \overline{\nabla_{h} v} \rrbracket_{N} \mathrm{~d} S \\
& -\int_{\mathcal{F}_{h}^{I}}\left\{\nabla_{h} u\right\} \cdot \llbracket \bar{v} \rrbracket_{N} \mathrm{~d} S & & +\mathrm{i} \kappa \int_{\mathcal{F}_{h}^{I}} \alpha \llbracket u \rrbracket_{N} \cdot \llbracket \bar{v} \rrbracket_{N} \mathrm{~d} S \\
& +\int_{\partial \Omega}(1-\delta) u \overline{\nabla_{h} v \cdot \mathbf{n}} \mathrm{~d} S & & +\mathrm{i} \kappa^{-1} \int_{\partial \Omega} \delta \nabla_{h} u \cdot \mathbf{n} \overline{\nabla_{h} v \cdot \mathbf{n}} \mathrm{~d} S \\
& -\int_{\partial \Omega} \delta \nabla_{h} u \cdot \mathbf{n} \bar{v} \mathrm{~d} S & & +\mathrm{i} \kappa \int_{\partial \Omega}(1-\delta) u \bar{v} \mathrm{~d} S .
\end{aligned}
$$

$\alpha, \beta>0,0<\delta<1$ are parameter functions.
Notation: $\quad\{\cdot\}=$ averages, $\quad \llbracket \cdot \rrbracket_{N}=$ normal jumps on the interfaces $u_{p} \mapsto\left(\operatorname{Im} \mathcal{A}_{h}\left(u_{p}, u_{p}\right)\right)^{\frac{1}{2}}$ is a norm on the Trefftz space $\Rightarrow \exists!u_{p}$.

Evanescent plane waves

$$
\mathrm{e}^{\mathrm{i} / \mathrm{d} \cdot \mathbf{x}} \quad \mathbf{d} \in \mathbb{C}^{2} \quad \mathbf{d} \cdot \mathbf{d}=1
$$

Parametrised by $\quad \varphi=$ direction, $\quad \zeta=$ "evanescence".
Parametric cylinder:

$$
\mathbf{y}:=(\varphi, \zeta) \in Y:=[0,2 \pi) \times \mathbb{R} .
$$

$$
\mathbf{d}(\mathbf{y}):=(\cos (\varphi+\mathbf{i} \zeta), \sin (\varphi+\mathbf{i} \zeta)) \in \mathbb{C}^{2}
$$

$$
\begin{aligned}
\mathrm{EW}_{\mathbf{y}}(\mathbf{x}) & :=\mathrm{e}^{\mathrm{i} \kappa \mathbf{d}(\mathbf{y}) \cdot \mathbf{x}} \\
& =\mathrm{e}^{\mathrm{i} \kappa(\cosh \zeta) \mathbf{x} \cdot \mathbf{d}(\varphi)} \mathrm{e}^{-\kappa(\sinh \zeta) \mathbf{x} \cdot \mathbf{d}^{\perp}(\varphi)},
\end{aligned}
$$

oscillations along

$$
\mathbf{d}(\varphi):=(\cos \varphi, \sin \varphi)
$$

$$
\text { decay along } \quad \mathbf{d}^{\perp}(\varphi):=(-\sin \varphi, \cos \varphi)
$$

Weighted $L^{2}(Y)$ space \mathcal{A}

Weighted L^{2} space on parametric cylinder \& orthonormal basis:

$$
\begin{aligned}
w(\mathbf{y}) & :=\mathrm{e}^{-\kappa \sinh |\zeta|+\frac{1}{4}|\zeta|} \quad \mathbf{y}=(\varphi, \zeta) \in Y \\
\|v\|_{\mathcal{A}}^{2} & :=\|v\|_{L^{2}\left(Y ; w^{2}\right)}^{2}=\int_{Y}|v(\mathbf{y})|^{2} w^{2}(\mathbf{y}) \mathrm{d} \mathbf{y} \\
a_{p}(\mathbf{y}) & :=\alpha_{p} \mathrm{e}^{p(\zeta+\mathrm{i} \varphi)} \\
\mathcal{A} & :={\overline{\operatorname{span}\left\{a_{p}\right\}_{p \in \mathbb{Z}}} \|^{\prime \cdot \|_{\mathcal{A}}} \subsetneq L^{2}\left(Y ; w^{2}\right)}^{\alpha_{p}>0 \text { normalization in }\|\cdot\|_{\mathcal{A}}, p \in \mathbb{Z}} \varphi
\end{aligned}
$$

Jacobi-Anger:

$$
\mathrm{EW}_{\mathbf{y}}(\mathbf{x})=\sum_{p \in \mathbb{Z}} \mathrm{i}^{p} J_{p}(\kappa r) \mathrm{e}^{\mathrm{i} p(\theta-[\varphi+\mathrm{i} \zeta])}=\sum_{p \in \mathbb{Z}} \tau_{p} \overline{a_{p}(\mathbf{y})} b_{p}(\mathbf{x}), \quad \tau_{p}:=\frac{\mathrm{i}^{p}}{\alpha_{p} \beta_{p}}
$$

From asymptotics \& choice of w :

$$
0<\tau_{-} \leq\left|\tau_{p}\right| \leq \tau_{+}<\infty \quad \forall p \in \mathbb{Z}
$$

$\forall \mathbf{x} \in B_{1}, \quad \mathbf{y} \mapsto \mathrm{EW}_{\mathbf{y}}(\mathbf{x}) \in \mathcal{A} \quad\left(\right.$ not true for $\left.\mathbf{x} \in \partial B_{1}\right)$

Boundary sampling method

Given (PPW, EPW,...) approximation set $\operatorname{span}\left\{\phi_{m}\right\}_{m=1, \ldots, M}$, how do we approximate $u \in \mathcal{B}$ in practice?

