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What people say about sign-indefiniteness

Is the Helmholtz equation really sign-indefinite?

“...the Helmholtz operator for scattering problems is
a highly indefinite complex-valued linear operator.” (2013)

“The main difficulty of the analysis is caused by
the strong indefiniteness of the Helmholtz equation.” (2009)

“Problems in high-frequency scattering of acoustic or
electromagnetic waves are highly indefinite.” (2013)

Sure???
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The Helmholtz equation

The main character: the Helmholtz equation

∆u + k2u = −f in Ω ⊂ R
d, d = 2,3, k > 0.

Why is it interesting?

1 very general: (k = ω/c)

wave equation
∂2U

∂t2
− c2∆U = c2F

time-harmonic regime U (x, t) = ℜ{u(x)e−iωt}






→

Helmholtz

equation;

2 plenty of applications;

3 easy to write, difficult to solve numerically (for k ≫ 1):

◮ oscillating solutions → expensive to approximate;

◮ numerical dispersion / pollution effect;

◮ sign-indefinite?
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Variational formulations

BVPs for (linear elliptic) PDEs are often posed in variational form:

(VF) find u ∈ V such that a(u,w) = F(w) ∀w ∈ V ,

V Hilbert space,
a(·, ·) : V × V → R bilinear form,
F : V → R continuous linear functional.

They can be approximated using a Galerkin discretisation:

(GD) find uN ∈ VN s.t. a(uN ,wN ) = F(wN ) ∀wN ∈ VN ,

VN ⊂ V finite dimensional space, dim(VN) = N .
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Continuity & coercivity

Most desirable properties for (VF), ∃Cc , α > 0:

|a(u,w)| ≤ Cc ‖u‖V ‖w‖V ∀u,w ∈ V , continuity,

|a(w,w)| ≥ α ‖w‖
2

V ∀w ∈ V , coercivity.

(“Sign-definite” := coercive; “sign-indefinite” := not coercive.)

Consequences of continuity & coercivity (Lax–Milgram, Céa):

◮ well-posedness of (VF): ∃!u ∈ V , ‖u‖V ≤ ‖F‖V′ /α;

◮ well-posedness of any (GD): ∃!uN ∈ VN , ‖uN‖V ≤ ‖F‖V′ /α;

◮ quasi-optimality of any (GD):

‖u − uN‖V ≤
Cc

α
inf

wN∈VN

‖u −wN‖V ;

◮ good properties for (GD) linear system.

Coercivity is a property of the bilinear form—no PDEs here.
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Back to PDEs

Typical example:
Standard (VF) of Dirichlet problem for the Laplace equation
(∆u = −f ) is continuous + coercive (+ symmetric):
that’s why Laplace’s is an easy PDE!

More interesting example:

Impedance Helmholtz BVP
{

∆u + k2u = −f in Ω,
∂u
∂n

− iku = g on ∂Ω.

HVF







a(u,w) :=

∫

Ω

(−∇u · ∇w + k2uw)dx+ ik

∫

∂Ω

uw ds,

F(w) := −

∫

Ω

f wdx−

∫

∂Ω

gwds,

V := H1(Ω), ‖w‖
2

1,k,Ω := ‖∇w‖
2

L2(Ω) + k2 ‖w‖
2

L2(Ω).

(Note: now everything is complex-valued.)
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Is Helmholtz sign-indefinite?

For k2 ≥ λ1 > 0 (1st Laplace–Dirichlet eigenvalue),
a(·, ·) is continuous but not coercive in H1(Ω).

Other techniques are applicable based on Fredholm
alternative (Gårding inequality, Schatz’s argument. . . )
⇒ well-posedness of (HVF),
⇒ well-posedness of (HGD) and quasi-optimality for “N large
enough” only.

Does this imply that the Helmholtz equation is sign-indefinite?
NO!

The standard variational formulation (HVF) of the BVP is
sign-indefinite, but not the equation itself.

New question: is there any continuous & coercive variational
formulation equivalent to the Helmholtz impedance BVP?
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How to find a coercive Helmholtz formulation?

◮ Modus operandi: in general it holds

coercivity ⇒ explicit stability constant ‖u‖V ≤ α−1 ‖F‖V′ ;

Fredholm ⇒ unknown stability constant ‖u‖V ≤ C ‖F‖V′ .

◮ A clue: MELENK, CUMMINGS&FENG, HETMANIUK proved

? ⇒ (almost) explicit stability bounds for (HVF).

◮ A suspicion:
maybe there’s a “hidden coercivity” behind. . .

