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Acoustic wave scattering
Time-harmonic acoustic waves:
Helmholtz equation ∆u + k2u = 0 in Rn , n ∈ {2,3}, with wavenumber k > 0.

Direct scattering: incoming wave u i︸︷︷︸
datum

hits obstacle Γ︸︷︷︸
datum

and generates scattered field us︸︷︷︸
unknown

.

Consider Dirichlet (sound-soft) boundary conditions on a bounded Γ.

us = −u i
Γ

in Rn \ Γ
∆us + k2us = 0

u i(x) = eikd·x

us

utot = u i + us

us satisfies Sommerfeld radiation condition (SRC) at infinity: lim
r=|x|→∞

r
n−1

2 (∂rus − ikus) = 0
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Scattering by Lipschitz domains and screens

Classical problem e.g. when:

1 Γ is the boundary of a Lipschitz domain of Rn

(◀ n = 2)

What happens when Γ
is much rougher than
this, e.g. fractal?

2 Γ is Lipschitz subset of {x ∈ Rn , xn = 0} (planar screen)

(◀ n = 3)

Neumann trace (jump, in case 2⃝) ϕ = [∂nus] on Γ is solution of single-layer BIE Sϕ = −γu i ,
scattered field represented with layer potential us = Sϕ. BIE approximated with BEM.
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Waves and fractals: applications

Fractals model roughness at multiple scales, in natural and man-made objects:

Wideband fractal antennas ▲ http://www.antenna-theory.com/antennas/fractal.php

◀ Scattering by ice crystals
in atmospheric physics
(C. Westbrook)

Fractal apertures
in laser optics

(J. Christian) ▶

M.V. Berry 1979, “Diffractals”:
a new regime in wave physics
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Scattering by fractals

Plenty of mathematical challenges:
▶ How to formulate well-posed BVPs?

What is the right function space setting?
How to write BVP as integral equation?

▶ How do prefractal solutions converge to fractal solutions?
▶ How can we accurately compute the scattered field?
▶ How to exploit self-similarity?
▶ . . .

· · ·

Tools developed here (hopefully!) relevant to (numerical) analysis of
other IEs, ΨDOs, BVPs, numerical integration on rough, complicated, fractal sets.
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Our main contributions
This talk: AC, SCW, XC, AG, DH, AM, arXiv:2309.02184

Integral equation methods for acoustic scattering by fractals

BVPS, INTEGRAL EQUATIONS, FUNCTION SPACES

▶ SCW, DH, IEOT, 2015
Wavenumber-explicit continuity & coercivity est. in acoustic scattering by planar scr.

▶ SCW, DH, AM, IEOT, 2017
Sobolev spaces on non-Lipschitz subsets of Rn with application to BIEs on fractal scr.

▶ SCW, DH, SIAM J. Math. Anal., 2018
Well-posed PDE and integral equation formulations for scattering by fractal screens,

▶ AC, DH, AM, JFA, 2021
Density results for Sobolev, Besov and Triebel-Lizorkin spaces on rough sets

NUMERICAL METHODS
▶ SCW, DH, AM, J.Besson, Numer. Math., 2021

Boundary element methods for acoustic scattering by fractal screens
▶ J.Bannister, AG, DH, M3AS, 2022

Acoustic scattering by impedance screens/cracks with fractal boundary. . .
▶ AG, DH, AM, Numer. Algorithms, 2022

Numerical quadrature for singular integrals on fractals
▶ AC, SCW, AG, DH, AM, arXiv:2212.06594, 2022

A Hausdorff-measure BEM for acoustic scattering by fractal screens
▶ AG, DH, B.Major Numer. Algorithms, 2023

Numerical evaluation of singular integrals on non-disjoint self-similar fractal sets
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Two ways to apply BEM to fractal Γ — ref.s to flat screen case
1 CHANDLER-WILDE, HEWETT, MOIOLA, BESSON, Numer. Math. 2021

Approximate Γ with Lipschitz “prefractal” Γj and apply conventional BEM on each Γj

open Γj ⊂ Γj+1 compact Γj ⊃ Γj+1
non-nested Γj

̸⊂
̸⊃Γj+1

▶ “Non-conforming”, since typically VN ̸⊂ V = H−1/2
Γ

▶ BVP and BEM convergence from Mosco convergence of spaces
– No convergence rates
– Requires “thickened prefractals”
▶ Can use any BEM implementation

2 CAETANO, CHANDLER-WILDE, GIBBS, HEWETT, MOIOLA, arXiv:2212.06594

▶ Discretise Γ without approximation

▶ Conforming method VN ⊂ V = H−1/2
Γ

▶ Easy convergence from Céa lemma + rates

}
Rest of this talk!

