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The Helmholtz equation

Simplest model of linear & time-harmonic waves:

−∆u − ω2u = 0
in bdd. Ω ⊂ R

N , N = 2,3, ω > 0,
(+ impedance/Robin b.c.)

Why is it interesting?

1 Very general, related to any linear wave phenomena:

wave equation: ∂2U
∂t2 −∆U = 0

time-harmonic regime: U (x, t) = ℜ
{
u(x)e−iωt

}
}
→

Helmholtz

equation;

2 plenty of applications;

3 easy to write. . . but difficult to solve numerically (ω ≫ 1):

◮ oscillating solutions → approximation issue,

◮ numerical dispersion / pollution effect → stability issue.

2



The Helmholtz equation

Simplest model of linear & time-harmonic waves:

−∆u − ω2u = 0
in bdd. Ω ⊂ R

N , N = 2,3, ω > 0,
(+ impedance/Robin b.c.)

Why is it interesting?

1 Very general, related to any linear wave phenomena:

wave equation: ∂2U
∂t2 −∆U = 0

time-harmonic regime: U (x, t) = ℜ
{
u(x)e−iωt

}
}
→

Helmholtz

equation;

2 plenty of applications;

3 easy to write. . . but difficult to solve numerically (ω ≫ 1):

◮ oscillating solutions → approximation issue,

◮ numerical dispersion / pollution effect → stability issue.

2



The Helmholtz equation

Simplest model of linear & time-harmonic waves:

−∆u − ω2u = 0
in bdd. Ω ⊂ R

N , N = 2,3, ω > 0,
(+ impedance/Robin b.c.)

Why is it interesting?

1 Very general, related to any linear wave phenomena:

wave equation: ∂2U
∂t2 −∆U = 0

time-harmonic regime: U (x, t) = ℜ
{
u(x)e−iωt

}
}
→

Helmholtz

equation;

2 plenty of applications;

3 easy to write. . . but difficult to solve numerically (ω ≫ 1):

◮ oscillating solutions → approximation issue,

◮ numerical dispersion / pollution effect → stability issue.

2



Difficulty #1: oscillations

Time-harmonic solutions are inherently oscillatory: a lot of DOFs
needed for any polynomial discretisation!

[Helmholtz BVP, picture by T. Betcke]

Wavenumber ω = 2π/λ is the crucial parameter
(λ=wavelength).
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Difficulty #2: pollution effect

Big issue in FEM solution for high wavenumbers: pollution effect
∣∣∣
∣∣∣Galerkin error

∣∣∣
∣∣∣

∣∣∣
∣∣∣best approximation error

∣∣∣
∣∣∣
≥ C ωa a > 0, ω →∞.

It affects every (low order) method in h: [BABUŠKA, SAUTER 2000].

⇓

Oscillating solutions + pollution effect
= standard FEM are too expensive at high frequencies!

Special schemes required, p- and hp-versions preferred.

Z IENKIEWICZ, 2000: “Clearly, we can consider that this problem remains

unsolved and a completely new method of approximation is needed

to deal with the very short-wave solution.”
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Trefftz methods

Piecewise polynomials used in FEM are “general purpose”
functions, can we use discrete spaces tailored for Helmholtz?

Yes: Trefftz methods are finite element schemes such that
test and trial functions are solutions of the Helmholtz equation
in each element K of the mesh Th , e.g.:

Vp ⊂ T (Th) =
{
v ∈ L2(Ω) : −∆v − ω2v = 0 in each K ∈ Th

}
.

Main idea: more accuracy for less DOFs.
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Typical Trefftz basis functions for Helmholtz

1 plane waves (PWs), x 7→ eiωx·d d ∈ SN−1

2 circular / spherical waves (CWs),
3 corner waves, 4 fundamental solutions/multipoles,
5 wavebands, 6 evanescent waves, . . .

1 2 3

4 5 6
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Wave-based methods

Trefftz schemes require discontinuous functions.
How to “match” traces across interelement boundaries?

Plenty of Trefftz schemes for Helmholtz, Maxwell and elasticity:

◮ Least squares: method of fundamental solutions (MFS),
wave-based method (WBM);

◮ Lagrange multipliers: discontinuous enrichment (DEM);

◮ Partition of unity method (PUM/PUFEM), non-Trefftz;

◮ Variational theory of complex rays (VTCR);

◮ Discontinuous Galerkin (DG):
Ultraweak variational formulation (UWVF).

