Is the Helmholtz equation really sign-indefinite?

Andrea Moiola

Department of Mathematics and Statistics, University of Reading

Joint work with Euan A. Spence (Bath)

What people say about sign-indefiniteness

Is the Helmholtz equation really sign-indefinite?
"...the Helmholtz operator for scattering problems is a highly indefinite complex-valued linear operator." (2013)
"The main difficulty of the analysis is caused by the strong indefiniteness of the Helmholtz equation." (2009)
"Problems in high-frequency scattering of acoustic or electromagnetic waves are highly indefinite." (2013)

What people say about sign-indefiniteness

Is the Helmholtz equation really sign-indefinite?
"...the Helmholtz operator for scattering problems is a highly indefinite complex-valued linear operator." (2013)
"The main difficulty of the analysis is caused by the strong indefiniteness of the Helmholtz equation." (2009)
"Problems in high-frequency scattering of acoustic or electromagnetic waves are highly indefinite." (2013)

The Helmholtz equation

The main character: the Helmholtz equation

$$
\Delta u+k^{2} u=-f \quad \text { in } \Omega \subset \mathbb{R}^{d}, d=2,3, k>0
$$

The Helmholtz equation

The main character: the Helmholtz equation

$$
\Delta u+k^{2} u=-f \quad \text { in } \Omega \subset \mathbb{R}^{d}, d=2,3, k>0
$$

Why is it interesting?
1 very general:

$$
(k=\omega / c)
$$

wave equation

$$
\left.\begin{array}{l}
\frac{\partial^{2} U}{\partial t^{2}}-c^{2} \Delta U=c^{2} F \\
U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) e^{-i \omega t}\right\}
\end{array}\right\} \rightarrow \begin{aligned}
& \text { Helmholtz } \\
& \text { equation; }
\end{aligned}
$$

2 plenty of applications;
(3) easy to write, difficult to solve numerically (for $k \gg 1$)

The Helmholtz equation

The main character: the Helmholtz equation

$$
\Delta u+k^{2} u=-f \quad \text { in } \Omega \subset \mathbb{R}^{d}, d=2,3, k>0
$$

Why is it interesting?
1 very general:

$$
(k=\omega / c)
$$

wave equation

$$
\left.\begin{array}{l}
\frac{\partial^{2} U}{\partial t^{2}}-c^{2} \Delta U=c^{2} F \\
U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) e^{-i \omega t}\right\}
\end{array}\right\} \rightarrow \begin{aligned}
& \text { Helmholtz } \\
& \text { equation; }
\end{aligned}
$$

2 plenty of applications;
3 easy to write, difficult to solve numerically (for $k \gg 1$):

- oscillating solutions \rightarrow expensive to approximate;
- numerical dispersion / pollution effect;
- sign-indefinite?

Variational formulations

BVPs for (linear elliptic) PDEs are often posed in variational form:
$(V F)$ find $u \in \mathcal{V}$ such that $a(u, w)=F(w) \quad \forall w \in \mathcal{V}$,
\mathcal{V} Hilbert space,
$a(\cdot, \cdot): \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ bilinear form,
$F: \mathcal{V} \rightarrow \mathbb{R}$ continuous linear functional.

Variational formulations

BVPs for (linear elliptic) PDEs are often posed in variational form:

$(V F)$ find $u \in \mathcal{V}$ such that $a(u, w)=F(w) \quad \forall w \in \mathcal{V}$,

\mathcal{V} Hilbert space,
$a(\cdot, \cdot): \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ bilinear form,
$F: \mathcal{V} \rightarrow \mathbb{R}$ continuous linear functional.

They can be approximated using a Galerkin discretisation:

```
(GD) find }\mp@subsup{u}{N}{}\in\mp@subsup{\mathcal{V}}{N}{}\mathrm{ s.t. }a(\mp@subsup{u}{N}{},\mp@subsup{w}{N}{})=F(\mp@subsup{w}{N}{})\quad\forall\mp@subsup{w}{N}{}\in\mp@subsup{\mathcal{V}}{N}{}\mathrm{ ,
```

$\mathcal{V}_{N} \subset \mathcal{V}$ finite dimensional space, $\operatorname{dim}\left(\mathcal{V}_{N}\right)=N$.