◮ How to find an evidence?
reverse engineer Melenk’s proof to define a variational
formulation by applying the main tools used there:
Rellich identities and multipliers.

◮ 1st surprise: it works!

◮ 2nd surprise: it is derived exactly as the standard (HVF).
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How was Helmholtz variational form obtained?

Standard (HVF) was obtained by

1 multiplying Lu := ∆u + k2u = −f with test function w;

2 using Green 1st identity

(∆u)w = div[(∇u)w]−∇u · ∇w;

3 integrating by parts
∫

Ω div[A]dx 7→
∫

∂Ω A · nds;

4 substituting the impedance BC in the boundary term.

Same steps to derive a new formulation:
only 1–2 are changed.
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How to derive a new variational formulation – I

1 Multiply Lu = −f with Morawetz-type test function

LuMw = (∆u + k2u)
(

x · ∇w − ikβw + d−1

2
w
)

β ∈ R.

2 We expand the terms of this product.

2I Highest order term expanded using Rellich-type identity

(∆u)(x · ∇w) = div
︸︷︷︸

→∂Ω

[
(∇u)(x ·∇w)

]
−∇u · ∇w
︸ ︷︷ ︸

→|∇u|2>0

−∇u ·
(
(x · ∇)∇w

)

︸ ︷︷ ︸

don’t like this!

.

To get rid of last term (with Hessian of w /∈ H2) we “symmetrise”

(∆u)(x · ∇w)+(x · ∇u)(∆w) = div
[
. . .

]
+ (d − 2)∇u · ∇w.
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How to derive a new variational formulation – II

2II 0+1 order terms symmetrised with

u(x · ∇w) + (x · ∇u)w = div[xuw]− d uw.

2III Remaining terms Lu(−ikβw + d−1

2
w) with Green identity.

Final identity

−LuMw = +∇u · ∇w + k2uw + MuLw

− div

[

∇uMw +Mu∇w + x(k2uw −∇u · ∇w)
]

.

2IV Add term 1

3k2LuLw to control MuLw.

3 – 4 Integrate by parts + impose BC.
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A new variational formulation

We end up with a variational formulation defined by

b(u,w) :=

∫

Ω

(

∇u · ∇w+ k
2
uw +

(
Mu + 1

3k2Lu
)
Lw

)

dx

−

∫

∂Ω

(

ikuMw+
(
x · ∇Tu − ikβu + d−1

2
u
) ∂w

∂n

+ (x · n)
(

k
2
uw −∇Tu · ∇Tw

))

ds,

G(w) :=

∫

Ω

f
(
Mw−

1

3k2Lw
)
dx+

∫

∂Ω

g Mwds,

in the space V :=
{

v : v ∈ H1(Ω), ∆v ∈ L2(Ω), ∇v ∈
(
L2(∂Ω)

)d
}

.

(b and G continuous in V .)

b(u,w) = G(w) ∀w ∈ V is equivalent to the impedance BVP:

{

∆u + k2u = −f in Ω,
∂u
∂n

− iku = g on ∂Ω.
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(Sometimes) Helmholtz is sign-definite!

If Ω is star-shaped with respect to BγL , i.e.

x · n(x) ≥ γL > 0 a.e. x ∈ ∂Ω (L := diamΩ),

and β ≥ 3L/γ, then b(·, ·) is coercive in V :

Re{b(w,w)} ≥ 1

4
γ ‖w‖

2

V ∀w ∈ V .

The norm is weighted with k and L:

‖w‖2V := k2 ‖w‖2L2(Ω) + ‖∇w‖2L2(Ω) + k−2 ‖∆w‖2L2(Ω)

+Lk2 ‖w‖2L2(∂Ω) + L ‖∇w‖2L2(∂Ω) .

Coercivity is proved using the previous identities and
Cauchy–Schwarz inequality (only!).
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Why does it work?

Only one extra ingredient from standard formulation:

Morawetz multiplier M(w) = x · ∇w + (−ikβ + d−1

2
)w.

M(w) and Rellich multiplier (x · ∇w) already been used in:

◮ Spectral theory, since RELLICH 1940. . .

◮ Scattering theory, k-explicit stability for exterior Helmholtz,
wave eq., MORAWETZ, LUDWIG, 1961-75. . .

◮ k-explicit stability for interior Helmholtz BVPs (our “clue”),
MELENK; CUMMINGS, FENG; HETMANIUK; CHANDLER-W ILDE, MONK.

◮ Coercive BIEs, star-combined operator,
SPENCE, CHANDLER-W ILDE, GRAHAM, SMYSHLYAEV;
SPENCE, KAMOTSKY, SMYSHLYAEV.

