Integral equation methods for acoustic scattering by fractals

Andrea Moiola
http://matematica.unipv.it/moiola/

UNIVERSITÀ DI PAVIA
Department of Mathematics
"Felice Casorati"

A. Caetano (Aveiro), S.N. Chandler-Wilde (Reading), X. Claeys (LJLL), A. Gibbs (UCL), D.P. Hewett (UCL)
arXiv:2309.02184 — O:IFSintegrals

Acoustic wave scattering

Time-harmonic acoustic waves:
Helmholtz equation $\quad \Delta u+k^{2} u=0 \quad$ in $\mathbb{R}^{n}, n \in\{2,3\}$, with wavenumber $k>0$.
Direct scattering: incoming wave $\underbrace{u^{i}}_{\text {datum }}$ hits obstacle $\underbrace{\Gamma}_{\text {datum }}$ and generates scattered field $\underbrace{u^{s}}_{\text {unknown }}$
Consider Dirichlet (sound-soft) boundary conditions on a bounded Γ.

Acoustic wave scattering

Time-harmonic acoustic waves:
Helmholtz equation $\quad \Delta u+k^{2} u=0 \quad$ in $\mathbb{R}^{n}, n \in\{2,3\}$, with wavenumber $k>0$.
Direct scattering: incoming wave $\underbrace{u^{i}}_{\text {datum }}$ hits obstacle $\underbrace{\Gamma}_{\text {datum }}$ and generates scattered field $\underbrace{u^{s}}_{\text {unknown }}$
Consider Dirichlet (sound-soft) boundary conditions on a bounded Γ.

u^{s} satisfies Sommerfeld radiation condition (SRC) at infinity: $\lim _{r=|x| \rightarrow \infty} r^{\frac{n-1}{2}}\left(\partial_{r} u^{s}-\mathrm{i} k u^{s}\right)=0$

Scattering by Lipschitz domains and screens

Classical problem e.g. when:
(1) Γ is the boundary of a Lipschitz domain of \mathbb{R}^{n}

($4 n=2$)

Scattering by Lipschitz domains and screens

Classical problem e.g. when:
(Γ is the boundary of a Lipschitz domain of \mathbb{R}^{n}

$(\triangleleft n=2)$
2Γ is Lipschitz subset of $\left\{x \in \mathbb{R}^{n}, x_{n}=0\right\}$ (planar screen)

$$
(\triangleleft n=3)
$$

Scattering by Lipschitz domains and screens

Classical problem e.g. when:
(1) Γ is the boundary of a Lipschitz domain of \mathbb{R}^{n}

$(\triangleleft n=2)$
2Γ is Lipschitz subset of $\left\{x \in \mathbb{R}^{n}, x_{n}=0\right\}$ (planar screen)

$(\triangleleft n=3)$

Neumann trace (jump, in case (2)) $\phi=\left[\partial_{n} u^{s}\right]$ on Γ is solution of single-layer BIE $\boldsymbol{S} \phi=-\gamma u^{i}$, scattered field represented with layer potential $u^{s}=\mathcal{S} \phi . \quad$ BIE approximated with BEM.

Scattering by Lipschitz domains and screens

Classical problem e.g. when:
(Γ is the boundary of a Lipschitz domain of \mathbb{R}^{n}

$(\triangleleft n=2)$

What happens when Γ is much rougher than this, e.g. fractal?
2Γ is Lipschitz subset of $\left\{x \in \mathbb{R}^{n}, x_{n}=0\right\}$ (planar screen)

$(\triangleleft n=3)$

Neumann trace (jump, in case (2)) $\phi=\left[\partial_{n} u^{s}\right]$ on Γ is solution of single-layer BIE $\boldsymbol{S} \phi=-\gamma u^{i}$, scattered field represented with layer potential $u^{s}=\mathcal{S} \phi . \quad$ BIE approximated with BEM.

Waves and fractals: applications

Fractals model roughness at multiple scales, in natural and man-made objects:

Wideband fractal antennas
© http://www.antenna-theory.com/antennas/fractal.php

4 Scattering by ice crystals in atmospheric physics
(C. Westbrook)

Fractal apertures in laser optics (J. Christian)
M.V. Berry 1979, "Diffractals":
a new regime in wave physics

Scattering by fractals

Plenty of mathematical challenges:

- How to formulate well-posed BVPs?

What is the right function space setting?
How to write BVP as integral equation?

- How do prefractal solutions converge to fractal solutions?
- How can we accurately compute the scattered field?
- How to exploit self-similarity?

- ...

Tools developed here (hopefully!) relevant to (numerical) analysis of other IEs, $\Psi D O$ s, BVPs, numerical integration on rough, complicated, fractal sets.

Our main contributions

This talk: AC, SCW, XC, AG, DH, AM,

Integral equation methods for acoustic scattering by fractals

BVPS, INTEGRAL EQUATIONS, FUNCTION SPACES

- SCW, DH.

IEOT, 2015
Wavenumber-explicit continuity \& coercivity est. in acoustic scattering by planar scr.

- SCW, DH, AM,

IEOT, 2017
Sobolev spaces on non-Lipschitz subsets of \mathbb{R}^{n} with application to BIEs on fractal scr.

- SCW, DH,

SIAM J. Math. Anal., 2018
Well-posed PDE and integral equation formulations for scattering by fractal screens,

- AC, DH, AM,

JFA, 2021
Density results for Sobolev, Besov and Triebel-Lizorkin spaces on rough sets

NumERICAL METHODS

- SCW, DH, AM, J.Besson,

Numer. Math., 2021
Boundary element methods for acoustic scattering by fractal screens

- J.Bannister, AG, DH,

Acoustic scattering by impedance screens/cracks with fractal boundary. .

- AG, DH, AM,

Numer. Algorithms, 2022
Numerical quadrature for singular integrals on fractals

- AC, SCW, AG, DH, AM,

A Hausdorff-measure BEM for acoustic scattering by fractal screens

- AG, DH, B.Major

Numer. Algorithms, 2023

Numerical evaluation of singular integrals on non-disjoint self-similar fractal sets

Two ways to apply BEM to fractal Γ - ref.s to flat screen case

(1) Chandler-Wilde, Hewett, Moiola, Besson, Numer. Math. 2021

2 Caetano, Chandler-Wilde, Gibbs, Hewett, Moiola, arXiv:2212.06594

Two ways to apply BEM to fractal Γ - ref.s to flat screen case

1 Chandler-Wilde, Hewett, Moiola, Besson, Numer. Math. 2021
Approximate Γ with Lipschitz "prefractal" Γ_{j} and apply conventional BEM on each Γ_{j}

```
open }\mp@subsup{\Gamma}{j}{}\subset\mp@subsup{\Gamma}{j+1}{
```


non-nested $\Gamma_{j \not \supset}{ }_{\not D}^{\not \subset} \Gamma_{j+1}$

- "Non-conforming", since typically $V_{N} \not \subset V=H_{\Gamma}^{-1 / 2}$
- BVP and BEM convergence from Mosco convergence of spaces
- No convergence rates
- Requires "thickened prefractals"
- Can use any BEM implementation

2 Caetano, Chandler-Wilde, Gibbs, Hewett, Moiola, arXiv:2212.06594

Two ways to apply BEM to fractal Γ－ref．s to flat screen case

1 Chandler－Wilde，Hewett，Moiola，Besson，Numer．Math． 2021
Approximate Γ with Lipschitz＂prefractal＂Γ_{j} and apply conventional BEM on each Γ_{j}

```
open \(\Gamma_{j} \subset \Gamma_{j+1}\)
－
```

non－nested $\Gamma_{j \not \supset} \not \subset \Gamma_{j+1}$
口 な阝
－＂Non－conforming＂，since typically $V_{N} \not \subset V=H_{\Gamma}^{-1 / 2}$
－BVP and BEM convergence from Mosco convergence of spaces
－No convergence rates
－Requires＂thickened prefractals＂
－Can use any BEM implementation
2 Caetano，Chandler－Wilde，Gibbs，Hewett，Moiola，arXiv：2212．06594
－Discretise Γ without approximation
－Conforming method $V_{N} \subset V=H_{\Gamma}^{-1 / 2}$
－Easy convergence from Céa lemma＋rates
－Integration wrt Hausdorff measure $\mathcal{H}^{d} \rightarrow$ require special quadrature formulas

What do we do?