We use boundary sampling on $\left\{\mathbf{x}_{s}=\binom{r=1}{\theta_{s}=\frac{2 \pi s}{S}}\right\}_{s=1, \ldots, S} \subset \partial B_{1}$:
$A \xi=\mathbf{c} \quad$ with $\quad \begin{gathered}A_{s, m}:=\phi_{m}\left(\mathbf{x}_{s}\right), \\ c_{s}:=u\left(\mathbf{x}_{s}\right)\end{gathered} \quad \begin{gathered}s=1, \ldots, S \\ m=1, \ldots, M\end{gathered} \rightarrow \quad u_{M}=\sum_{m} \xi_{m} \phi_{m} \approx u$.
Choose $\kappa^{2} \neq$ Laplace-Dirichlet eigenvalue on B_{1}.
Could use instead: $\left\{\begin{array}{l}\text { sampling in the bulk of } B_{1}, \\ \text { impedance trace, } \\ \mathcal{B} / L^{2}\left(B_{1}\right) / L^{2}\left(\partial B_{1}\right) \text { projection... }\end{array}\right.$

- Oversampling: $S>M$
- SVD regularization, threshold ϵ : $\}$
required by Adcock-Huybrechs

$$
A=U \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{M}\right) V^{*}, \quad \Sigma_{\epsilon}:=\operatorname{diag}\left(\left\{\sigma_{m}>\epsilon \max _{m^{\prime}} \sigma_{m^{\prime}}\right\}\right),
$$

$$
\boldsymbol{\xi}_{\epsilon}=V \Sigma_{\epsilon}^{\dagger} U^{*} \mathbf{c}
$$

EPW approximation: probability measure on Y

Probability density ρ \& cumulative d.f. as functions of evanescence ζ :

Cumulative density $\Upsilon_{N}(\kappa=4)$

Cumulative density $\Upsilon_{N}(\kappa=16)$

Cumulative density $\Upsilon_{N}(\kappa=64)$

They depend on P : target functions in $\operatorname{span}\left\{b_{p}\right\}_{|p| \leq P}$. Modes at $\zeta \approx \pm \log (2 P / \kappa)$.
Computation of ρ requires κ-dependent normalisation factors α_{p}.

Parameter samples in the cylinder Y

Samples computed on $(0,1)^{2}$ \& uniform prob., mapped to Y by Υ^{-1}.

Approximation by PPWs

Approximation of circular waves $\left\{b_{p}\right\}_{p}$ by equispaced PPWs

$$
\kappa=16, \quad \epsilon=10^{-14}, \quad S=\max \{2 M, 2|p|\}, \quad \text { residual } \mathcal{E}=\frac{\left\|A \xi_{\epsilon}-\mathbf{c}\right\|}{\|\mathbf{c}\|}
$$

Mode number p

- Propagative modes $|p| \lesssim \kappa$: $\mathcal{O}(\epsilon)$ error $\forall M, \quad \mathcal{O}(1)$ coeff.'s
- Evanescent modes $|p| \gtrsim 3 \kappa$: $\mathcal{O}(1)$ error $\forall M$, large coeff.'s Condition number is irrelevant!

Approximation by EPWs

Approximation of $\left\{b_{p}\right\}, \quad P=4 \kappa, \quad \kappa=16, \quad \Delta M=4 P, \quad \Delta M=8 P$

Discrete EPW space approximates all b_{p} s for $|p| \leq P$!

Approximation by EPWs

Approximation of $\left\{b_{p}\right\}$,
$\Delta M=4 P, \quad M=8 P$
$P=4 \kappa, \kappa=16$

Sobol

Stability $\left\|\boldsymbol{\xi}_{S, \epsilon}\right\|_{\ell^{2}}$

Random

Stability $\left\|\boldsymbol{\xi}_{S, \epsilon}\right\|_{\ell^{2}}$

Approximation of general (truncated) u

Evanescent PW approximation of rough u :
$(S=2 M, \kappa=16)$

$$
u=\sum_{|p| \leq P} \hat{u}_{p} b_{p}, \quad \hat{u}_{p} \sim(\max \{1,|p|-\kappa\})^{-1 / 2}
$$

EPWs constructed assuming that P is known. Deterministic sampling. Convergence for $M \nearrow \quad$ plotted against $\frac{M}{2 P+1}=\frac{\operatorname{dim}(\text { approx. space) }}{\operatorname{dim}(\text { solution space) }}$:

Error is P-independent.

Singular values of the matrix A

Comparable condition numbers, larger ϵ-rank for EPWs. Can further increase ϵ-rank by raising P.