We are interested in a family of Trefftz-discontinuous Galerkin
(TDG) methods that includes the UWVF of Cessenat–Després.
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Outline

◮ TDG method for Helmholtz:
formulation and a priori (p-version) convergence

◮ Approximation theory for plane and spherical waves

◮ Exponential convergence of the hp-TDG
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Part I

TDG method for the Helmholtz equation
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TDG: derivation — I

1 Consider Helmholtz equation with impedance (Robin) b.c.:

−∆u − ω2u = 0 in Ω ⊂ R
N bdd., Lip., N = 2,3

∇u · n+ iωu = g ∈ L2(∂Ω);

2 introduce a mesh Th on Ω;

3 multiply the Helmholtz equation with a test function v and

integrate by parts on a single element K ∈ Th :
∫

K

(∇u · ∇v − ω2uv)dV −
∫

∂K

(n · ∇u)v dS = 0;

4 integrate by parts again: ultraweak step

∫

K

(−u∆v − ω2uv)dV +

∫

∂K

(−n · ∇u v + u n · ∇v)dS = 0;
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TDG: derivation — II

5 choose a discrete Trefftz space Vp(K) and replace traces

on ∂K with numerical fluxes ûp and σ̂p:

u → up (discrete solution) in K ,

u → ûp,
∇u
iω
→ σ̂p on ∂K ;

6 use the Trefftz property: ∀ vp ∈ Vp(K)

∫

K

up(−∆vp − ω2vp)︸ ︷︷ ︸
=0

dV+

∫

∂K

ûp∇vp · ndS −
∫

∂K

iωσ̂p · n vp dS = 0

︸ ︷︷ ︸
TDG eq. on 1 element

.

Two things to set:
discrete space Vp and numerical fluxes ûp, σ̂p.
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TDG: the space Vp

The abstract error analysis works for every discrete Trefftz space!

Possible choice: plane wave space ({dℓ}pℓ=1 ⊂ SN−1)

Vp(Th) =
{
v ∈ L2(Ω) : v|K(x) =

p∑

ℓ=1

αℓe
iω x·dℓ , αℓ ∈ C, ∀K ∈ Th

}
.

p := number of basis plane waves (DOFs) in each element.
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Numerical fluxes

Choose the numerical fluxes as:




σ̂p = 1
iω{{∇hup}} − α [[up]]N

ûp = {{up}} − β 1
iω [[∇hup]]N

on interior faces,





σ̂p =
∇hup

iω − (1 − δ) 1
iω (∇hup + iωup n− gn)

ûp = up − δ 1
iω (∇hup · n+ iωup − g)

on ∂Ω.

{{·}} = averages, [[·]]N = normal jumps on the interfaces.

α, β > 0, δ ∈ (0, 1
2
] parameters at our disposal (in L∞(Fh)):

◮ h- or p-version, quasi-uniform meshes:

α, β, δ independent of ω,h,p; UWVF: α = β = δ = 1
2
.

◮ hp-version, locally refined mesh: α, β, δ depend on local h,p.
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Variational formulation of the TDG

With this fluxes, summing over the elements K ∈ Th , the TDG
method reads: find up ∈ Vp(Th) s.t.

Ah(up, vp) = iω−1

∫

∂Ω

δ g∇hvp · ndS +

∫

∂Ω

(1− δ)g vp dS,

∀ vp ∈ Vp(Th), where (F I
h = interior skeleton)

Ah(u, v) :=

∫

F I
h

{{u}}[[∇hv]]N dS + i ω
−1

∫

F I
h

β [[∇hu]]N [[∇hv]]N dS

−
∫

F I
h

{{∇hu}} · [[v]]N dS + i ω

∫

F I
h

α [[u]]N · [[v]]N dS

+

∫

∂Ω

(1− δ)u∇hv · ndS + i ω
−1

∫

∂Ω

δ∇hu · n∇hv · ndS

−
∫

∂Ω

δ∇hu · n v dS + i ω

∫

∂Ω

(1− δ)u v dS.

up 7→ (Im Ah(up,up))
1
2 is a norm on the Trefftz space ⇒ ∃ !up.
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“Unconditional quasi-optimality”
On the Trefftz space

T (Th) :=
{
v ∈ L2(Ω): v|K ∈ H2(K), −∆v−ω2v = 0 in each K ∈ Th

}
,

∀ v,w ∈ T (Th) :
Im Ah(v, v) = |||v|||2Fh

|Ah(w, v)| ≤ 2 |||w|||F+

h
|||v|||Fh




⇒

quasi-optimality:

|||u − up|||Fh
≤ 3|||u − vp|||F+

h

∀vp ∈ Vp(Th) ⊂ T (Th).