3 levels of generality for Γ

- Arbitrary compact $\Gamma \subset \mathbb{R}^{n}$:

BVP, Newton potential \& op., variational form Theorem: BVP and IE well-posedness

- d-sets:
"intrinsic" function spaces, trace operators integral operators, piecewise-constant Galerkin Theorem: Galerkin convergence
- IFS attractors:
tree structure, wavelets, quadrature rule Theorem: Galerkin convergence rates
+ Quadrature rule
+ Numerical results
juliáa implementation for general class of IFS:

```
https://github.com/AndrewGibbs/IFSintegrals
```


Arbitrary compact $\Gamma \subset \mathbb{R}^{n}$

$$
\text { BVP: } \quad \Delta u^{s}+k^{2} u^{s}=0 \quad \text { in } \Omega:=\mathbb{R}^{n} \backslash \Gamma, \quad \text { Sommerfeld r.C. }, \quad u^{s}+u^{i} \in W_{0}^{1, \text { loc }}(\Omega)
$$

Arbitrary compact $\Gamma \subset \mathbb{R}^{n}$

BVP: $\quad \Delta u^{s}+k^{2} u^{s}=0 \quad$ in $\Omega:=\mathbb{R}^{n} \backslash \Gamma, \quad$ Sommerfeld r.c., $\quad u^{s}+u^{i} \in W_{0}^{1, \text { loc }}(\Omega)$
Standard acoustic Newton potential $\mathcal{A}: H_{\text {comp }}^{s}\left(\mathbb{R}^{n}\right) \rightarrow H_{\text {loc }}^{s+2}\left(\mathbb{R}^{n}\right)$:

$$
\mathcal{A} \psi(x):=\int_{\mathbb{R}^{n}} \Phi(x, y) \psi(y) \mathrm{d} y, \quad x \in \mathbb{R}^{n}, \quad \Phi(x, y):= \begin{cases}\frac{i}{4} H_{0}^{(1)}(k|x-y|) & n=2 \\ \frac{e^{i k}|x-y|}{4 \pi|x-y|} & n=3\end{cases}
$$

Arbitrary compact $\Gamma \subset \mathbb{R}^{n}$

BVP: $\quad \Delta u^{s}+k^{2} u^{s}=0 \quad$ in $\Omega:=\mathbb{R}^{n} \backslash \Gamma, \quad$ Sommerfeld r.C., $\quad u^{s}+u^{i} \in W_{0}^{1, \text { loc }}(\Omega)$
Standard acoustic Newton potential $\mathcal{A}: H_{\text {comp }}^{s}\left(\mathbb{R}^{n}\right) \rightarrow H_{\text {loc }}^{s+2}\left(\mathbb{R}^{n}\right)$:

$$
\mathcal{A} \psi(x):=\int_{\mathbb{R}^{n}} \Phi(x, y) \psi(y) \mathrm{d} y, \quad x \in \mathbb{R}^{n}, \quad \Phi(x, y):= \begin{cases}\frac{i}{4} H_{0}^{(1)}(\boldsymbol{k}|x-y|) & n=2 \\ \frac{e^{i} k|x-y|}{4 \pi|x-y|} & n=3\end{cases}
$$

Spaces:

$$
\begin{array}{rlrl}
H_{\Gamma}^{-1} & :=\left\{v \in H^{-1}\left(\mathbb{R}^{n}\right): \operatorname{supp} v \subset \Gamma\right\}, & \left(H_{\Gamma}^{-1}\right)^{*}=\widetilde{H}^{1}(\Omega)^{\perp} \\
\widetilde{H}^{1}(\Omega) & :={\overline{C_{0}^{\infty}(\Omega)} H^{1}\left(\mathbb{R}^{n}\right)}^{P: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \widetilde{H}^{1}(\Omega)^{\perp} \text { projection }}
\end{array}
$$

Arbitrary compact $\Gamma \subset \mathbb{R}^{n}$

BVP: $\quad \Delta u^{s}+k^{2} u^{s}=0 \quad$ in $\Omega:=\mathbb{R}^{n} \backslash \Gamma, \quad$ Sommerfeld r.C., $\quad u^{s}+u^{i} \in W_{0}^{1, \text { loc }}(\Omega)$
Standard acoustic Newton potential $\mathcal{A}: H_{\text {comp }}^{s}\left(\mathbb{R}^{n}\right) \rightarrow H_{\text {loc }}^{s+2}\left(\mathbb{R}^{n}\right)$:

$$
\mathcal{A} \psi(\boldsymbol{x}):=\int_{\mathbb{R}^{n}} \Phi(\boldsymbol{x}, \boldsymbol{y}) \psi(\boldsymbol{y}) \mathrm{d} \boldsymbol{y}, \quad \boldsymbol{x} \in \mathbb{R}^{n}, \quad \Phi(x, y):= \begin{cases}\frac{i}{4} H^{(1)}(\boldsymbol{k}|\boldsymbol{x}-y|) & n=2 \\ \frac{\mathrm{e}^{i k}|\boldsymbol{0}-y|}{4 \pi|x-y|} & n=3\end{cases}
$$

Spaces:

$$
H_{\Gamma}^{-1}:=\left\{v \in H^{-1}\left(\mathbb{R}^{n}\right): \operatorname{supp} v \subset \Gamma\right\}, \quad\left(H_{\Gamma}^{-1}\right)^{*}=\widetilde{H}^{1}(\Omega)^{\perp}
$$

$$
\widetilde{H}^{1}(\Omega):={\overline{C_{0}^{\infty}(\Omega)}}^{H^{1}\left(\mathbb{R}^{n}\right)} \quad P: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \widetilde{H}^{1}(\Omega)^{\perp} \text { projection }
$$

"Integral operator": $\quad A:=H_{\Gamma}^{-1} \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}, \quad A \phi:=P(\sigma \mathcal{A} \phi), \quad \sigma \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right),\left.\sigma\right|_{\Gamma+B_{\epsilon}}=1$

Arbitrary compact $\Gamma \subset \mathbb{R}^{n}$

BVP: $\quad \Delta u^{s}+k^{2} u^{s}=0 \quad$ in $\Omega:=\mathbb{R}^{n} \backslash \Gamma, \quad$ Sommerfeld r.C., $\quad u^{s}+u^{i} \in W_{0}^{1, \text { loc }}(\Omega)$
Standard acoustic Newton potential $\mathcal{A}: H_{\text {comp }}^{s}\left(\mathbb{R}^{n}\right) \rightarrow H_{\text {loc }}^{s+2}\left(\mathbb{R}^{n}\right)$:

$$
\mathcal{A} \psi(x):=\int_{\mathbb{R}^{n}} \Phi(x, y) \psi(y) \mathrm{d} y, \quad x \in \mathbb{R}^{n}, \quad \Phi(x, y):= \begin{cases}\frac{i}{4} H_{0}^{(1)}(k|x-y|) & n=2 \\ \frac{e^{i} k|x-y|}{4 \pi|x-y|} & n=3\end{cases}
$$

Spaces:

$$
H_{\Gamma}^{-1}:=\left\{v \in H^{-1}\left(\mathbb{R}^{n}\right): \operatorname{supp} v \subset \Gamma\right\}, \quad\left(H_{\Gamma}^{-1}\right)^{*}=\widetilde{H}^{1}(\Omega)^{\perp}
$$

$$
\widetilde{H}^{1}(\Omega):={\overline{C_{0}^{\infty}(\Omega)}}^{H^{1}\left(\mathbb{R}^{n}\right)} \quad P: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \widetilde{H}^{1}(\Omega)^{\perp} \text { projection }
$$

"Integral operator": $\quad A:=H_{\Gamma}^{-1} \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}, \quad A \phi:=P(\sigma \mathcal{A} \phi), \quad \sigma \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right),\left.\sigma\right|_{\Gamma+B_{\epsilon}}=1$
$a(\phi, \psi):=\langle A \phi, \psi\rangle_{H^{1}\left(\mathbb{R}^{n}\right) \times H^{-1}\left(\mathbb{R}^{n}\right)}$ is continuous \& compactly-perturb. coercive in $H_{\Gamma}^{-1} \times H_{\Gamma}^{-1}$

Arbitrary compact $\Gamma \subset \mathbb{R}^{n}$

BVP: $\quad \Delta u^{s}+k^{2} u^{s}=0 \quad$ in $\Omega:=\mathbb{R}^{n} \backslash \Gamma, \quad$ Sommerfeld r.c., $\quad u^{s}+u^{i} \in W_{0}^{1, \text { loc }}(\Omega)$
Standard acoustic Newton potential $\mathcal{A}: H_{\text {comp }}^{s}\left(\mathbb{R}^{n}\right) \rightarrow H_{\text {loc }}^{s+2}\left(\mathbb{R}^{n}\right)$:

$$
\mathcal{A} \psi(x):=\int_{\mathbb{R}^{n}} \Phi(x, y) \psi(y) \mathrm{d} y, \quad x \in \mathbb{R}^{n}, \quad \Phi(x, y):= \begin{cases}\frac{\mathrm{i}}{4} H_{\mathrm{i}}^{(1)}(\boldsymbol{k}|x-y|) & n=2 \\ \frac{\mathrm{e}^{\mathrm{i} k|x-y|}}{4 \pi|x-y|} & n=3\end{cases}
$$

Spaces:

$$
H_{\Gamma}^{-1}:=\left\{v \in H^{-1}\left(\mathbb{R}^{n}\right): \operatorname{supp} v \subset \Gamma\right\}, \quad\left(H_{\Gamma}^{-1}\right)^{*}=\widetilde{H}^{1}(\Omega)^{\perp}
$$

$$
\widetilde{H}^{1}(\Omega):={\overline{C_{0}^{\infty}(\Omega)}}^{H^{1}\left(\mathbb{R}^{n}\right)} \quad P: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \widetilde{H}^{1}(\Omega)^{\perp} \text { projection }
$$

"Integral operator": $\quad A:=H_{\Gamma}^{-1} \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}, \quad A \phi:=P(\sigma \mathcal{A} \phi), \quad \sigma \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right),\left.\sigma\right|_{\Gamma+B_{\epsilon}}=1$
$a(\phi, \psi):=\langle A \phi, \psi\rangle_{H^{1}\left(\mathbb{R}^{n}\right) \times H^{-1}\left(\mathbb{R}^{n}\right)}$ is continuous \& compactly-perturb. coercive in $H_{\Gamma}^{-1} \times H_{\Gamma}^{-1}$
THEOREM. Except for possibly countably many k,
($\forall k>0$ if Ω connected)