▶ Integration wrt Hausdorff measure Hd → require special quadrature formulas
6
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What do we do?

3 levels of generality for Γ

▶ Arbitrary compact Γ ⊂ Rn :
BVP, Newton potential & op., variational form
THEOREM: BVP and IE well-posedness

▶ d-sets:
“intrinsic” function spaces, trace operators
integral operators, piecewise-constant Galerkin
THEOREM: Galerkin convergence

▶ IFS attractors:
tree structure, wavelets, quadrature rule
THEOREM: Galerkin convergence rates

+ Quadrature rule
+ Numerical results

implementation for general class of IFS:
https://github.com/AndrewGibbs/IFSintegrals
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Arbitrary compact Γ ⊂ Rn

BVP: ∆us + k2us = 0 in Ω := Rn \ Γ, Sommerfeld r.c., us + u i ∈ W 1,loc
0 (Ω)

Standard acoustic Newton potential A : Hs
comp(Rn) → Hs+2

loc (Rn):

Aψ(x) :=
∫
Rn

Φ(x ,y)ψ(y)dy, x ∈ Rn , Φ(x ,y) :=

{
i
4H(1)

0 (k|x − y|) n = 2
eik|x−y|

4π|x−y| n = 3

Spaces:
H−1

Γ :={v ∈ H−1(Rn) : supp v ⊂ Γ},

H̃1(Ω) :=C∞
0 (Ω)

H1(Rn)

(
H−1

Γ

)∗
= H̃1(Ω)⊥

P : H1(Rn) → H̃1(Ω)⊥ projection

“Integral operator”: A := H−1
Γ → H̃1(Ω)⊥, Aϕ := P(σAϕ), σ ∈ C∞

0 (Rn), σ|Γ+Bϵ
= 1

a(ϕ, ψ) := ⟨Aϕ, ψ⟩H1(Rn)×H−1(Rn) is continuous & compactly-perturb. coercive in H−1
Γ ×H−1

Γ

THEOREM. Except for possibly countably many k, (∀k > 0 if Ω connected)
▶ A := H−1

Γ → H̃1(Ω)⊥ is invertible
▶ the BVP has unique solution us ∈ H1,loc(Rn)

▶ us = Aϕ where ϕ ∈ H−1
Γ is the unique solution of the IE Aϕ = g with g := −P(σu i)
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Part I

IE and Galerkin on d-sets



Hausdorff measure and d-sets
Hausdorff measure and dimension of E ⊂ Rn , 0 ≤ d ≤ n: (Hd(λE) = λdHd(E))

Hd(E) := lim
δ↘0

inf
{Ui}

{ ∞∑
i=1

(diamUi)
d :

∞⋃
i=1

Ui ⊃ E,diamUi < δ
}
, dimH(E) :=inf{d : Hd(E) = 0}

A compact set Γ ⊂ Rn is a d-set if c1rd ≤ Hd
(
Γ ∩ Br(x)

)
≤ c2rd ∀x ∈ Γ, 0 < r ≤ 1

“Uniformly locally d-dimensional sets”.

FALCONER, TRIEBEL, JONSSON&WALLIN, . . .

d

Hd(E)

dimH(E)
0

∞

Examples of d-sets in R2:

d = 2, d = 1, d = 1, d = 1, d = log 2
log 3 , d = log 4

log 3 , d = 2
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d-sets: function spaces and integral operator
On d-set Γ, define L2(Γ) as the space of square-integrable functions wrt measure Hd |Γ.

Can define “intrinsic” Sobolev spaces Ht(Γ). Ht(Γ) ⊂ L2(Γ) ⊂ H−t(Γ) = Ht(Γ)
∗, t > 0.