Continuity \& coercivity

Most desirable properties for (VF), $\exists C_{c}, \alpha>0$:

$$
\begin{array}{lll}
|a(u, w)| \leq C_{c}\|u\|_{\mathcal{V}}\|w\|_{\mathcal{V}} & \forall u, w \in \mathcal{V}, & \text { continuity, } \\
|a(w, w)| \geq \alpha\|w\|_{\mathcal{V}}^{2} & \forall w \in \mathcal{V}, & \text { coercivity. }
\end{array}
$$

("Sign-definite" := coercive; "sign-indefinite" := not coercive.)

Continuity \& coercivity

Most desirable properties for (VF), $\exists C_{c}, \alpha>0$:

$$
\begin{array}{lll}
|a(u, w)| \leq C_{c}\|u\|_{\mathcal{V}}\|w\|_{\mathcal{V}} & \forall u, w \in \mathcal{V}, & \text { continuity, } \\
|a(w, w)| \geq \alpha\|w\|_{\mathcal{V}}^{2} & \forall w \in \mathcal{V}, & \text { coercivity. }
\end{array}
$$

("Sign-definite" := coercive; "sign-indefinite" := not coercive.)
Consequences of continuity \& coercivity (Lax-Milgram, Céa):

- well-posedness of (VF): $\quad \exists!u \in \mathcal{V}, \quad\|u\|_{\mathcal{V}} \leq\|F\|_{\mathcal{V}^{\prime}} / \alpha$;
- well-posedness of any (GD): $\exists!u_{N} \in \mathcal{V}_{N},\left\|u_{N}\right\|_{\mathcal{V}} \leq\|F\|_{\mathcal{V}^{\prime}} / \alpha$;
- quasi-optimality of any (GD):

$$
\left\|u-u_{N}\right\|_{\mathcal{V}} \leq \frac{C_{c}}{\alpha} \inf _{w_{N} \in \mathcal{V}_{N}}\left\|u-w_{N}\right\|_{\mathcal{V}}
$$

- good properties for (GD) linear system.

Coercivity is a property of the bilinear form-no PDEs here.

Back to PDEs

Typical example:
Standard (VF) of Dirichlet problem for the Laplace equation
($\Delta u=-f$) is continuous + coercive (+ symmetric): that's why Laplace's is an easy PDE!

Back to PDEs

Typical example:
Standard (VF) of Dirichlet problem for the Laplace equation
($\Delta u=-f$) is continuous + coercive (+ symmetric):
that's why Laplace's is an easy PDE!
More interesting example:
Impedance Helmholtz BVP $\begin{cases}\Delta u+k^{2} u=-f & \text { in } \Omega, \\ \frac{\partial u}{\partial \mathbf{n}}-i k u=g & \text { on } \partial \Omega .\end{cases}$
HVF $\left\{\begin{aligned} a(u, w) & :=\int_{\Omega}\left(-\nabla u \cdot \nabla \bar{w}+k^{2} u \bar{w}\right) \mathrm{d} \mathbf{x}+i k \int_{\partial \Omega} u \bar{w} \mathrm{~d} s, \\ F(w) & :=-\int_{\Omega} f \bar{w} \mathrm{~d} \mathbf{x}-\int_{\partial \Omega} g \bar{w} \mathrm{~d} s, \\ \mathcal{V} & :=H^{1}(\Omega), \quad\|w\|_{1, k, \Omega}^{2}:=\|\nabla w\|_{L^{2}(\Omega)}^{2}+k^{2}\|w\|_{L^{2}(\Omega)}^{2} .\end{aligned}\right.$
(Note: now everything is complex-valued.)

Is Helmholtz sign-indefinite?

For $k^{2} \geq \lambda_{1}>0$ (1 st Laplace-Dirichlet eigenvalue),
$a(\cdot, \cdot)$ is continuous but not coercive in $H^{1}(\Omega)$.
Other techniques are applicable based on Fredholm alternative (Gårding inequality, Schatz's argument....)
\Rightarrow well-posedness of (HVF),
\Rightarrow well-posedness of (HGD) and quasi-optimality for " N large enough" only.