- $A:=H_{\Gamma}^{-1} \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}$ is invertible
- the BVP has unique solution $u^{s} \in H^{1, \text { loc }}\left(\mathbb{R}^{n}\right)$
- $u^{s}=\mathcal{A} \phi$ where $\phi \in H_{\Gamma}^{-1}$ is the unique solution of the IE $A \phi=g$ with $g:=-P\left(\sigma u^{i}\right)$

Part I

IE and Galerkin on d-sets

Hausdorff measure and d-sets

Hausdorff measure and dimension of $E \subset \mathbb{R}^{n}, \quad 0 \leq d \leq n: \quad\left(\mathcal{H}^{d}(\lambda E)=\lambda^{d} \mathcal{H}^{d}(E)\right)$

$$
\mathcal{H}^{d}(E):=\lim _{\delta>0} \inf _{\left\{U_{i}\right\}}\left\{\sum_{i=1}^{\infty}\left(\operatorname{diam} U_{i}\right)^{d}: \bigcup_{i=1}^{\infty} U_{i} \supset E, \operatorname{diam} U_{i}<\delta\right\}, \quad \operatorname{dim}_{H}(E):=\inf \left\{d: \mathcal{H}^{d}(E)=0\right\}
$$

Hausdorff measure and d-sets

Hausdorff measure and dimension of $E \subset \mathbb{R}^{n}, \quad 0 \leq d \leq n: \quad\left(\mathcal{H}^{d}(\lambda E)=\lambda^{d} \mathcal{H}^{d}(E)\right)$

$$
\mathcal{H}^{d}(E):=\lim _{\delta \searrow 0} \inf _{\left\{U_{i}\right\}}\left\{\sum_{i=1}^{\infty}\left(\operatorname{diam} U_{i}\right)^{d}: \bigcup_{i=1}^{\infty} U_{i} \supset E, \operatorname{diam} U_{i}<\delta\right\}, \quad \operatorname{dim}_{\mathrm{H}}(E):=\inf \left\{d: \mathcal{H}^{d}(E)=0\right\}
$$

A compact set $\Gamma \subset \mathbb{R}^{n}$ is a d-set if

$$
c_{1} r^{d} \leq \mathcal{H}^{d}\left(\Gamma \cap B_{r}(x)\right) \leq c_{2} r^{d}
$$

$$
\forall x \in \Gamma, 0<r \leq 1
$$

Hausdorff measure and d-sets

Hausdorff measure and dimension of $E \subset \mathbb{R}^{n}, \quad 0 \leq d \leq n: \quad\left(\mathcal{H}^{d}(\lambda E)=\lambda^{d} \mathcal{H}^{d}(E)\right)$

$$
\mathcal{H}^{d}(E):=\lim _{\delta \searrow 0} \inf _{\left\{U_{i}\right\}}\left\{\sum_{i=1}^{\infty}\left(\operatorname{diam} U_{i}\right)^{d}: \bigcup_{i=1}^{\infty} U_{i} \supset E, \operatorname{diam} U_{i}<\delta\right\}, \quad \operatorname{dim}_{H}(E):=\inf \left\{d: \mathcal{H}^{d}(E)=0\right\}
$$

A compact set $\Gamma \subset \mathbb{R}^{n}$ is a d-set if

$$
c_{1} r^{d} \leq \mathcal{H}^{d}\left(\Gamma \cap B_{r}(x)\right) \leq c_{2} r^{d}
$$

"Uniformly locally d-dimensional sets".
Falconer, Triebel, Jonsson\&Wallin, ...

$$
\forall x \in \Gamma, 0<r \leq 1
$$

 Examples of d-sets in \mathbb{R}^{2} :
(c) Line segment screen
$d=1$,
,
.
$d=1$,
(a) Closure of a bounded Lipschitz open set
$d=2$
$d=1$,
,
bounded Lipschitz open set open set

(d) Multi-screen
(e) Cantor set screen
$d=\frac{\log 2}{\log 3}$

$$
d=1,
$$

(g) Koch snowflake
$d=2$

d-sets: function spaces and integral operator

On d-set Γ, define $\mathbb{L}_{2}(\Gamma)$ as the space of square-integrable functions wrt measure $\left.\mathcal{H}^{d}\right|_{\Gamma}$. Can define "intrinsic" Sobolev spaces $\mathbb{H}^{t}(\Gamma) . \quad \mathbb{H}^{t}(\Gamma) \subset \mathbb{L}_{2}(\Gamma) \subset \mathbb{H}^{-t}(\Gamma)=\mathbb{H}^{t}(\Gamma)^{*}, t>0$.

d-sets: function spaces and integral operator

On d-set Γ, define $\mathbb{L}_{2}(\Gamma)$ as the space of square-integrable functions wrt measure $\left.\mathcal{H}^{d}\right|_{\Gamma}$. Can define "intrinsic" Sobolev spaces $\mathbb{H}^{t}(\Gamma)$. $\mathbb{H}^{t}(\Gamma) \subset \mathbb{L}_{2}(\Gamma) \subset \mathbb{H}^{-t}(\Gamma)=\mathbb{H}^{t}(\Gamma)^{*}, t>0$.

Trace operator: $\operatorname{tr}_{\Gamma} \varphi=\left.\varphi\right|_{\Gamma}$ for $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
E.g. (TRiebel 1997)

d-sets: function spaces and integral operator

On d-set Γ, define $\mathbb{L}_{2}(\Gamma)$ as the space of square-integrable functions wrt measure $\left.\mathcal{H}^{d}\right|_{\Gamma}$. Can define "intrinsic" Sobolev spaces $\mathbb{H}^{t}(\Gamma)$. $\mathbb{H}^{t}(\Gamma) \subset \mathbb{L}_{2}(\Gamma) \subset \mathbb{H}^{-t}(\Gamma)=\mathbb{H}^{t}(\Gamma)^{*}, t>0$.

Trace operator: $\operatorname{tr}_{\Gamma} \varphi=\left.\varphi\right|_{\Gamma}$ for $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
E.g. (Triebel 1997)

For $s>\frac{n-d}{2}$, it extends to $\operatorname{tr}_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$.
$\operatorname{tr}_{\Gamma}$ and its adjoint $\operatorname{tr}_{\Gamma}^{*}$ are unitary isomorphisms in:

$$
(n-2<d \leq n)
$$

$\mathbb{H}^{1-\frac{n-d}{2}}(\Gamma)$	\subset	$\mathbb{L}_{2}(\Gamma)$	\subset	$\mathbb{H}^{-1+\frac{n-d}{2}}(\Gamma)$
$\operatorname{tr}_{\Gamma} \uparrow$				$\downarrow \operatorname{tr}_{\Gamma}^{*}$
$\widetilde{H}^{1}\left(\mathbb{R}^{n} \backslash \Gamma\right)^{\perp}$				
$\quad \cap$				H_{Γ}^{-1}
$H^{1}\left(\mathbb{R}^{n}\right)$	\subset	$L_{2}\left(\mathbb{R}^{n}\right)$	\subset	$H^{-1}\left(\mathbb{R}^{n}\right)$

d-sets: function spaces and integral operator

On d-set Γ, define $\mathbb{L}_{2}(\Gamma)$ as the space of square-integrable functions wrt measure $\left.\mathcal{H}^{d}\right|_{\Gamma}$. Can define "intrinsic" Sobolev spaces $\mathbb{H}^{t}(\Gamma)$.

$$
\mathbb{H}^{t}(\Gamma) \subset \mathbb{L}_{2}(\Gamma) \subset \mathbb{H}^{-t}(\Gamma)=\mathbb{H}^{t}(\Gamma)^{*}, t>0
$$

Trace operator: $\operatorname{tr}_{\Gamma} \varphi=\left.\varphi\right|_{\Gamma}$ for $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
E.g. (Triebel 1997) For $s>\frac{n-d}{2}$, it extends to $\operatorname{tr}_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$.
$\operatorname{tr}_{\Gamma}$ and its adjoint $\operatorname{tr}_{\Gamma}^{*}$ are unitary isomorphisms in:

$$
(n-2<d \leq n)
$$

\mathbb{A} is a single-layer operator between $\mathbb{H}^{t}(\Gamma)$ spaces

d-sets: function spaces and integral operator

On d-set Γ, define $\mathbb{L}_{2}(\Gamma)$ as the space of square-integrable functions wrt measure $\left.\mathcal{H}^{d}\right|_{\Gamma}$. Can define "intrinsic" Sobolev spaces $\mathbb{H}^{t}(\Gamma)$.

$$
\mathbb{H}^{t}(\Gamma) \subset \mathbb{L}_{2}(\Gamma) \subset \mathbb{H}^{-t}(\Gamma)=\mathbb{H}^{t}(\Gamma)^{*}, t>0
$$