Trace operator: trΓφ = φ|Γ for φ ∈ C∞(Rn). E.g. [TRIEBEL 1997]
For s > n−d

2 , it extends to trΓ : Hs(Rn) → L2(Γ).

trΓ and its adjoint tr∗Γ are unitary isomorphisms in: (n − 2 < d ≤ n)

H1− n−d
2 (Γ) ⊂ L2(Γ) ⊂ H−1+ n−d

2 (Γ)

H1(Rn) ⊂ L2(Rn) ⊂ H−1(Rn)

H̃1(Rn \ Γ)⊥ H−1
Γ

∩ ∩

trΓ tr∗Γ

A := trΓA tr∗Γ

A

A is a single-layer operator
between Ht(Γ) spaces

THEOREM. A is an integral operator in Hausdorff measure:

∀Ψ ∈ L∞(Γ), AΨ(x) =
∫
Γ

Φ(x ,y)Ψ(y) dHd(y) Hd-a.e. x ∈ Γ
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∗, t > 0.

Trace operator: trΓφ = φ|Γ for φ ∈ C∞(Rn). E.g. [TRIEBEL 1997]
For s > n−d

2 , it extends to trΓ : Hs(Rn) → L2(Γ).

trΓ and its adjoint tr∗Γ are unitary isomorphisms in: (n − 2 < d ≤ n)

H1− n−d
2 (Γ) ⊂ L2(Γ) ⊂ H−1+ n−d

2 (Γ)

H1(Rn) ⊂ L2(Rn) ⊂ H−1(Rn)

H̃1(Rn \ Γ)⊥ H−1
Γ

∩ ∩

trΓ tr∗Γ

A := trΓA tr∗Γ

A

A is a single-layer operator
between Ht(Γ) spaces

THEOREM. A is an integral operator in Hausdorff measure:

∀Ψ ∈ L∞(Γ), AΨ(x) =
∫
Γ

Φ(x ,y)Ψ(y) dHd(y) Hd-a.e. x ∈ Γ
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The Hausdorff-measure integral equation method

Re-write IE Aϕ = g and (coercive+compact) variational pr. for ϕ̃ ∈ H−td (Γ), td := 1− n−d
2 :

Aϕ̃ = trΓg ⇐⇒ ⟨Aϕ̃, ψ̃⟩Htd (Γ)×H−td (Γ) = ⟨trΓg, ψ̃⟩Htd (Γ)×H−td (Γ) ∀ψ̃ ∈ H−td (Γ)

What’s the advantage?
We can apply Galerkin method with any N -dimensional VN ⊂ L2(Γ)

dense
⊂ H−td (Γ).

E.g. VN as the space of piecewise-constant functions on a partition {Tj}N
j=1 of Γ:

Ac⃗ = b⃗, Ai,j =

∫
Ti

∫
Tj

Φ(x ,y) dHd(x)dHd(y), bi = −
∫

Ti

g(x) dHd(x)

▶ Only need to compute (double, singular) integrals wrt Hausdorff measure

▶ Convergence: for hN := max
j=1,...,N

diam(Tj) → 0, Galerkin is well-posed & ϕ̃N → ϕ̃

If Γ is boundary of bdd Lipschitz domain, screen or multi-screen [CLAEYS, HIPTMAIR 2013],
then this coincides with classical single-layer BIE and BEM, d = n − 1.
If Γ is planar d-set, it coincides with [AC, SCW, AG, DH, AM 2022].
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Part II

IEM on IFS attractors



Iterated function systems (IFS)

IFS is a family of M contracting similarities: [FALCONER, HUTCHINSON, TRIEBEL,. . . ]

sm : Rn → Rn , |sm(x)− sm(y)| = ρm |x − y|, 0 < ρm < 1, m = 1, . . . ,M .

There exists a unique non-empty compact Γ with Γ = s(Γ), where s(E) :=
⋃M

m=1 sm(E).

12
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⋃M

m=1 sm(E).

Assume open set condition (OSC): ∃O ⊂ Rn open, s(O) ⊂ O, sm(O) ∩ sm′(O) = ∅ ∀m ̸= m ′.
Then Γ is d-set,

∑M
m=1 ρ

d
m = 1.

IFS is homogeneous if ρm = ρ ∀m (then d = log M
log 1/ρ ).

Γ is disjoint if Γm := sm(Γ) are all disjoint.
Disjoint implies OSC and d < n.