Is Helmholtz sign-indefinite?

For $k^{2} \geq \lambda_{1}>0$ (1 st Laplace-Dirichlet eigenvalue), $a(\cdot, \cdot)$ is continuous but not coercive in $H^{1}(\Omega)$.

Other techniques are applicable based on Fredholm alternative (Gårding inequality, Schatz's argument....)
\Rightarrow well-posedness of (HVF),
\Rightarrow well-posedness of (HGD) and quasi-optimality for " N large enough" only.

Does this imply that the Helmholtz equation is sign-indefinite?
NO !
The standard variational formulation (HVF) of the BVP is sign-indefinite, but not the equation itself.

New question: is there any continuous \& coercive variational formulation equivalent to the Helmholtz impedance BVP?

How to find a coercive Helmholtz formulation?

- Modus operandi: in general it holds coercivity \Rightarrow explicit stability constant $\|u\|_{\mathcal{V}} \leq \alpha^{-1}\|F\|_{\mathcal{V}^{\prime}}$;
Fredholm $\Rightarrow \quad$ unknown stability constant $\quad\|u\|_{\mathcal{V}} \leq C\|F\|_{\mathcal{V}^{\prime}}$.
- A clue: Melenk, Cummings\&Feng, Hetmaniuk proved
$? \quad \Rightarrow \quad$ (almost) explicit stability bounds for (HVF).
- A suspicion:
maybe there's a "hidden coercivity" behind. . .
- How to find an evidence?
reverse engineer Melenk's proof to define a variational formulation by applying the main tools used there: Rellich identities and multipliers.

How to find a coercive Helmholtz formulation?

- Modus operandi: in general it holds coercivity \Rightarrow explicit stability constant $\|u\|_{\mathcal{V}} \leq \alpha^{-1}\|F\|_{\mathcal{V}^{\prime}}$;
Fredholm $\Rightarrow \quad$ unknown stability constant $\quad\|u\|_{\mathcal{V}} \leq C\|F\|_{\mathcal{V}^{\prime}}$.
- A clue: Melenk, Cummings\&Feng, Hetmaniuk proved ? $\quad \Rightarrow \quad$ (almost) explicit stability bounds for (HVF).
- A suspicion:
maybe there's a "hidden coercivity" behind. . .
- How to find an evidence?
reverse engineer Melenk's proof to define a variational formulation by applying the main tools used there: Rellich identities and multipliers.
- ${ }^{\text {st }}$ surprise: it works!
- $2^{\text {nd }}$ surprise: it is derived exactly as the standard (HVF).

How was Helmholtz variational form obtained?

Standard (HVF) was obtained by
(1) multiplying $\mathcal{L} u:=\Delta u+k^{2} u=-f$ with test function w;
2. using Green 1st identity

$$
(\Delta u) \bar{w}=\operatorname{div}[(\nabla u) \bar{w}]-\nabla u \cdot \nabla \bar{w} ;
$$

3 integrating by parts

$$
\int_{\Omega} \operatorname{div}[\mathbf{A}] \mathrm{d} \mathbf{x} \mapsto \int_{\partial \Omega} \mathbf{A} \cdot \mathbf{n} \mathrm{ds} ;
$$

4 substituting the impedance $B C$ in the boundary term.

Same steps to derive a new formulation: only 1-2 are changed.

How to derive a new variational formulation - I

1 Multiply $\mathcal{L} u=-f$ with Morawetz-type test function

$$
\mathcal{L} u \overline{\mathcal{M} w}=\left(\Delta u+k^{2} u\right) \overline{\left(\mathbf{x} \cdot \nabla w-i k \beta w+\frac{d-1}{2} w\right)} \quad \beta \in \mathbb{R} .
$$

How to derive a new variational formulation - I

1 Multiply $\mathcal{L} u=-f$ with Morawetz-type test function

$$
\mathcal{L} u \overline{\mathcal{M} w}=\left(\Delta u+k^{2} u\right) \overline{\left(\mathbf{x} \cdot \nabla w-i k \beta w+\frac{d-1}{2} w\right)} \quad \beta \in \mathbb{R}
$$

2. We expand the terms of this product.
2^{I} Highest order term expanded using Rellich-type identity
$(\Delta u)(\mathbf{x} \cdot \nabla \bar{w})=\underbrace{\operatorname{div}}_{\rightarrow \partial \Omega}[(\nabla u)(\mathbf{x} \cdot \nabla \bar{w})]-\underbrace{\nabla u \cdot \nabla \bar{w}}_{\rightarrow|\nabla u|^{2}>0}-\underbrace{\nabla u \cdot((\mathbf{x} \cdot \nabla) \nabla \bar{w})}_{\text {don't like this! }}$.