◮ . . .

◮ k-explicit BVP stability for Maxwell,
HIPTMAIR, M., PERUGIA; HADDAR, LECHLEITER.
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Other coercive formulations

∃ other coercive formulations but very different from standard one:

◮ Boundary integral equation: combined potential op. (large
k, smooth&convex), star-combined op., flat screens. . .

◮ Trefftz-discontinuous Galerkin methods (TDG), UWVF:
consistency&coercivity in mesh-dependent Trefftz spaces:

T (Th) =
{
v ∈ H2(Th) : ∆v + k2v = 0 in each K ∈ Th

}
.

◮ Least squares methods, e.g.:

k−2

∫

Ω

LuLw dx+ L

∫

∂Ω

(∂u

∂n
− iku

)(∂w

∂n
− ik

)

ds = FLS(w).

◮ T -coercivity (CIARLET) : ∀ well-posed VF
a(u,w) = F(w) ∀w ∈ V

admits a coercive reformulation
aT (u,w) := a(u,Tw) = F(Tw) =: FT (w) ∀w ∈ V ;

the operator T : V → V is (usually) not explicit.
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Properties of possible Galerkin discretisations

◮ “Unconditional well-posedness”: ∀VN ⊂ V , ∀k > 0,
⇒ ∃!uN Galerkin solution and

‖uN‖V ≤ C(1+ k−1)
(
‖f ‖L2(Ω) + ‖g‖L2(∂Ω)

)
.

◮ Quasi-optimality constant is (only!) linear in k:

‖u − uN‖V ≤ C
(
k + k−1

)
inf

wN∈VN

‖u −wN‖V .

Explicit control on the pollution, better than LS.
(Is it k-independent q.o. possible using weighted norms?)

◮ VN ⊂ V (⇒ ∆v∈L2), piecewise C2 on a mesh ⇒ VN ⊂ C1(Ω):

C1(Ω)-conformal FEM discretisation required!

Possible alternatives to standard C1-FEM:
PUM, VEM, isogeometric, non conformal C-DG/CIP. . .

any idea?
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Extensions: done&todo

◮ (Star-shaped) Dirichlet scatterer
+ exterior impedance bc → same result.

◮ Neumann scatterer doesn’t work, why?

◮ Helmholtz first order system: coercive
formulation in “curl-free” space: bad!

◮ Maxwell equations: coercive formulation
in divergence-free space: bad! [picture by T. Betcke]

◮ Non star-shaped domains/scatterers?
Need to substitute x in M with special fields Z(x). How?

◮ Penetrable scatterers, rough surfaces, screens. . .

◮ Bounds on condition number and GMRES iterations for
piecewise-polynomial discretisations.
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The message

The Helmholtz impedance BVP is often claimed to be
sign-indefinite as its standard variational formulation is.

We showed a new variational formulation of the same problem
that is sign-definite and is derived in a very similar way.

More details in our preprint, to appear in SiRev:
Moiola, Spence, Is the Helmholtz equation really sign-indefinite?
http://www.reading.ac.uk/maths-and-stats/research/maths-preprints.aspx

Thank you!
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Identity table (d=dimension)
Green 1

st :
(∆u)w = div

[
(∇u)w

]
−∇u · ∇w

Green 2
nd :

(∆u)w −u(∆w) = div
[
(∇u)w− u(∇w)

]

“Helmholtz 1st”:
(Lu)w = div

[
(∇u)w

]
−∇u ·∇w + k2uw

“Rellich 1
st”:

(∆u)(x·∇w) = div
[
(x · ∇w)∇w

]
−∇u · ∇w

−∇u ·
(
(x · ∇)∇w

)

“Rellich 2
nd”:

(∆u)(x·∇w)+(x·∇u)(∆w)= div
[
− x(∇u · ∇w)

+∇u(x · ∇w) + (x · ∇u)∇w
]
+(d − 2)∇u · ∇w

“Melenk 2nd”:
u(x · ∇w) +(x · ∇u)w = div

[
xuw

]
−d uw

“Morawetz 2nd”:

LuMw +MuLw = div

[

∇uMw +Mu

︸ ︷︷ ︸

symmetric term

+∇w + x(k2
uw−∇u · ∇w)

︸ ︷︷ ︸

div term

]

−∇u ·∇w−k
2
uw

︸ ︷︷ ︸

non-div term

Symmetrisation trick R1→R2:

∇u ·
(
(x · ∇)∇w

)
+∇w ·

(
(x · ∇)∇u

)
= div

[
x(∇u · ∇w)

]
− d∇u · ∇w.
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