M =4, D, H M =5, ND, H M =3, ND, H M =4, D, NH M =4, D, NH M =7, ND, NH
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IFS tree structure and wavelets

Disjoint IFS attractor Γ have natural decompositions in elements Γm = sm1 ◦ · · · ◦ smℓ
(Γ),

m = (m1, . . . ,mℓ) ∈ {1, . . . ,M}ℓ, ℓ ∈ N, that are similar copies of Γ itself.

Γ0

Linear combinations of
characteristic functions χm of Γm
give hierarchical orthonormal
wavelet basis of L2(Γ).

Collecting Γms according to diameter,
wavelet basis gives
characterisation of Ht(Γ) and its norm.

[JONSSON 1998]

We use span{χm} for a suitable partition
with diam(Γm) ≤ h as Galerkin space VN
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Piecewise-constant space on IFS attractor

We exploit IFS tree structure to construct Galerkin space and basis: 0 < h < diam(Γ)

VN = span
{
χm, m ∈ {1, . . . ,M}ℓ, ℓ ∈ N, diam(Γm) ≤ h, diam(Γ(m1,...,mℓ−1)) > h

}
⊂ L2(Γ)

Each element Γm is a copy of Γ under similarity sm, with diam(Γm) ≤ h.
diam(Γ) =

√
2, M = 4

ρ = 1
3 , h = 0.5, N = 4 ρ = 1

3 , h = 0.2, N = 16
ρ1 = 1

2 , ρ2:4 = 1
4 , h = 0.2, N = 19
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Piecewise-constant IEM convergence for disjoint IFS attractors

Using Fredholm, relation Galerkin space/wavelets, coefficient decay in Ht(Γ):

Theorem [AC, SCW, XC, AG, DH, AM 2023]
Γ disjoint IFS attractor, n − 2 < d = dimH(Γ) < n.
VN piecewise constants on self-similar partition {Γm} of Γ, diam(Γm) ≤ h.
Assume IE solution ϕ ∈ Hs

Γ for some −1 < s < −n−d
2 .

Then
∥∥∥ϕ̃− ϕ̃N

∥∥∥
H−1+ n−d

2 (Γ)
= ∥ϕ− ϕN∥H−1

Γ
≤ c hs+1∥ϕ∥Hs

Γ

▶ h2s+2 super-convergence of linear functionals, e.g.: point value us(x) and far-field

▶ No higher regularity (and rate) can be expected: H− n−d
2

Γ = {0}
▶ For homogeneous IFS (ρm = ρ), if maximal regularity is achieved, rates are

M−ℓ/2 for n = 2, (ρM)−ℓ/2 for n = 3

with ℓ the “level” of the pw-constant space (h = ρℓdiam(Γ), N = Mℓ)
▶ For d = n − 1, we recover classical results for Lipschitz screens and boundaries

For Γ ⊂ {xn = 0}, we recover [AC, SCW, AG, DH, AM 2022]
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Part III

Numerical quadrature



Numerical quadrature on IFS attractors

Linear system requires quadrature rule to approximate

Aj,j′ =

∫
Γm(j)

∫
Γm(j′)

Φ(x ,y) dHd(y)dHd(x), bj = −
∫
Γm(j)

u i(x) dHd(x)

Quadrature rule:
▶ decompose Γm in similar sub-components, using IFS structure
▶ split Helmholtz kernel in Laplace + smoother terms
▶ exploit Laplace kernel homogeneity and IFS self-similarity

to reduce singular integral to a smooth one
▶ treat smooth integrands with composite barycentre rule, using IFS
▶ express all singular integrals in terms of a few “fundamental” ones

Convergence analysis of quadrature error and of fully discrete Galerkin system.

Extend to “invariant measures”, more general than Hausdorff [HUTCHINSON 1981].

Each Γm is similar copy of Γ: for simplicity we just consider integrals over Γ.

Disjoint case: [AG, DH, AM 2022]. Non-disjoint case: [AG, DH, B. MAJOR 2023].
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Barycentre rule for smooth integrals
As before, partition Γ in Γm = sm(Γ) with diam(Γm) ≈ hQ.