How to derive a new variational formulation - I

(1) Multiply $\mathcal{L} u=-f$ with Morawetz-type test function

$$
\mathcal{L} u \overline{\mathcal{M} w}=\left(\Delta u+k^{2} u\right) \overline{\left(\mathbf{x} \cdot \nabla w-i k \beta w+\frac{d-1}{2} w\right)} \quad \beta \in \mathbb{R}
$$

2. We expand the terms of this product.
2^{I} Highest order term expanded using Rellich-type identity
$(\Delta u)(\mathbf{x} \cdot \nabla \bar{w})=\underbrace{\operatorname{div}}_{\rightarrow \partial \Omega}[(\nabla u)(\mathbf{x} \cdot \nabla \bar{w})]-\underbrace{\nabla u \cdot \nabla \bar{w}}_{\rightarrow|\nabla u|^{2}>0}-\underbrace{\nabla u \cdot((\mathbf{x} \cdot \nabla) \nabla \bar{w})}_{\text {don't like this! }}$.
To get rid of last term (with Hessian of $w \notin H^{2}$) we "symmetrise"

$$
(\Delta u)(\mathbf{x} \cdot \nabla \bar{w})+(\mathbf{x} \cdot \nabla u)(\Delta \bar{w})=\operatorname{div}[\ldots]+(d-2) \nabla u \cdot \nabla \bar{w} .
$$

How to derive a new variational formulation - II

$2^{\text {II }} 0+1$ order terms symmetrised with

$$
u(\mathbf{x} \cdot \nabla \bar{w})+(\mathbf{x} \cdot \nabla u) \bar{w}=\operatorname{div}[\mathbf{x} u \bar{w}]-d u \bar{w} .
$$

How to derive a new variational formulation - II

2II $0+1$ order terms symmetrised with

$$
u(\mathbf{x} \cdot \nabla \bar{w})+(\mathbf{x} \cdot \nabla u) \bar{w}=\operatorname{div}[\mathbf{x} u \bar{w}]-d u \bar{w} .
$$

2III Remaining terms $\mathcal{L} u\left(\overline{-i k \beta w+\frac{d-1}{2} w}\right)$ with Green identity.
Final identity

$$
\begin{aligned}
-\mathcal{L} u \overline{\mathcal{M} w}= & +\nabla u \cdot \nabla \bar{w}+k^{2} u \bar{w}+\mathcal{M} u \overline{\mathcal{L} w} \\
& -\operatorname{div}\left[\nabla u \overline{\mathcal{M} w}+\mathcal{M} u \nabla \bar{w}+\mathbf{x}\left(k^{2} u \bar{w}-\nabla u \cdot \nabla \bar{w}\right)\right] .
\end{aligned}
$$

How to derive a new variational formulation - II

2II $0+1$ order terms symmetrised with

$$
u(\mathbf{x} \cdot \nabla \bar{w})+(\mathbf{x} \cdot \nabla u) \bar{w}=\operatorname{div}[\mathbf{x} u \bar{w}]-d u \bar{w} .
$$

2III Remaining terms $\mathcal{L} u\left(\overline{-i k \beta w+\frac{d-1}{2} w}\right)$ with Green identity.
Final identity

$$
\begin{aligned}
-\mathcal{L} u \overline{\mathcal{M} w}= & +\nabla u \cdot \nabla \bar{w}+k^{2} u \bar{w}+\mathcal{M} u \overline{\mathcal{L} w} \\
& -\operatorname{div}\left[\nabla u \overline{\mathcal{M} w}+\mathcal{M} u \nabla \bar{w}+\mathbf{x}\left(k^{2} u \bar{w}-\nabla u \cdot \nabla \bar{w}\right)\right] .
\end{aligned}
$$

$2^{I V}$ Add term $\frac{1}{3 k^{2}} \mathcal{L} u \overline{\mathcal{L} w}$ to control $\mathcal{M} u \overline{\mathcal{L} w}$.
3-4 Integrate by parts + impose BC.