Using norms |||v|||2Fh
:=ω

−1
∥
∥
∥β

1/2[[∇hv]]N

∥
∥
∥

2

0,F I
h

+ ω

∥
∥
∥α

1/2[[v]]N

∥
∥
∥

2

0,F I
h

+ ω
−1

∥
∥
∥δ

1/2∇hv · n
∥
∥
∥

2

0,∂Ω
+ ω

∥
∥
∥(1− δ)1/2v

∥
∥
∥

2

0,∂Ω
,

|||v|||2
F

+

h

:= |||v|||2Fh
+ ω

∥
∥
∥β

−1/2{{v}}
∥
∥
∥

2

0,F I
h

+ ω
−1

∥
∥
∥α

−1/2{{∇hv}}
∥
∥
∥

2

0,F I
h

+ ω

∥
∥
∥δ

−1/2v
∥
∥
∥

2

0,∂Ω
.
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TDG p-convergence

Monk–Wang duality technique
‖w‖L2(Ω) ≤ C(ω,h,Ω, Th , α, β, δ)|||w|||Fh

∀w ∈ T (Th)
→ quasi-optimality in L2(Ω)-norm.

Assume for now: best approximation estimates for plane or
circular waves (shown later in this talk).

We obtain (h- and) p-estimates for plane/circular waves (2D):

|||u − up|||Fh
≤C(ωh)ω− 1

2 hk− 1
2

(
log(p)

p

)k− 1
2

‖u‖k+1,ω,Ω ,

ω ‖u − up‖L2(Ω) ≤C(ωh) diam(Ω)hk−1

(
log(p)

p

)k− 1
2

‖u‖k+1,ω,Ω ,

on quasi-uniform meshes with meshsize h.

Slightly different orders of convergence in p in 3D.
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Numerical tests

Plane wave spaces, ω = 10, h = 1/
√
2, L2-norm of errors:
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2
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algebraic convergence.

Numerical instability / ill-conditioning for high p!
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The road map

Helmholtz Maxwell

Formulation of TDG X ∼ Helm.

TDG ||| · |||Fh
-quasi optimality X ∼ Helm.

Duality argument L2(Ω) H(div,Ω)′

hp exponential convergence

Approximation by GHPs

Approximation by PWs
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Part II

Approximation in Trefftz spaces
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The best approximation estimates

The analysis of any plane wave Trefftz method requires
best approximation estimates:

−∆u − ω2u = 0 in D ∈ Th , u ∈ Hk+1(D),

diam(D) = h, p ∈ N, d1, . . . ,dp ∈ S
N−1,

inf
~α∈Cp

∥∥∥∥∥u −
p∑

ℓ=1

αℓe
iω dℓ·x

∥∥∥∥∥
H j(D)

≤ C ǫ(h,p) ‖u‖Hk+1(D) ,

with explicit ǫ(h,p)
h→0−−−→
p→∞

0.

Goal: precise estimates on ǫ(h,p)

◮ for plane and circular/spherical waves;

◮ both in h and p (simultaneously);

◮ in 2 and 3 dimensions;

◮ with explicit bounds in the wavenumber ω.
20
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The Vekua theory in N dimensions

We need an old (1940s) tool from PDE analysis: Vekua theory.

D ⊂ RN star-shaped wrt. 0, ω > 0.
Define two continuous functions:

M1,M2 : D × [0,1] → R

M1(x, t) = −ω|x|
2

√
t
N−2

√
1− t

J1

(
ω|x|

√
1− t

)
,

M2(x, t) = − iω|x|
2

√
t
N−3

√
1− t

J1

(
iω|x|

√

t(1− t)
)
.