Extend classical midpoint rule:
Approximate f |Γm with f (xm), where xm is barycentre of Γm∫

Γ

f (x)dµ(x) =
∑
m

∫
Γm

f (x)dµ(x) ≈
∑
m

µ(Γm)f (xm)

Barycentre and weights are easily computed:

µ(Γm) = pm1 · · ·pmℓ
µ(Γ), pm = ρd

m ,

xm =

∫
Γm

xdµ(x)

µ(Γm)
= sm1◦· · ·◦smℓ

([
I−

M∑
m=1

pmρmAm

]−1 M∑
m=1

pmδm

)
where m = (m1, . . . ,mℓ) ∈ (1, . . . ,M)ℓ, sm(x) = ρmAmx + δm

Error ≤ n
2

h2
Q µ(Γ) |f |C2(

⋃
m Hull(Γm))

Same story for double integrals.
17
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Barycentre rule for smooth integrals
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∑
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Quadrature rule for singular homogeneous integrals

Integrability. Γ a compact d-set, y ∈ Γ:∫
Γ

|x − y|−tdHd(x) <∞ iff t < d, I t
Γ,Γ :=

∫
Γ

∫
Γ

|x − y|−tdHd(y)dHd(x) <∞ iff t < d.

Γ

Γ1 Γ2

s1 s2

Γ

Γ Γ× Γ

Γ2×Γ2

Γ1×Γ1

▲ Example:
Cantor set ⊂ R
M = 2

Singularity of |x − y|−t is localised on the red line.

Decompose double integral over Γ× Γ: I t
Γ,Γ =

M∑
m=1

M∑
m′=1

I t
Γm ,Γm′

On Γm × Γm use self-similarity of Γ and t-homogeneity of |x − y|t :

I t
Γm ,Γm

= ρ2d−t
m I t

Γ,Γ

Can compute I t
Γ,Γ only in terms of (smooth!) off-diagonal integrals:

I t
Γ,Γ =

1

1 −
∑M

m=1 ρ
2d−t
m

M∑
m=1

M∑
m′=1
m′ ̸=m

I t
Γm ,Γm′

Compute I t
Γ,Γ by applying barycentre rule to smooth I t

Γm ,Γm′ , m ̸= m ′

All this extends to: log |x − y|, invariant measures µ ̸= µ′, single integrals.
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Quadrature and integral equation

Split Helmholtz fundamental solution as

Φ(x ,y) =

{
i
4H(1)

0 (k|x − y|) = − 1
2π log |x − y|+R(|x − y|) in R2

eik|x−y|

4π|x−y| =
1

4π|x−y| +R(|x − y|) in R3 R Lipschitz

Compute the elements of the Galerkin matrix and RHS vector by approximating
homogeneous term with self-similar rule and smooth term R with barycentre rule.

▶ Quadrature error bound for each entry. h2
Q-bound despite R /∈ C2.

Fully discrete analysis from Strang argument:
BEM error bounds taking into account the approximation of the integrals.

h2 convergence rate is preserved if hQ ≲ h1+d (hQ ≲ h1+d/2 for homogeneous IFS).
From numerics: hQ ≲ h seems to be enough.

Barycentre rule requires value of Hd(Γ): not known for most fractals Γ /∈ R!
This is irrelevant for the computation of near-field us(x) and far-field in scattering BVP.
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Quadrature: numerical examples
Approximation of the integral of the Helmholtz fundamental solution on Γ× Γ

◀ Cantor sets in R

Cantor dusts in R2 ▶

k = 5

Error plotted against
# quadrature points

Dashed lines
= theoretical rates

Cantor dust

non “hull-disjoint”

non-disjoint

non-uniform

k = 2

Error plotted
against hQ
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Barycentre rule vs chaos game (Monte Carlo)

Chaos game is alternative quadrature rule: [FORTE, MENDIVIL, VRSCAY 1998]
(i) choose x0 ∈ Rn

(ii) sequence {mj}j∈N of i.i.d. random variables in {1, . . . ,M} with probabilities {p1, . . . ,pM}
(iii) construct the stochastic sequence xj = smj(xj−1) for j ∈ N

(iv) approximate the integral of f ∈ C0 as
1
N

N∑
j=1

f (xj)
N→∞−−−−→

∫
Γ

f (x)dµ(x)

Approximation of
∫
Γ

f dµ for f ∈ C∞ on Γ = Koch snowflake (IFS: M =7, ρ1:6=
1
3 , ρ7=

1√
3

)
µ = invariant measure with non-homogeneous weights pm . 1000 random realisations.

◀ Nodes
&
weights
(1 realis.)