A new variational formulation

We end up with a variational formulation defined by

$$
\begin{aligned}
& b(u, w):= \int_{\Omega}\left(\nabla u \cdot \nabla \bar{w}+k^{2} u \bar{w}+\left(\mathcal{M} u+\frac{1}{3 k^{2}} \mathcal{L} u\right) \overline{\mathcal{L} w}\right) \mathrm{d} \mathbf{x} \\
&-\int_{\partial \Omega}\left(i k u \overline{\mathcal{M} w}+\left(\mathbf{x} \cdot \nabla_{T} u-i k \beta u+\frac{d-1}{2} u\right) \frac{\partial \bar{w}}{\partial \mathbf{n}}\right. \\
&\left.+(\mathbf{x} \cdot \mathbf{n})\left(k^{2} u \bar{w}-\nabla_{T} u \cdot \nabla_{T} \bar{w}\right)\right) \mathrm{ds}, \\
& G(w):=\int_{\Omega} f\left(\overline{\mathcal{M} w}-\frac{1}{3 k^{2}} \overline{\mathcal{L} w}\right) \mathrm{d} \mathbf{x}+\int_{\partial \Omega} g \overline{\mathcal{M} w} \mathrm{~d} s,
\end{aligned}
$$

in the space $V:=\left\{v: v \in H^{1}(\Omega), \Delta v \in L^{2}(\Omega), \nabla v \in\left(L^{2}(\partial \Omega)\right)^{d}\right\}$.
(b and G continuous in V.)
$b(u, w)=G(w) \forall w \in V$ is equivalent to the impedance BVP:

$$
\begin{cases}\Delta u+k^{2} u=-f & \text { in } \Omega \\ \frac{\partial u}{\partial \mathbf{n}}-i k u=g & \text { on } \partial \Omega\end{cases}
$$

(Sometimes) Helmholtz is sign-definite!

If Ω is star-shaped with respect to $B_{\gamma L}$, i.e.

$$
\mathbf{x} \cdot \mathbf{n}(\mathbf{x}) \geq \gamma L>0 \quad \text { a.e. } \mathbf{x} \in \partial \Omega \quad(L:=\operatorname{diam} \Omega)
$$

and $\beta \geq 3 L / \gamma$, then $b(\cdot, \cdot)$ is coercive in V :

$$
\operatorname{Re}\{b(w, w)\} \geq \frac{1}{4} \gamma\|w\|_{V}^{2} \quad \forall w \in V
$$

The norm is weighted with k and L :

$$
\begin{aligned}
\|w\|_{V}^{2}:= & k^{2}\|w\|_{L^{2}(\Omega)}^{2} \quad+\|\nabla w\|_{L^{2}(\Omega)}^{2}+k^{-2}\|\Delta w\|_{L^{2}(\Omega)}^{2} \\
& +L k^{2}\|w\|_{L^{2}(\partial \Omega)}^{2}+L\|\nabla w\|_{L^{2}(\partial \Omega)}^{2} .
\end{aligned}
$$

Coercivity is proved using the previous identities and Cauchy-Schwarz inequality (only!).

Why does it work?

Only one extra ingredient from standard formulation:
Morawetz multiplier $\quad \mathcal{M}(w)=\mathbf{x} \cdot \nabla w+\left(-i k \beta+\frac{d-1}{2}\right) w$.

Why does it work?