Trace operator: $\operatorname{tr}_{\Gamma} \varphi=\left.\varphi\right|_{\Gamma} \quad$ for $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
E.g. (Triebel 1997) For $s>\frac{n-d}{2}$, it extends to $\operatorname{tr}_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$.
$\operatorname{tr}_{\Gamma}$ and its adjoint $\operatorname{tr}_{\Gamma}^{*}$ are unitary isomorphisms in:

$$
(n-2<d \leq n)
$$

\mathbb{A} is a single-layer operator between $\mathbb{H}^{t}(\Gamma)$ spaces

THEOREM. \mathbb{A} is an integral operator in Hausdorff measure:

$$
\forall \Psi \in L_{\infty}(\Gamma), \quad \mathbb{A} \Psi(x)=\int_{\Gamma} \Phi(x, y) \Psi(y) \mathrm{d} \mathcal{H}^{d}(y) \quad \mathcal{H}^{d} \text {-a.e. } x \in \Gamma
$$

The Hausdorff-measure integral equation method

Re-write IE $A \phi=g$ and (coercive+compact) variational pr. for $\tilde{\phi} \in \mathbb{H}^{-t_{d}}(\Gamma), \quad t_{d}:=1-\frac{n-d}{2}$:

$$
\mathbb{A} \tilde{\phi}=\operatorname{tr}_{\Gamma} g \quad \Longleftrightarrow \quad\langle\mathbb{A} \tilde{\phi}, \widetilde{\psi}\rangle_{\mathbb{H}^{t_{d}}(\Gamma) \times \mathbb{H}^{-t_{d}(\Gamma)}}=\left\langle\operatorname{tr}_{\Gamma} g, \widetilde{\psi}\right\rangle_{\mathbb{H}^{t}(\Gamma) \times \mathbb{H}^{-t_{d}(\Gamma)}} \quad \forall \tilde{\psi} \in \mathbb{H}^{-t_{d}}(\Gamma)
$$

The Hausdorff-measure integral equation method

Re-write IE $A \phi=g$ and (coercive+compact) variational pr. for $\widetilde{\phi} \in \mathbb{H}^{-t_{d}}(\Gamma), \quad t_{d}:=1-\frac{n-d}{2}$:

$$
\mathbb{A} \tilde{\phi}=\operatorname{tr}_{\Gamma} \boldsymbol{g} \quad \Longleftrightarrow \quad\langle\mathbb{A} \tilde{\phi}, \widetilde{\psi}\rangle_{\mathbb{H}^{t_{d}}(\Gamma) \times \mathbb{H}^{-t_{d}(\Gamma)}}=\left\langle\operatorname{tr}_{\Gamma} g, \widetilde{\psi}\right\rangle_{\mathbb{H}^{t} t_{(}(\Gamma) \times \mathbb{H}^{-t_{d}(\Gamma)}} \quad \forall \tilde{\psi} \in \mathbb{H}^{-t_{d}}(\Gamma)
$$

What's the advantage?
We can apply Galerkin method with any N-dimensional $\mathbb{V}_{N} \subset \mathbb{L}_{2}(\Gamma) \subset \mathbb{H}^{-t_{d}}(\Gamma)$.

The Hausdorff-measure integral equation method

Re-write IE $A \phi=g$ and (coercive+compact) variational pr. for $\widetilde{\phi} \in \mathbb{H}^{-t_{d}}(\Gamma), \quad t_{d}:=1-\frac{n-d}{2}$:

$$
\mathbb{A} \tilde{\phi}=\operatorname{tr}_{\Gamma} \boldsymbol{g} \quad \Longleftrightarrow \quad\langle\mathbb{A} \tilde{\phi}, \tilde{\psi}\rangle_{\mathbb{H}^{t_{d}}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)}=\left\langle\operatorname{tr}_{\Gamma} g, \widetilde{\psi}\right\rangle_{\mathbb{H}^{t} d}(\Gamma) \times \mathbb{H}^{-t_{d}(\Gamma)} \quad \forall \tilde{\psi} \in \mathbb{H}^{-t_{d}}(\Gamma)
$$

What's the advantage?
We can apply Galerkin method with any N-dimensional $\mathbb{V}_{N} \subset \mathbb{L}_{2}(\Gamma) \stackrel{\text { dense }}{\subset} \mathbb{H}^{-t_{d}}(\Gamma)$.
E.g. \mathbb{V}_{N} as the space of piecewise-constant functions on a partition $\left\{T_{j}\right\}_{j=1}^{N}$ of Γ :

$$
\underline{\underline{A} \vec{c}}=\vec{b}, \quad A_{i, j}=\int_{T_{i}} \int_{T_{j}} \Phi(x, y) \mathrm{d} \mathcal{H}^{d}(x) \mathrm{d} \mathcal{H}^{d}(y), \quad b_{i}=-\int_{T_{i}} g(x) \mathrm{d} \mathcal{H}^{d}(x)
$$

The Hausdorff-measure integral equation method

Re-write IE $A \phi=g$ and (coercive+compact) variational pr. for $\tilde{\phi} \in \mathbb{H}^{-t_{d}}(\Gamma), \quad t_{d}:=1-\frac{n-d}{2}$:

$$
\mathbb{A} \tilde{\phi}=\operatorname{tr}_{\Gamma} \boldsymbol{g} \quad \Longleftrightarrow \quad\langle\mathbb{A} \tilde{\phi}, \tilde{\psi}\rangle_{\mathbb{H}^{t_{d}}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)}=\left\langle\operatorname{tr}_{\Gamma} g, \widetilde{\psi}\right\rangle_{\mathbb{H}^{t} d}(\Gamma) \times \mathbb{H}^{-t_{d}(\Gamma)} \quad \forall \tilde{\psi} \in \mathbb{H}^{-t_{d}}(\Gamma)
$$

What's the advantage?
We can apply Galerkin method with any N-dimensional $\mathbb{V}_{N} \subset \mathbb{L}_{2}(\Gamma) \stackrel{\text { dense }}{\subset} \mathbb{H}^{-t_{d}}(\Gamma)$.
E.g. \mathbb{V}_{N} as the space of piecewise-constant functions on a partition $\left\{T_{j}\right\}_{j=1}^{N}$ of Γ :

$$
\underline{\underline{A} \vec{c}}=\vec{b}, \quad A_{i, j}=\int_{T_{i}} \int_{T_{j}} \Phi(x, y) \mathrm{d} \mathcal{H}^{d}(x) \mathrm{d} \mathcal{H}^{d}(y), \quad b_{i}=-\int_{T_{i}} g(x) \mathrm{d} \mathcal{H}^{d}(x)
$$

- Only need to compute (double, singular) integrals wrt Hausdorff measure
- Convergence: for $h_{N}:=\max _{j=1, \ldots, N} \operatorname{diam}\left(T_{j}\right) \rightarrow 0$, Galerkin is well-posed \& $\widetilde{\phi}_{N} \rightarrow \widetilde{\phi}$

The Hausdorff-measure integral equation method

Re-write IE $A \phi=g$ and (coercive+compact) variational pr. for $\tilde{\phi} \in \mathbb{H}^{-t_{d}}(\Gamma), \quad t_{d}:=1-\frac{n-d}{2}$:

$$
\mathbb{A} \tilde{\phi}=\operatorname{tr}_{\Gamma} g \quad \Longleftrightarrow \quad\langle\mathbb{A} \tilde{\phi}, \widetilde{\psi}\rangle_{\mathbb{H}^{t_{d}}(\Gamma) \times \mathbb{H}^{-t_{d}(\Gamma)}}=\left\langle\operatorname{tr}_{\Gamma} g, \widetilde{\psi}\right\rangle_{\mathbb{H}^{t}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)} \quad \forall \tilde{\psi} \in \mathbb{H}^{-t_{d}}(\Gamma)
$$

What's the advantage?
We can apply Galerkin method with any N-dimensional $\mathbb{V}_{N} \subset \mathbb{L}_{2}(\Gamma) \stackrel{\text { dense }}{\subset} \mathbb{H}^{-t_{d}}(\Gamma)$.
E.g. \mathbb{V}_{N} as the space of piecewise-constant functions on a partition $\left\{T_{j}\right\}_{j=1}^{N}$ of Γ :

$$
\underline{\underline{A} \vec{c}}=\vec{b}, \quad A_{i, j}=\int_{T_{i}} \int_{T_{j}} \Phi(x, y) \mathrm{d} \mathcal{H}^{d}(x) \mathrm{d} \mathcal{H}^{d}(y), \quad b_{i}=-\int_{T_{i}} g(x) \mathrm{d} \mathcal{H}^{d}(x)
$$

- Only need to compute (double, singular) integrals wrt Hausdorff measure
- Convergence: for $h_{N}:=\max _{j=1, \ldots, N} \operatorname{diam}\left(T_{j}\right) \rightarrow 0$, Galerkin is well-posed \& $\widetilde{\phi}_{N} \rightarrow \widetilde{\phi}$

If Γ is boundary of bdd Lipschitz domain, screen or multi-screen (CLAEYS, HIPTMAIR 2013), then this coincides with classical single-layer BIE and BEM, $d=n-1$.
If Γ is planar d-set, it coincides with (AC, SCW, AG, DH, AM 2022).

Part II

IEM on IFS attractors

Iterated function systems (IFS)

IFS is a family of M contracting similarities:

$$
\boldsymbol{s}_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad\left|\boldsymbol{s}_{m}(\boldsymbol{x})-\boldsymbol{s}_{m}(\boldsymbol{y})\right|=\rho_{m}|\boldsymbol{x}-\boldsymbol{y}|, \quad 0<\rho_{m}<1, \quad m=1, \ldots, M
$$

There exists a unique non-empty compact Γ with $\Gamma=s(\Gamma)$, where $s(E):=\bigcup_{m=1}^{M} s_{m}(E)$.