Relative
errors ▶
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Part IV

Numerics



n = 2
Total field for scattering by Cantor dust and Koch curve. M = 4, ρ = 1

3 ,d = log 4
log 3 ,k = 20.

Near- & far-field
relative L∞ error
for different shapes,
k = 5.

Dashed lines = M−ℓ

conv. rates under
maximal regularity:
achieved for d ≤ 1
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Koch snowflake

Two ways of approximating the scattering by a Koch snowflake Γ:

1 Γ = closure of open set: non-homog. IFS with M = 7, d = 2, ρ1 = 1√
3

, ρ2:7 = 1
3

2 ∂Γ = union of 3 Koch curves: 3 IFSs with M = 4 each, d = log 4
log 3 , ρ = 1

3

◀ Far-field
L∞ relative error

2 requires that
k2 is not
eigenvalue of Γ

We show that the
solution of IE 1 satisfies
ϕ ∈ H−1

∂Γ ⊂ H−1
Γ

Refining the mesh,
ϕN localises on boundary:

plot of |ϕN | ▶
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n = 3

◀ Sierpinski tetrahedron, M = 4.

Left: ρ = 1
2 , d = 2, connected

Right: ρ = 3
8 , d = log 4

log(8/3) , disjoint

▲ scattered field, k = 50, ℓ = 7, N = 16 384 far-field L∞ error (increments), k = 2 ▲
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n = 2, flat screen: Cantor set Γ ⊂ R

Rate 2−ℓ/2 in H−1/2
Γ norm as expected, independent of ρ. u i(x) = eikθ·x

Similar plots (with double rate 2−ℓ) for near-field us(x) and far-field.
25



n = 3, flat screen: Cantor dust Γ ⊂ R2

ρ-dependent rate (4ρ)−ℓ/2 in H−1/2
Γ norm as expected.

Double rates (4ρ)−ℓ for near-field and far-field.
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n = 3, flat screen: non-homogeneous dust & Sierpinski triangle

▲ Non-homogeneous disjoint IFS attractor
with M = 4, ρ1,2,3 = 1

4 , ρ4 = 1
2 , d = log 3

log 2

◀ Sierpinski triangle is not disjoint:
does not satisfy BEM convergence
theory assumptions.

27



n = 3, flat screen: non-homogeneous dust & Sierpinski triangle

▲ Non-homogeneous disjoint IFS attractor
with M = 4, ρ1,2,3 = 1

4 , ρ4 = 1
2 , d = log 3

log 2

◀ Sierpinski triangle is not disjoint:
does not satisfy BEM convergence
theory assumptions.

27



Comparison against “prefractal-BEM” for Cantor sets

Prefractal-BEM solution ũ computed on Lipschitz prefractal approximations of Γ as in
[CHANDLER-WILDE, HEWETT, MOIOLA, BESSON, 2021]

Compare far-fields on circle “at infinity”

◀ Ratio between Hausdorff-BEM and
prefractal-BEM errors.

Same number of DOFs
(≈ computational effort).

ρ < 0.3: Hausdorff-BEM is far more accurate

ρ ≈ 1/3: Lebesgue-BEM has strange
“enhanced accuracy”

ρ > 0.4: the methods are comparable

Results are independent of wavenumber k.
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Summary and outlook
Scattering of time-harmonic acoustic waves by sound-soft obstacle Γ:

Γ compact: BVP is well-posed, equivalent to IE
Γ d-set: IE in Hausdorff measure, convergence of piecewise-constant Galerkin

Γ disjoint IFS: concrete recipe for Galerkin space & quadrature, convergence rates

Fractal IFS Γ is not approximated. Only function (space) and integral are approximated.

Open questions and ongoing work:

▶ Solution regularity theory (ϕ ∈ H− n−d
2 −ϵ

Γ ), singularity structure
▶ Non-disjoint attractors , d = n
▶ Fast implementation, compression
▶ Maxwell equations? Other PDEs? (Laplace & reaction–diffusion already covered)
▶ Volume integral equation, penetrable materials
▶ IFSs with non-similar contractions, . . .

Thank you!

A. CAETANO, S.N. CHANDLER-WILDE, X. CLAEYS, A. GIBBS, D.P. HEWETT, A. MOIOLA,
Integral equation methods for acoustic scattering by fractals arXiv:2309.02184

code @ : https://github.com/AndrewGibbs/IFSintegrals
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