Only one extra ingredient from standard formulation:
Morawetz multiplier $\quad \mathcal{M}(w)=\mathbf{x} \cdot \nabla w+\left(-i k \beta+\frac{d-1}{2}\right) w$.
$\mathcal{M}(\boldsymbol{w})$ and Rellich multiplier ($\mathbf{x} \cdot \nabla w$) already been used in:

- Spectral theory, since Rellich 1940...
- Scattering theory, k-explicit stability for exterior Helmholtz, wave eq., Morawetz, Ludwig, 1961-75...
- k-explicit stability for interior Helmholtz BVPs (our "clue"), Melenk; Cummings, Feng; Hetmaniuk; Chandler-Wilde, Monk.
- Coercive BIEs, star-combined operator, Spence, Chandler-Wilde, Graham, Smyshlyaev; Spence, Kamotsky, Smyshlyaev.
- k-explicit BVP stability for Maxwell, Hiptmair, M., Perugia; Haddar, lechleiter.

Other coercive formulations

\exists other coercive formulations but very different from standard one:

- Boundary integral equation: combined potential op. (large k, smooth\&convex), star-combined op., flat screens. . .
- Trefftz-discontinuous Galerkin methods (TDG), UWVF: consistency\&coercivity in mesh-dependent Trefftz spaces:

$$
T\left(\mathcal{T}_{h}\right)=\left\{v \in H^{2}\left(\mathcal{T}_{h}\right): \Delta v+k^{2} v=0 \text { in each } K \in \mathcal{T}_{h}\right\} .
$$

- Least squares methods, e.g.:

$$
k^{-2} \int_{\Omega} \mathcal{L} u \mathcal{L} \bar{w} \mathrm{~d} \mathbf{x}+L \int_{\partial \Omega}\left(\frac{\partial u}{\partial \mathbf{n}}-i k u\right) \overline{\left(\frac{\partial w}{\partial \mathbf{n}}-i k\right)} \mathrm{d} s=F_{L S}(w)
$$

- T-coercivity (CIARLET) : $\quad \forall$ well-posed VF

$$
a(u, w)=F(w) \quad \forall w \in \mathcal{V}
$$

admits a coercive reformulation

$$
a_{T}(u, w):=a(u, T w)=F(T w)=: F_{T}(w) \quad \forall w \in \mathcal{V} ;
$$

the operator $T: \mathcal{V} \rightarrow \mathcal{V}$ is (usually) not explicit.

Properties of possible Galerkin discretisations

- "Unconditional well-posedness": $\forall V_{N} \subset V, \forall k>0$, $\Rightarrow \exists!u_{N}$ Galerkin solution and

$$
\left\|u_{N}\right\|_{V} \leq C\left(1+k^{-1}\right)\left(\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\partial \Omega)}\right)
$$

Properties of possible Galerkin discretisations

- "Unconditional well-posedness": $\forall V_{N} \subset V, \forall k>0$, $\Rightarrow \exists!u_{N}$ Galerkin solution and

$$
\left\|u_{N}\right\|_{V} \leq C\left(1+k^{-1}\right)\left(\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\partial \Omega)}\right)
$$

- Quasi-optimality constant is (only!) linear in k :

$$
\left\|u-u_{N}\right\|_{V} \leq C\left(k+k^{-1}\right) \inf _{w_{N} \in V_{N}}\left\|u-w_{N}\right\|_{V}
$$

Explicit control on the pollution, better than LS. (Is it k-independent q.o. possible using weighted norms?)

Properties of possible Galerkin discretisations

- "Unconditional well-posedness": $\forall V_{N} \subset V, \forall k>0$, $\Rightarrow \exists!u_{N}$ Galerkin solution and

$$
\left\|u_{N}\right\|_{V} \leq C\left(1+k^{-1}\right)\left(\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\partial \Omega)}\right) .
$$

- Quasi-optimality constant is (only!) linear in k :

$$
\left\|u-u_{N}\right\|_{V} \leq C\left(k+k^{-1}\right) \inf _{w_{N} \in V_{N}}\left\|u-w_{N}\right\|_{V} .
$$

Explicit control on the pollution, better than LS. (Is it k-independent q.o. possible using weighted norms?)

- $V_{N} \subset V\left(\Rightarrow \Delta v \in L^{2}\right)$, piecewise C^{2} on a mesh $\Rightarrow V_{N} \subset C^{1}(\Omega)$:
$C^{1}(\Omega)$-conformal FEM discretisation required!
Possible alternatives to standard C^{1}-FEM:
PUM, VEM, isogeometric, non conformal C-DG/CIP...