Iterated function systems (IFS)

IFS is a family of M contracting similarities:

$$
s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad\left|\boldsymbol{s}_{m}(\boldsymbol{x})-\boldsymbol{s}_{m}(\boldsymbol{y})\right|=\rho_{m}|\boldsymbol{x}-\boldsymbol{y}|, \quad 0<\rho_{m}<1, \quad m=1, \ldots, M
$$

There exists a unique non-empty compact Γ with $\Gamma=s(\Gamma)$, where $s(E):=\bigcup_{m=1}^{M} s_{m}(E)$.

Iterated function systems (IFS)

IFS is a family of M contracting similarities:

$$
s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad\left|s_{m}(\boldsymbol{x})-\boldsymbol{s}_{m}(\boldsymbol{y})\right|=\rho_{m}|\boldsymbol{x}-\boldsymbol{y}|, \quad 0<\rho_{m}<1, \quad m=1, \ldots, \boldsymbol{M}
$$

There exists a unique non-empty compact Γ with $\Gamma=s(\Gamma)$, where $s(E):=\bigcup_{m=1}^{M} s_{m}(E)$.
Assume open set condition (OSC): $\exists O \subset \mathbb{R}^{n}$ open, $s(O) \subset O, s_{m}(O) \cap s_{m^{\prime}}(O)=\emptyset \forall m \neq m^{\prime}$. Then Γ is d-set, $\sum_{m=1}^{M} \rho_{m}^{d}=1$.

Iterated function systems (IFS)

IFS is a family of M contracting similarities:

$$
s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad\left|s_{m}(\boldsymbol{x})-\boldsymbol{s}_{m}(\boldsymbol{y})\right|=\rho_{m}|\boldsymbol{x}-\boldsymbol{y}|, \quad 0<\rho_{m}<1, \quad m=1, \ldots, M
$$

There exists a unique non-empty compact Γ with $\Gamma=s(\Gamma)$, where $s(E):=\bigcup_{m=1}^{M} s_{m}(E)$.
Assume open set condition (OSC): $\exists O \subset \mathbb{R}^{n}$ open, $s(O) \subset O, s_{m}(O) \cap s_{m^{\prime}}(O)=\emptyset \forall m \neq m^{\prime}$. Then Γ is d-set, $\sum_{m=1}^{M} \rho_{m}^{d}=1$.

IFS is homogeneous if $\rho_{m}=\rho \forall m \quad$ (then $d=\frac{\log M}{\log 1 / \rho}$).
Γ is disjoint if $\Gamma_{m}:=s_{m}(\Gamma)$ are all disjoint.
Disjoint implies OSC and $d<n$.

IFS tree structure and wavelets

Disjoint IFS attractor Γ have natural decompositions in elements $\Gamma_{\mathbf{m}}=s_{m_{1}} \circ \cdots \circ \boldsymbol{s}_{m_{e}}(\Gamma)$, $\mathbf{m}=\left(m_{1}, \ldots, m_{\ell}\right) \in\{1, \ldots, M\}^{\ell}, \ell \in \mathbb{N}$, that are similar copies of Γ itself.

IFS tree structure and wavelets

Disjoint IFS attractor Γ have natural decompositions in elements $\Gamma_{\mathbf{m}}=s_{m_{1}} \circ \cdots \circ s_{m_{\ell}}(\Gamma)$, $\mathbf{m}=\left(m_{1}, \ldots, m_{\ell}\right) \in\{1, \ldots, M\}^{\ell}, \ell \in \mathbb{N}$, that are similar copies of Γ itself.

Linear combinations of characteristic functions $\chi_{\mathbf{m}}$ of $\Gamma_{\mathbf{m}}$ give hierarchical orthonormal wavelet basis of $\mathbb{L}_{2}(\Gamma)$.

Collecting $\Gamma_{\mathbf{m}} s$ according to diameter, wavelet basis gives characterisation of $\mathbb{H}^{t}(\Gamma)$ and its norm. (Jonsson 1998)

We use $\operatorname{span}\left\{\chi_{\mathbf{m}}\right\}$ for a suitable partition with $\operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h$ as Galerkin space \mathbb{V}_{N}

Piecewise-constant space on IFS attractor

We exploit IFS tree structure to construct Galerkin space and basis: $0<h<\operatorname{diam}(\Gamma)$

$$
\mathbb{V}_{N}=\operatorname{span}\left\{\chi_{\mathbf{m}}, \mathbf{m} \in\{1, \ldots, M\}^{\ell}, \ell \in \mathbb{N}, \quad \operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h, \operatorname{diam}\left(\Gamma_{\left(m_{1}, \ldots, m_{\ell-1}\right)}\right)>h\right\} \subset \mathbb{L}_{2}(\Gamma)
$$

Piecewise-constant space on IFS attractor

We exploit IFS tree structure to construct Galerkin space and basis: $0<h<\operatorname{diam}(\Gamma)$

$$
\mathbb{V}_{N}=\operatorname{span}\left\{\chi_{\mathbf{m}}, \mathbf{m} \in\{1, \ldots, M\}^{\ell}, \ell \in \mathbb{N}, \quad \operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h, \operatorname{diam}\left(\Gamma_{\left(m_{1}, \ldots, m_{\ell-1}\right)}\right)>h\right\} \subset \mathbb{L}_{2}(\Gamma)
$$

Each element $\Gamma_{\mathbf{m}}$ is a copy of Γ under similarity $s_{\mathbf{m}}$, with $\operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h$.

$$
\operatorname{diam}(\Gamma)=\sqrt{2}, M=4
$$

Piecewise-constant space on IFS attractor

We exploit IFS tree structure to construct Galerkin space and basis: $0<h<\operatorname{diam}(\Gamma)$

$$
\mathbb{V}_{N}=\operatorname{span}\left\{\chi_{\mathbf{m}}, \mathbf{m} \in\{1, \ldots, M\}^{\ell}, \ell \in \mathbb{N}, \quad \operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h, \operatorname{diam}\left(\Gamma_{\left(m_{1}, \ldots, m_{\ell-1}\right)}\right)>h\right\} \subset \mathbb{L}_{2}(\Gamma)
$$

Each element $\Gamma_{\mathbf{m}}$ is a copy of Γ under similarity $s_{\mathbf{m}}$, with $\operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h$.

$$
\operatorname{diam}(\Gamma)=\sqrt{2}, M=4
$$

Piecewise-constant space on IFS attractor

We exploit IFS tree structure to construct Galerkin space and basis: $0<h<\operatorname{diam}(\Gamma)$

$$
\mathbb{V}_{N}=\operatorname{span}\left\{\chi_{\mathbf{m}}, \mathbf{m} \in\{1, \ldots, M\}^{\ell}, \ell \in \mathbb{N}, \quad \operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h, \operatorname{diam}\left(\Gamma_{\left(m_{1}, \ldots, m_{\ell-1}\right)}\right)>h\right\} \subset \mathbb{L}_{2}(\Gamma)
$$

Each element $\Gamma_{\mathbf{m}}$ is a copy of Γ under similarity $s_{\mathbf{m}}$, with $\operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h$.

$$
\operatorname{diam}(\Gamma)=\sqrt{2}, M=4
$$

$\rho=\frac{1}{3}, h=0.5, N=4$

			$\begin{gathered} \text { 世 } \\ \boldsymbol{\#} \end{gathered}$
H :	H :	4 :	$\begin{aligned} & \text { H } \\ & \boldsymbol{H} \end{aligned}$
$\left(\begin{array}{c} \text { in } \\ \text { in } \end{array}\right.$	(in	$\begin{gathered} i \\ i \end{gathered}$	$\begin{gathered} \text { H } \\ \text { H } \end{gathered}$
\% 변	\# !	4 !	$\begin{aligned} & \text { Hit } \\ & \text { Hit } \end{aligned}$

Piecewise-constant IEM convergence for disjoint IFS attractors

Using Fredholm, relation Galerkin space/wavelets, coefficient decay in $\mathbb{H}^{t}(\Gamma)$:

Theorem (AC, SCW, XC, AG, DH, AM 2023)

Γ disjoint IFS attractor, $n-2<d=\operatorname{dim}_{H}(\Gamma)<n$.
\mathbb{V}_{N} piecewise constants on self-similar partition $\left\{\Gamma_{\mathbf{m}}\right\}$ of $\Gamma, \operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h$.
Assume IE solution $\phi \in H_{\Gamma}^{s}$ for some $-1<s<-\frac{n-d}{2}$.
Then

$$
\left\|\widetilde{\phi}-\widetilde{\phi}_{N}\right\|_{\mathbb{H}^{-1+\frac{n-d}{2}}(\Gamma)}=\left\|\phi-\phi_{N}\right\|_{H_{\Gamma}^{-1}} \leq c h^{s+1}\|\phi\|_{H_{\Gamma}^{s}}
$$

Piecewise-constant IEM convergence for disjoint IFS attractors

Using Fredholm, relation Galerkin space/wavelets, coefficient decay in $\mathbb{H}^{t}(\Gamma)$:

Theorem (AC, SCW, XC, AG, DH, AM 2023)

Γ disjoint IFS attractor, $n-2<d=\operatorname{dim}_{H}(\Gamma)<n$.
\mathbb{V}_{N} piecewise constants on self-similar partition $\left\{\Gamma_{\mathbf{m}}\right\}$ of $\Gamma, \operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h$.
Assume IE solution $\phi \in H_{\Gamma}^{s}$ for some $-1<s<-\frac{n-d}{2}$.
Then

$$
\left\|\widetilde{\phi}-\widetilde{\phi}_{N}\right\|_{\mathbb{H}^{-1+\frac{n-d}{2}}(\Gamma)}=\left\|\phi-\phi_{N}\right\|_{H_{\Gamma}^{-1}} \leq c h^{s+1}\|\phi\|_{H_{\Gamma}^{s}}
$$

- $h^{2 s+2}$ super-convergence of linear functionals, e.g.: point value $u^{s}(x)$ and far-field
- No higher regularity (and rate) can be expected: $H_{\Gamma}^{-\frac{n-d}{2}}=\{0\}$
- For homogeneous IFS ($\rho_{m}=\rho$), if maximal regularity is achieved, rates are

$$
M^{-\ell / 2} \quad \text { for } n=2, \quad(\rho M)^{-\ell / 2} \quad \text { for } n=3
$$

with ℓ the "level" of the pw-constant space $\left(h=\rho^{\ell} \operatorname{diam}(\Gamma), \quad N=M^{\ell}\right)$

- For $d=n-1$, we recover classical results for Lipschitz screens and boundaries For $\Gamma \subset\left\{x_{n}=0\right\}$, we recover (AC, SCW, AG, DH, AM 2022)

Part III

Numerical quadrature

Numerical quadrature on IFS attractors

Linear system requires quadrature rule to approximate

$$
A_{j, j^{\prime}}=\int_{\Gamma_{\mathbf{m}()}} \int_{\Gamma_{\mathbf{m}\left(j^{\prime}\right)}} \Phi(x, y) \mathrm{d} \mathcal{H}^{d}(y) \mathrm{d} \mathcal{H}^{d}(\boldsymbol{x}), \quad b_{j}=-\int_{\Gamma_{\mathbf{m}(i)}} u^{i}(x) \mathrm{d} \mathcal{H}^{d}(\boldsymbol{x})
$$

Numerical quadrature on IFS attractors

Linear system requires quadrature rule to approximate

$$
A_{j, j^{\prime}}=\int_{\Gamma_{\mathbf{m}())}} \int_{\Gamma_{\mathbf{m}\left(j^{\prime}\right)}} \Phi(x, y) \mathrm{d} \mathcal{H}^{d}(y) \mathrm{d} \mathcal{H}^{d}(x), \quad b_{j}=-\int_{\Gamma_{\mathbf{m}(i)}} u^{i}(x) \mathrm{d} \mathcal{H}^{d}(x)
$$

Quadrature rule:

- decompose $\Gamma_{\mathbf{m}}$ in similar sub-components, using IFS structure
- split Helmholtz kernel in Laplace + smoother terms
- exploit Laplace kernel homogeneity and IFS self-similarity to reduce singular integral to a smooth one
- treat smooth integrands with composite barycentre rule, using IFS
- express all singular integrals in terms of a few "fundamental" ones

Numerical quadrature on IFS attractors

Linear system requires quadrature rule to approximate

$$
A_{j, j^{\prime}}=\int_{\Gamma_{\mathbf{m}(i)}} \int_{\Gamma_{\mathbf{m}\left(j^{\prime}\right)}} \Phi(x, y) \mathrm{d} \mathcal{H}^{d}(y) \mathrm{d} \mathcal{H}^{d}(x), \quad b_{j}=-\int_{\Gamma_{\mathbf{m}(i)}} u^{i}(x) \mathrm{d} \mathcal{H}^{d}(x)
$$

Quadrature rule:

- decompose $\Gamma_{\mathbf{m}}$ in similar sub-components, using IFS structure
- split Helmholtz kernel in Laplace + smoother terms
- exploit Laplace kernel homogeneity and IFS self-similarity to reduce singular integral to a smooth one
- treat smooth integrands with composite barycentre rule, using IFS
- express all singular integrals in terms of a few "fundamental" ones

Convergence analysis of quadrature error and of fully discrete Galerkin system. Extend to "invariant measures", more general than Hausdorff (Hutchinson 1981). Each $\Gamma_{\mathbf{m}}$ is similar copy of Γ : for simplicity we just consider integrals over Γ.
Disjoint case: (AG, DH, AM 2022).
Non-disjoint case: (AG, DH, B. MAJOR 2023).

Barycentre rule for smooth integrals

As before, partition Γ in $\Gamma_{\mathbf{m}}=s_{\mathbf{m}}(\Gamma)$ with $\operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \approx h_{\Omega}$.
Extend classical midpoint rule:
Approximate $\left.f\right|_{\Gamma_{\mathbf{m}}}$ with $f\left(\mathbf{x}_{\mathbf{m}}\right)$, where $x_{\mathbf{m}}$ is barycentre of $\Gamma_{\mathbf{m}}$

$$
\int_{\Gamma} f(x) \mathrm{d} \mu(x)=\sum_{\mathbf{m}} \int_{\Gamma_{\mathbf{m}}} f(x) \mathrm{d} \mu(x) \approx \sum_{\mathbf{m}} \mu\left(\Gamma_{\mathbf{m}}\right) f\left(\mathbf{x}_{\mathbf{m}}\right)
$$

Barycentre rule for smooth integrals

As before, partition Γ in $\Gamma_{\mathbf{m}}=s_{\mathbf{m}}(\Gamma)$ with $\operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \approx h_{g}$.
Extend classical midpoint rule:
Approximate $\left.f\right|_{\Gamma_{\mathbf{m}}}$ with $f\left(\mathbf{x}_{\mathbf{m}}\right)$, where $x_{\mathbf{m}}$ is barycentre of $\Gamma_{\mathbf{m}}$

$$
\int_{\Gamma} f(x) \mathrm{d} \mu(x)=\sum_{\mathbf{m}} \int_{\Gamma_{\mathbf{m}}} f(x) \mathrm{d} \mu(x) \approx \sum_{\mathbf{m}} \mu\left(\Gamma_{\mathbf{m}}\right) f\left(\mathbf{x}_{\mathbf{m}}\right)
$$

Barycentre and weights are easily computed:

$$
\mu\left(\Gamma_{\mathbf{m}}\right)=p_{m_{1}} \cdots p_{m_{\ell}} \mu(\Gamma), \quad p_{m}=\rho_{m}^{d}
$$

$x_{\mathbf{m}}=\frac{\int_{\Gamma_{\mathbf{m}}} x \mathrm{~d} \mu(x)}{\mu\left(\Gamma_{\mathbf{m}}\right)}=\boldsymbol{s}_{m_{1}} \circ \cdots \circ \boldsymbol{s}_{m_{\ell}}\left(\left[I-\sum_{m=1}^{M} p_{m} \rho_{m} A_{m}\right]^{-1} \sum_{m=1}^{M} p_{m} \delta_{m}\right)$
where $\mathbf{m}=\left(m_{1}, \ldots, m_{\ell}\right) \in(1, \ldots, M)^{\ell}, \quad s_{m}(x)=\rho_{m} A_{m} x+\delta_{m}$

Barycentre rule for smooth integrals

As before, partition Γ in $\Gamma_{\mathbf{m}}=s_{\mathbf{m}}(\Gamma)$ with $\operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \approx h_{G}$.
Extend classical midpoint rule:
Approximate $\left.f\right|_{\Gamma_{\mathbf{m}}}$ with $f\left(\mathbf{x}_{\mathbf{m}}\right)$, where $x_{\mathbf{m}}$ is barycentre of $\Gamma_{\mathbf{m}}$

$$
\int_{\Gamma} f(x) \mathrm{d} \mu(x)=\sum_{\mathbf{m}} \int_{\Gamma_{\mathbf{m}}} f(x) \mathrm{d} \mu(x) \approx \sum_{\mathbf{m}} \mu\left(\Gamma_{\mathbf{m}}\right) f\left(\mathbf{x}_{\mathbf{m}}\right)
$$

Barycentre and weights are easily computed:

$$
\mu\left(\Gamma_{\mathbf{m}}\right)=p_{m_{1}} \cdots p_{m_{\ell}} \mu(\Gamma), \quad p_{m}=\rho_{m}^{d}
$$

$x_{\mathbf{m}}=\frac{\int_{\Gamma_{\mathbf{m}}} x \mathrm{~d} \mu(x)}{\mu\left(\Gamma_{\mathbf{m}}\right)}=\boldsymbol{s}_{m_{1}} \circ \cdots \circ \boldsymbol{s}_{m_{\ell}}\left(\left[I-\sum_{m=1}^{M} p_{m} \rho_{m} A_{m}\right]^{-1} \sum_{m=1}^{M} p_{m} \delta_{m}\right)$
where $\mathbf{m}=\left(m_{1}, \ldots, m_{\ell}\right) \in(1, \ldots, M)^{\ell}, \quad s_{m}(x)=\rho_{m} A_{m} x+\delta_{m}$

$$
\text { Error } \left.\leq \frac{n}{2} h_{Q}^{2} \mu(\Gamma)|f|_{C^{2}\left(\cup_{\mathbf{m}}\right.} \operatorname{Hull}\left(\Gamma_{\mathbf{m}}\right)\right)
$$

Same story for double integrals.