The Vekua operators

V1,V2 : C0(D)→ C0(D),

Vj[φ](x) := φ(x) +

∫ 1

0

Mj(x, t)φ(tx)dt, ∀ x ∈ D, j = 1,2.
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4 properties of Vekua operators

1 V2 = (V1)
−1

2 ∆φ = 0 ⇐⇒ (−∆− ω2) V1[φ] = 0

Main idea of Vekua theory:

Harmonic functions
V2←−−−−−−−−−−−−→
V1

Helmholtz solutions

3 Continuity in (ω-weighted) Sobolev norms, explicit in ω

[H j(D),W j,∞(D), j ∈ N]

4 P =
Harmonic
polynomial

⇐⇒ V1[P ] = circular/spherical wave
[
eilψ Jl(ωr)︸ ︷︷ ︸

2D

, Ym
l ( x

|x|
) jl(ω|x|)

︸ ︷︷ ︸
3D

]
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Vekua operators & approximation by GHPs

−∆u − ω2u = 0, u ∈ Hk+1(D),

↓ V2

V2[u] is harmonic =⇒ can be approximated
by harmonic polynomials

(harmonic Bramble–Hilbert in h,
Complex analysis in p-2D [Melenk], new result in p-3D),

↓ V1

u can be approximated by GHPs:

generalized
harmonic

polynomials
:= V1

[
harmonic
polynomials

]
= circular/spherical waves.

(→ Bounds applicable to any GHP-based Trefftz schemes!)
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The approximation of GHPs by plane waves

Link between plane waves and circular/spherical waves:
Jacobi–Anger expansion

2D e
iz cos θ =

∑

l∈Z

i
l
Jl(z) e

ilθ
z ∈ C, θ ∈ R,

3D e
irξ·η

︸ ︷︷ ︸

plane wave

= 4π
∑

l≥0

l∑

m=−l

i
l
jl(r) Yl,m(ξ)
︸ ︷︷ ︸

GHP

Yl,m(η) ξ, η ∈ S
2
, r ≥ 0.

We need the other way round:

GHP ≈ linear combination of plane waves

◮ truncation of J–A expansion,

◮ careful choice of directions (in 3D),

◮ solution of a linear system,

◮ residual estimates,

→ explicit error bound.
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The final approximation by plane waves

−∆u − ω2u = 0
V2−→ −∆V2[u] = 0

harmonic approx. ↓

Circular waves
V1←− Harmonic polyn.

↓ (Jacobi–Anger)−1

Plane waves

Final estimate

inf
α∈Cp

∥∥∥∥∥u −
p∑

ℓ=1

αℓe
iω x·dℓ

∥∥∥∥∥
j,ω,D

≤ C(ωh) hk+1−jq−λ(k+1−j) ‖u‖k+1,ω,D

In 2D: p = 2q + 1, λ(D) explicit, ∀ dℓ.
In 3D: p = (q + 1)2︸ ︷︷ ︸

better than poly.!

, λ(D) unknown, special dℓ.

If u extends outside D: exponential order in q. (Same for GHPs.)
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The road map

Helmholtz Maxwell

Formulation of TDG X ∼ Helm.

TDG ||| · |||Fh
-quasi optimality X ∼ Helm.

Duality argument L2(Ω) H(div,Ω)′

hp exponential convergence

Approximation by GHPs X X (p non sharp)

Approximation by PWs X X (non sharp)

26



Part III

What about hp-TDG?

27



What do we want?

hp-convergence is achieved by combination of mesh
refinement and increase of #DOFs per element.

Typical hp-result on a priori graded meshes for Laplace 2D:

∥∥u − uhp

∥∥
H1(Ω)

≤ Ce−b 3
√

#DOFs C,b > 0.

We prove, for TDG + plane/circular wave basis, Helmholtz 2D:

∥∥u − uhp

∥∥
L2(Ω)

≤ Ce−b 2
√

#DOFs C,b > 0.
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What do we need?

Consider 2D Helmholtz impedance (+Dirichlet) BVP,
with piecewise analytic domain Ω and boundary conditions g.

So far we have proved:

◮ unconditional well-posedness and quasi-optimality,

◮ approximation bounds in h and p simultaneously.

What else do we need to obtain exponential convergence?

◮ specify meshes and fluxes (modify duality);

◮ analytic regularity and extendibility of solutions;

◮ improved approximation bounds. . .
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Explicit dependence on element geometry

Polynomial FEM: best approximation bounds on K ∈ Th
obtained by scaling to reference element K̂.

∆u + ω2u = 0 in K , → pullback û(x̂) := u
(
F(x̂)

)
is not Trefftz

→ not approximable by Trefftz basis.

Even for affine scaling:
Pq(K̂) −→ Pq(K)
PW q(K̂) −→???