Extensions: done\&todo

- (Star-shaped) Dirichlet scatterer
+ exterior impedance bc \rightarrow same result.
- Neumann scatterer doesn't work, why?

Extensions: done\&todo

- (Star-shaped) Dirichlet scatterer + exterior impedance bc \rightarrow same result.
- Neumann scatterer doesn'† work, why?
- Helmholtz first order system: coercive formulation in "curl-free" space: bad!
- Maxwell equations: coercive formulation in divergence-free space: bad!

Extensions: done\&todo

- (Star-shaped) Dirichlet scatterer + exterior impedance bc \rightarrow same result.
- Neumann scatterer doesn't work, why?
- Helmholtz first order system: coercive formulation in "curl-free" space: bad!
- Maxwell equations: coercive formulation in divergence-free space: bad!

- Non star-shaped domains/scatterers?

Need to substitute \mathbf{x} in \mathcal{M} with special fields $\mathbf{Z}(\mathbf{x})$. How?

- Penetrable scatterers, rough surfaces, screens...

Extensions: done\&todo

- (Star-shaped) Dirichlet scatterer + exterior impedance bc \rightarrow same result.
- Neumann scatterer doesn't work, why?
- Helmholtz first order system: coercive formulation in "curl-free" space: bad!
- Maxwell equations: coercive formulation in divergence-free space: bad!

(picture by T. Betcke)
- Non star-shaped domains/scatterers?

Need to substitute \mathbf{x} in \mathcal{M} with special fields $\mathbf{Z}(\mathbf{x})$. How?

- Penetrable scatterers, rough surfaces, screens...
- Bounds on condition number and GMRES iterations for piecewise-polynomial discretisations.

The message

The Helmholtz impedance BVP is often claimed to be sign-indefinite as its standard variational formulation is.

We showed a new variational formulation of the same problem that is sign-definite and is derived in a very similar way.

More details in our preprint, to appear in SiRev: Moiola, Spence, Is the Helmholtz equation really sign-indefinite? http://www.reading.ac.uk/maths-and-stats/research/maths-preprints.aspx

Thank you!

Identity table
Green $1^{\text {st }}$:

$(\Delta u) \bar{w}$	$=\operatorname{div}[(\nabla u) \bar{w}]$	$-\nabla u \cdot \nabla \bar{w}$
	Green $2^{\text {nd }}:$	
$(\Delta u) \bar{w}$	$-u(\Delta \bar{w})$	$=\operatorname{div}[(\nabla u) \bar{w}-u(\nabla \bar{w})]$

$(\Delta u)(\mathbf{x} \cdot \nabla \bar{w})+(\mathbf{x} \cdot \nabla u)(\Delta \bar{w})=\operatorname{div}[-\mathbf{x}(\nabla u \cdot \nabla \bar{w})$
$+\nabla u(\mathbf{x} \cdot \nabla \bar{w})+(\mathbf{x} \cdot \nabla u) \nabla \bar{w}]+(d-2) \nabla u \cdot \nabla \bar{w}$
"Melenk $2^{\text {nd" }}$:

"Morawetz $2^{\text {nd" }}$:
$\mathcal{L} u \overline{\mathcal{M} w} \quad+\mathcal{M} u \overline{\mathcal{L} w} \quad=\operatorname{div}[\nabla u \overline{\mathcal{M} w}+\mathcal{M} u$

$$
\underbrace{+\nabla \bar{w}+\mathbf{x}\left(k^{2} u \bar{w}-\nabla u \cdot \nabla \bar{w}\right)}_{\text {div term }}] \underbrace{-\nabla u \cdot \nabla \bar{w}-k^{2} u \bar{w}}_{\text {non-div term }}
$$

Symmetrisation trick R1 \rightarrow R2:
$\nabla u \cdot((\mathbf{x} \cdot \nabla) \nabla \bar{w})+\nabla \bar{w} \cdot((\mathbf{x} \cdot \nabla) \nabla u)=\operatorname{div}[\mathbf{x}(\nabla u \cdot \nabla \bar{w})]-d \nabla u \cdot \nabla \bar{w}$.