Quadrature rule for singular homogeneous integrals

Integrability. Γ a compact d-set, $y \in \Gamma$:
$\int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(x)<\infty$ iff $t<d, \quad I_{\Gamma, \Gamma}^{t}:=\int_{\Gamma} \int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(y) \mathrm{d} \mathcal{H}^{d}(x)<\infty \quad$ iff $t<d$.

Singularity of $|x-y|^{-t}$ is localised on the red line.
© Example:
Cantor set $\subset \mathbb{R}$
$M=2$

Quadrature rule for singular homogeneous integrals

Integrability. Γ a compact d-set, $y \in \Gamma$:
$\int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(x)<\infty$ iff $t<d, \quad I_{\Gamma, \Gamma}^{t}:=\int_{\Gamma} \int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(y) \mathrm{d} \mathcal{H}^{d}(x)<\infty$ iff $t<d$.

Singularity of $|x-y|^{-t}$ is localised on the red line.
Decompose double integral over $\Gamma \times \Gamma: \quad I_{\Gamma, \Gamma}^{t}=\sum_{m=1}^{M} \sum_{m^{\prime}=1}^{M} I_{\Gamma_{m}, \Gamma_{m^{\prime}}}^{t}$

© Example:
Cantor set $\subset \mathbb{R}$
$M=2$

Quadrature rule for singular homogeneous integrals

Integrability. Γ a compact d-set, $y \in \Gamma$:
$\int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(x)<\infty$ iff $t<d, \quad I_{\Gamma, \Gamma}^{t}:=\int_{\Gamma} \int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(y) \mathrm{d} \mathcal{H}^{d}(x)<\infty$ iff $t<d$.

- Example:

Cantor set $\subset \mathbb{R}$
$M=2$

Singularity of $|x-y|^{-t}$ is localised on the red line.
Decompose double integral over $\Gamma \times \Gamma: \quad I_{\Gamma, \Gamma}^{t}=\sum_{m=1}^{M} \sum_{m^{\prime}=1}^{M} I_{\Gamma_{m}, \Gamma_{m^{\prime}}}^{t}$
On $\Gamma_{m} \times \Gamma_{m}$ use self-similarity of Γ and t-homogeneity of $|x-y|^{t}$:

$$
I_{\Gamma_{m}, \Gamma_{m}}^{t}=\rho_{m}^{2 d-t} I_{\Gamma, \Gamma}^{t}
$$

Quadrature rule for singular homogeneous integrals

Integrability. Γ a compact d-set, $y \in \Gamma$:
$\int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(x)<\infty$ iff $t<d, \quad I_{\Gamma, \Gamma}^{t}:=\int_{\Gamma} \int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(y) \mathrm{d} \mathcal{H}^{d}(x)<\infty$ iff $t<d$.

- Example:

Cantor set $\subset \mathbb{R}$ $M=2$

Singularity of $|x-y|^{-t}$ is localised on the red line.
Decompose double integral over $\Gamma \times \Gamma: \quad I_{\Gamma, \Gamma}^{t}=\sum_{m=1}^{M} \sum_{m^{\prime}=1}^{M} I_{\Gamma_{m}, \Gamma_{m^{\prime}}}^{t}$
On $\Gamma_{m} \times \Gamma_{m}$ use self-similarity of Γ and t-homogeneity of $|x-y|^{t}$:

$$
I_{\Gamma_{m}, \Gamma_{m}}^{t}=\rho_{m}^{2 d-t} I_{\Gamma, \Gamma}^{t}
$$

Can compute $I_{\Gamma, \Gamma}^{t}$ only in terms of (smooth!) off-diagonal integrals:

$$
I_{\Gamma, \Gamma}^{t}=\frac{1}{1-\sum_{m=1}^{M} \rho_{m}^{2 d-t}} \sum_{m=1}^{M} \sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M} I_{\Gamma_{m}, \Gamma_{m^{\prime}}}^{t}
$$

Compute $I_{\Gamma, \Gamma}^{t}$ by applying barycentre rule to smooth $I_{\Gamma_{m}, \Gamma_{m^{\prime}}}^{t}, m \neq m^{\prime}$
All this extends to: $\quad \log |x-y|, \quad$ invariant measures $\mu \neq \mu^{\prime}, \quad$ single integrals.

Quadrature and integral equation

Split Helmholtz fundamental solution as

$$
\Phi(x, y)=\left\{\begin{aligned}
\frac{i}{4} H_{0}^{(1)}(k|x-y|) & =-\frac{1}{2 \pi} \log |x-y|+\mathcal{R}(|x-y|) & & \text { in } \mathbb{R}^{2} \\
\frac{\mathrm{e}^{i k|x-y|}}{4 \pi|x-y|} & =\frac{1}{4 \pi|x-y|}+\mathcal{R}(|x-y|) & & \text { in } \mathbb{R}^{3}
\end{aligned} r l\right. \text { Lipschitz }
$$

Compute the elements of the Galerkin matrix and RHS vector by approximating homogeneous term with self-similar rule and smooth term \mathcal{R} with barycentre rule.

- Quadrature error bound for each entry. $\quad h_{G}^{2}$-bound despite $\mathcal{R} \notin C^{2}$.

Quadrature and integral equation

Split Helmholtz fundamental solution as

$$
\Phi(x, y)=\left\{\begin{aligned}
\frac{i}{4} H_{0}^{(1)}(k|x-y|) & =-\frac{1}{2 \pi} \log |x-y|+\mathcal{R}(|x-y|) & & \text { in } \mathbb{R}^{2} \\
\frac{\mathrm{e}^{\mathrm{ik}|x-y|}}{4 \pi|x-y|} & =\frac{1}{4 \pi|x-y|}+\mathcal{R}(|x-y|) & & \text { in } \mathbb{R}^{3}
\end{aligned} r l\right. \text { Lipschitz }
$$

Compute the elements of the Galerkin matrix and RHS vector by approximating homogeneous term with self-similar rule and smooth term \mathcal{R} with barycentre rule.

- Quadrature error bound for each entry. $\quad h_{G}^{2}$-bound despite $\mathcal{R} \notin C^{2}$.

Fully discrete analysis from Strang argument:
BEM error bounds taking into account the approximation of the integrals.
h^{2} convergence rate is preserved if $h_{G} \lesssim h^{1+d}$ ($h_{B} \lesssim h^{1+d / 2}$ for homogeneous IFS). From numerics: $h_{Q} \lesssim h$ seems to be enough.

Quadrature and integral equation

Split Helmholtz fundamental solution as

$$
\Phi(x, y)=\left\{\begin{aligned}
\frac{i}{4} H_{0}^{(1)}(k|x-y|) & =-\frac{1}{2 \pi} \log |x-y|+\mathcal{R}(|x-y|) & & \text { in } \mathbb{R}^{2} \\
\frac{\mathrm{e}^{\mathrm{ik}|x-y|}}{4 \pi|x-y|} & =\frac{1}{4 \pi|x-y|}+\mathcal{R}(|x-y|) & & \text { in } \mathbb{R}^{3}
\end{aligned} r l\right. \text { Lipschitz }
$$

Compute the elements of the Galerkin matrix and RHS vector by approximating homogeneous term with self-similar rule and smooth term \mathcal{R} with barycentre rule.

- Quadrature error bound for each entry. $\quad h_{G}^{2}$-bound despite $\mathcal{R} \notin C^{2}$.

Fully discrete analysis from Strang argument:
BEM error bounds taking into account the approximation of the integrals.
h^{2} convergence rate is preserved if $h_{G} \lesssim h^{1+d} \quad\left(h_{B} \lesssim h^{1+d / 2}\right.$ for homogeneous IFS). From numerics: $h_{Q} \lesssim h$ seems to be enough.

Barycentre rule requires value of $\mathcal{H}^{d}(\Gamma)$: not known for most fractals $\Gamma \notin \mathbb{R}$! This is irrelevant for the computation of near-field $u^{s}(x)$ and far-field in scattering BVP.