Every element K has “its own” approximation bound
→ constants depend on the shape of K → (in principle)
not uniformly bounded on unstructured graded meshes.

We want “universal bounds” independent of the geometry,
but. . .we get more: fully explicit bounds for curvilinear
non-convex elements.
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Assumption and tools

Assumption on element D: (Very weak!)

◮ D ⊂ R
2 s.t. diam(D) = 1, star-shaped wrt Bρ, 0 < ρ < 1/2.

Define:

◮ Dδ := {z ∈ R2,d(z,D) < δ}, ξ :=

{
1 D convex,
2
π arcsin ρ

1−ρ < 1.
Use:
◮ M. Melenk’s ideas;

◮ complex variable,
identification R2 ↔ C,
harmonic↔ holomorphic;

◮ conformal map level sets,
Schwarz–Christoffel;

◮ Hermite interpolant qn ;

◮ lot of “basic” geometry
and trigonometry, nested
polygons, plenty of
pictures. . .

0
ρ

∂PE

D
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Explicit approximation estimate

Approximation result
Let n ∈ N, f holomorphic in Dδ, 0 < δ ≤ 1/2,
h := min

{
(ξδ/27)1/ξ/3, ρ/4

}
, ⇒ ∃qn of degree ≤ n s.t.

‖f − qn‖L∞(D) ≤ 7ρ−2 h
− 72

ρ4 (1+ h)−n ‖f ‖L∞(Dδ)
.

◮ Fully explicit bound;

◮ exponential in degree n;

◮ h ≥“conformal distance”(D, ∂Dδ), related to physical dist. δ;

◮ in convex case h = min{δ/27, ρ/4};
◮ extends to harmonic f /qn and derivatives (W j,∞-norm);

◮ extended to Helmholtz solutions and circular/plane waves
(fully explicit W j,∞(D)-continuity of Vekua operators).
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“Geometric meshes”

c

Ω

∂Ω
σσ2σ3

Sequence of meshes with:

◮ element diameters hK

geometrically graded (with 0<σ<1)
towards domain corners;

◮ any star-shaped element allowed!
K star-shaped wrt BρhK

(xK).

ρ and σ are important parameters in the convergence.

Increase #DOFs by simultaneously:

1 refining layer of small elements,

2 increasing number of PWs/CWs in each element.
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The TDG flux parameters

We simply choose the flux parameters (hK := diamK)

α = a
maxK∈Th

hK

min{hK1
,hK2
} on K1 ∩ K2, a, β, δ > 0 constant.

This choice gives “balance” between approximation and
duality.

To guarantee shape-independence, we develop new trace
estimates with explicit dependence on the element geometry
through the parameter ρ.
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Approximation in the elements

Need to bound infvp∈Vp
‖u − vp‖ in two cases:

1 Exponentially small elements at domain corners.
Use that in tiny elements PWs / CWs behave like P1 polynomials.
Difficulty: ∇u 6∈ L∞, u 6∈ H2.

2 Larger elements away from corners.
Following Melenk, u ∈ B2

β, 1
1+ω

(Ω), weighted countably-normed

space, and extends analytically (similar to Laplace solutions):

⇒ hK ∼ d(K ,corners) ∼ d
(
K , ∂(analyticity region of u)

)
∀K .

⇒ we can use previous explicit bounds.

Putting everything together: desired exponential convergence

∥∥u − uhp

∥∥
L2(Ω)

≤ Ce−b 2
√

#DOFs C,b > 0.
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The road map

Helmholtz Maxwell

Formulation of TDG X ∼ Helm.

TDG ||| · |||Fh
-quasi optimality X ∼ Helm.

Duality argument L2(Ω) H(div,Ω)′

hp exponential convergence X (2D) ×

Approximation by GHPs X X (p non sharp)

Approximation by PWs X X (non sharp)
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Summary and open problems

What we have done:

◮ TDG formulation, unconditional well-posedness;

◮ approximation theory: holomorphic, harmonic, Helmholtz;

◮ h- and p-convergence for plane and spherical waves;

◮ exponential hp-convergence on graded meshes in 2D;

◮ (not discussed: extensions to Maxwell equations).

Plenty of possible research directions:
non-constant coefficients ω(x); ◭

adaptivity in PW directions; ◭

other PDEs, time-domain; ◭

new bases; ◭

defeat ill-conditioning, . . . ◭

Thank you!
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