Quadrature: numerical examples

Approximation of the integral of the Helmholtz fundamental solution on $\Gamma \times \Gamma$

$$
\begin{array}{|l}
\hline-\rho=1 / 3 \\
\hdashline-O\left(N^{-2 / d}\right) \\
* \rho=0.1 \\
\hdashline-O\left(N^{-2 / d}\right) \\
-\rho=0.01 \\
\hline O\left(N^{-2 / d}\right) \\
-\rho=0.001 \\
-O O\left(N^{-2 / d}\right) \\
\hline
\end{array}
$$

«Cantor sets in \mathbb{R}
Cantor dusts in \mathbb{R}^{2}
$k=5$
Error plotted against \# quadrature points

Dashed lines
= theoretical rates

Quadrature: numerical examples

Approximation of the integral of the Helmholtz fundamental solution on $\Gamma \times \Gamma$

< Cantor sets in \mathbb{R}
Cantor dusts in \mathbb{R}^{2}
$k=5$
Error plotted against \# quadrature points

Dashed lines = theoretical rates

冓教 non "hull-disjoint" $k=2$
Error plotted against h_{G}


```
    #% non-uniform
```


Barycentre rule vs chaos game (Monte Carlo)

Chaos game is alternative quadrature rule:
(Forte, Mendivil, Vrscay 1998)
(i) choose $x_{0} \in \mathbb{R}^{n}$
(ii) sequence $\left\{m_{j}\right\}_{j \in \mathbb{N}}$ of i.i.d. random variables in $\{1, \ldots, M\}$ with probabilities $\left\{p_{1}, \ldots, p_{M}\right\}$
(iii) construct the stochastic sequence $x_{j}=s_{m_{j}}\left(x_{j-1}\right)$ for $j \in \mathbb{N}$
(iv) approximate the integral of $f \in C^{0}$ as $\frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right) \xrightarrow{N \rightarrow \infty} \int_{\Gamma} f(x) \mathrm{d} \mu(x)$

Barycentre rule vs chaos game (Monte Carlo)

Chaos game is alternative quadrature rule:
(i) choose $x_{0} \in \mathbb{R}^{n}$
(ii) sequence $\left\{m_{j}\right\}_{j \in \mathbb{N}}$ of i.i.d. random variables in $\{1, \ldots, M\}$ with probabilities $\left\{p_{1}, \ldots, p_{M}\right\}$
(iii) construct the stochastic sequence $x_{j}=s_{m_{j}}\left(x_{j-1}\right)$ for $j \in \mathbb{N}$
(iv) approximate the integral of $f \in C^{0}$ as $\frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right) \xrightarrow{N \rightarrow \infty} \int_{\Gamma} f(x) \mathrm{d} \mu(x)$

Approximation of $\int_{\Gamma} f \mathrm{~d} \mu$ for $f \in C^{\infty}$ on $\Gamma=$ Koch snowflake $\mu=$ invariant measure with non-homogeneous weights p_{m}.
(IFS: $M=7, \rho_{1: 6}=\frac{1}{3}, \rho_{7}=\frac{1}{\sqrt{3}}$) 1000 random realisations.

Chaos game (all) - Barycentre rule \leftarrow Chaos game (averaged) $\cdots O\left(N^{-2 / d}\right)$ $\cdots\left(N^{-1 / 2}\right)$

Part IV

Numerics

$n=2$

Total field for scattering by Cantor dust and Koch curve. $\quad M=4, \rho=\frac{1}{3}, d=\frac{\log 4}{\log 3}, k=20$.

$n=2$

Total field for scattering by Cantor dust and Koch curve. $\quad M=4, \rho=\frac{1}{3}, d=\frac{\log 4}{\log 3}, k=20$.

Near- \& far-field relative L_{∞} error for different shapes, $k=5$.

Dashed lines $=M^{-\ell}$ conv. rates under maximal regularity: achieved for $d \leq 1$

Koch snowflake

Two ways of approximating the scattering by a Koch snowflake Γ :
(1) $\Gamma=$ closure of open set: non-homog. IFS with $M=7, d=2, \rho_{1}=\frac{1}{\sqrt{3}}, \rho_{2: 7}=\frac{1}{3}$
2. $\partial \Gamma=$ union of 3 Koch curves: 3 IFSs with $M=4$ each, $d=\frac{\log 4}{\log 3}, \rho=\frac{1}{3}$

Koch snowflake

Two ways of approximating the scattering by a Koch snowflake Γ :
(1) $\Gamma=$ closure of open set: non-homog. IFS with $M=7, d=2, \rho_{1}=\frac{1}{\sqrt{3}}, \rho_{2: 7}=\frac{1}{3}$

2 $\partial \Gamma=$ union of 3 Koch curves: 3 IFSs with $M=4$ each, $d=\frac{\log 4}{\log 3}, \rho=\frac{1}{3}$

\triangleleft Far-field
L_{∞} relative error

2 requires that k^{2} is not eigenvalue of Γ

We show that the solution of IE 1 satisfies $\phi \in H_{\partial \Gamma}^{-1} \subset H_{\Gamma}^{-1}$

Refining the mesh, ϕ_{N} localises on boundary: plot of $\left|\phi_{N}\right|$

$n=3$

4 Sierpinski tetrahedron, $M=4$.
Left: $\rho=\frac{1}{2}, d=2$, connected Right: $\rho=\frac{3}{8}, d=\frac{\log 4}{\log (8 / 3)}$, disjoint

A scattered field, $k=50, \ell=7, N=16384$

$n=3$

- scattered field, $k=50, \ell=7, N=16384$

4 Sierpinski tetrahedron, $M=4$.
Left: $\rho=\frac{1}{2}, d=2$, connected
Right: $\rho=\frac{3}{8}, d=\frac{\log 4}{\log (8 / 3)}$, disjoint

far-field L_{∞} error (increments), $k=2$

$n=2$, flat screen: Cantor set $\Gamma \subset \mathbb{R}$

Rate $2^{-\ell / 2}$ in $H_{\Gamma}^{-1 / 2}$ norm as expected, independent of ρ. $u^{i}(x)=\mathrm{e}^{\mathrm{i} k \theta \cdot x}$ Similar plots (with double rate $2^{-\ell}$) for near-field $u^{s}(x)$ and far-field.

$n=3$, flat screen: Cantor dust $\Gamma \subset \mathbb{R}^{2}$

ρ-dependent rate $(4 \rho)^{-\ell / 2}$ in $H_{\Gamma}^{-1 / 2}$ norm as expected.
Double rates $(4 \rho)^{-\ell}$ for near-field and far-field.

$n=3$, flat screen: non-homogeneous dust \& Sierpinski triangle

© Non-homogeneous disjoint IFS attractor with $M=4, \quad \rho_{1,2,3}=\frac{1}{4}, \quad \rho_{4}=\frac{1}{2}, \quad d=\frac{\log 3}{\log 2}$

$n=3$, flat screen: non-homogeneous dust \& Sierpinski triangle

Δ Non-homogeneous disjoint IFS attractor with $M=4, \quad \rho_{1,2,3}=\frac{1}{4}, \quad \rho_{4}=\frac{1}{2}, \quad d=\frac{\log 3}{\log 2}$

- Sierpinski triangle is not disjoint: does not satisfy BEM convergence theory assumptions.

Comparison against "prefractal-BEM" for Cantor sets

Prefractal-BEM solution \widetilde{u} computed on Lipschitz prefractal approximations of Γ as in (Chandler-Wilde, Hewett, Moiola, Besson, 2021)

Compare far-fields on circle "at infinity"
4 Ratio between Hausdorff-BEM and prefractal-BEM errors.

Same number of DOFs (\approx computational effort).
$\rho<0.3$: Hausdorff-BEM is far more accurate
$\rho \approx 1 / 3$: Lebesgue-BEM has strange "enhanced accuracy"
$\rho>0.4$: the methods are comparable
Results are independent of wavenumber k.

Summary and outlook

Scattering of time-harmonic acoustic waves by sound-soft obstacle Γ :
Γ compact: BVP is well-posed, equivalent to IE
Γ d-set: IE in Hausdorff measure, convergence of piecewise-constant Galerkin Γ disjoint IFS: concrete recipe for Galerkin space \& quadrature, convergence rates

Fractal IFS Γ is not approximated. Only function (space) and integral are approximated.

Summary and outlook

Scattering of time-harmonic acoustic waves by sound-soft obstacle Γ :
Γ compact: BVP is well-posed, equivalent to IE
Γ d-set: IE in Hausdorff measure, convergence of piecewise-constant Galerkin
Γ disjoint IFS: concrete recipe for Galerkin space \& quadrature, convergence rates
Fractal IFS Γ is not approximated. Only function (space) and integral are approximated.

Open questions and ongoing work:

- Solution regularity theory ($\phi \in H_{\Gamma}^{-\frac{n-d}{2}-\epsilon}$), singularity structure
- Non-disjoint attractors A, $d=n$ *
- Fast implementation, compression
- Maxwell equations? Other PDEs? (Laplace \& reaction-diffusion already covered)
- Volume integral equation, penetrable materials
- IFSs with non-similar contractions,...
A. Catano, S.N. Chandler-Wilde, X. Claeys, A. Gibbs, D.P. Hewett, A. Moiola, Integral equation methods for acoustic scattering by fractals arXiv:2309.02184 julỉa code @

Summary and outlook

Scattering of time-harmonic acoustic waves by sound-soft obstacle Γ :
Γ compact: BVP is well-posed, equivalent to IE
Γ d-set: IE in Hausdorff measure, convergence of piecewise-constant Galerkin
Γ disjoint IFS: concrete recipe for Galerkin space \& quadrature, convergence rates
Fractal IFS Γ is not approximated. Only function (space) and integral are approximated.

Open questions and ongoing work:

- Solution regularity theory ($\phi \in H_{\Gamma}^{-\frac{n-d}{2}-\epsilon}$), singularity structure
- Non-disjoint attractors $\mathrm{A}, d=n$ *
- Fast implementation, compression
- Maxwell equations? Other PDEs? (Laplace \& reaction-diffusion already covered)
- Volume integral equation, penetrable materials
- IFSs with non-similar contractions, ...

Thank you!

A. Caetano, S.N. Chandler-Wilde, X. Claeys, A. Gibbs, D.P. Hewett, A. Moiola, Integral equation methods for acoustic scattering by fractals
arXiv:2309.02184 julỉ̉ code @

