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Simplest model of linear & time-harmonic waves:

Cau-atumo et bay
(+ impedance/Robin b.c.)



The Helmholtz equation

Simplest model of linear & time-harmonic waves:

inbdd. Qc RN, N=2,3, w>0,

Dan —
~Au-w’u=0 (+ impedance/Robin b.c.)

Why is it interesting?

1 Very general, related to any linear wave phenomenai:
wave equation: PU_AU=0 Helmholtz
efiwt} -

time-harmonic regime:  U(x, t) = R{u(x) equation;

2 plenty of applications;
3 easy to write. ..



The Helmholtz equation

Simplest model of linear & time-harmonic waves:

inbdd. Qc RN, N=2,3, w>0,

Dan —
~Au-w’u=0 (+ impedance/Robin b.c.)

Why is it interesting?

1 Very general, related to any linear wave phenomenai:
wave equation: PU_AU=0 Helmholtz
efiwt} -

time-harmonic regime:  U(x, t) = R{u(x) equation;

2 plenty of applications;

3 easy to write. .. but difficult to solve numerically (w > 1):

» oscillating solutions —  approximation issue,
» numerical dispersion / pollution effect —  stability issue.



Difficulty #1: oscillations

Time-harmonic solutions are inherently oscillatory: a lot of DOFs
needed for any polynomial discretisation!
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(Helmholtz BVP picture by T. Betcke)

Wavenumber w = 27/X is the crucial parameter
(A=wavelength).



Difficulty #2: pollution effect

Big issue in FEM solution for high wavenumbers: pollution effect

HGOIerkin errorH
> Cuw? a>0, w— oo

‘ ‘bes’r approximation error‘ ‘

It affects every (low order) method in h: (BABUSKA, SAUTER 2000).
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Big issue in FEM solution for high wavenumbers: pollution effect

HGolerkin errorH

> Cuw? a>0, w— oo

‘ ‘bes’r approximation error‘ ‘
It affects every (low order) method in h: (BABUSKA, SAUTER 2000).

4

Oscillating solutions  +  pollution effect
= standard FEM are too expensive at high frequencies!

Special schemes required, p- and hp-versions preferred.

ZIENKIEWICZ, 2000: “Clearly, we can consider that this problem remains
unsolved and a completely new method of approximation is needed
to deal with the very short-wave solution.”



Trefftz methods

Piecewise polynomials used in FEM are “general purpose”
functions, can we use discrete spaces tailored for Helmholtz?

Yes: Trefftz methods are finite element schemes such that

test and trial functions are solutions of the Helmholtz equation
in each element K of the mesh 7, e.9.:

V, C T(Th) = {v €L2(Q): ~Av—w?v=0ineach K e Th}.

Main idea: more accuracy for less DOFs.



Typical Trefftz basis functions for Helmholtz

1 plane waves (PWs), X elwxd desh!

2 circular / spherical waves (CWSs),

3 corner waves, 4 fundamental solutions/multipoles,
5 wavebands, 6 evanescent waves, ...
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Wave-based methods

Trefftz schemes require discontinuous functions.
How to "match” fraces across interelement boundaries?

Plenty of Trefftz schemes for Helmholtz, Maxwell and elasticity:

» Least squares: method of fundamental solutions (MFS),
wave-based method (WBM);

» Lagrange multipliers: discontinuous enrichment (DEM);
» Partition of unity method (PUM/PUFEM), non-Trefftz;
» Variational theory of complex rays (VICR);

» Discontinuous Galerkin (DG):
Ultraweak variational formulation (UWVE).

We are interested in a family of Trefftz-discontinuous Galerkin
(TDG) methods that includes the UWVF of Cessenat-Després.



Outline

» TDG method for Helmholtz:
formulation and a priori (p-version) convergence

» Approximation theory for plane and spherical waves

» Exponential convergence of the hp-TDG
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TDG: derivation — |

1. Consider HelImholtz equation with impedance (Robin) b.c.:

—Au—w?u=0 inQ c RN bdd., Lip., N=2,3
Vu-n+iwu=g € L2(09);
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—Au—w?u=0 inQ c RN bdd., Lip., N=2,3
Vu-n+iwu=g € L2(09);
2 infroduce a mesh 7, on ;

3 multiply the Helmholtz equation with a test function v and
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K 0K



1DG:

derivation — |

Consider Helmholtz equation with impedance (Robin) b.c..

—Au—w?u=0 inQ c RN bdd., Lip., N=2,3
Vu-n+iwu=g € L2(09);
infroduce a mesh 7, on Q;

multiply the Helmholtz equation with a test function v and
integrate by parts on a single element K € Tp:

/(Vu-VB—wZuB) dV - [ (m-Vu)odS=0;
K 0K
integrate by parts again: ulfraweak step

/(—uAE—wzuﬁ)dV—i—/ (—n-Vuv+un-V0)dS =0;
K 0K



TDG: derivation — |l

5 choose a discrete Trefftz space V,(K) and replace traces
on 9K with numerical fluxes 1, and & p:

u— u, (discretfe solution) in K,

~ Vu
u — Up, a-)ﬂ'p OnaK,



TDG: derivation — |l

5 choose a discrete Trefftz space V,(K) and replace traces
on 9K with numerical fluxes u, and & :

u— u, (discretfe solution) in K,
~ vu
u — Up, — —0p on 0K

w

6 Use the Trefftz property: V v, € V,(K)

/up(—Avp—wzvp)dV—i—/ ﬁvapnde/ iwop-n0,dS=0.
K “~——— J oK Jok
=0

TDG eg. on 1 element

Two things to set:
discrete space V,, and numerical fluxes ty, op.



TDG: the space V,

The abstract error analysis works for every discrete Trefftz space!

Possible choice: plane wave space {d}f_, c sV

p
Vi(To) = {0 € L2() : o) =Y are %, oy € C VK € T},
(=1

p := number of basis plane waves (DOFs) in each element,



Numerical fluxes

Choose the numerical fluxes as:

{ op=2{Vrhup} — afupln

R X on interior faces,
Up = {wp} — 8 5 [Vawln

Gp= 2t (1 -4§)L(Vyu,+ iwu,n —gn) 7
on oN.
Up = Up — 07 (Valp - M+ iy, — g)
{-} = averages, [-]n = normal jumps on the interfaces.

a, f>0,0 € (0, %] parameters at our disposal (in L (Fp)):
» h- or p-version, quasi-uniform meshes:
a, 3,6 independent of w, h, p; UWVFia=8=6=3.
» hp-version, locally refined mesh: «, 3, depend on local h, p.



Variational formulation of the TDG

With this fluxes, summing over the elements K € T, the TDG
method reads: find u, € V,(Tx) s.1.

An(up, vp) = iw™? 5thvp-ndS+/ (1-10)gv,dsS,
0 a0

YV vp € Vp(Th).



Variational formulation of the TDG

With this fluxes, summing over the elements K € T, the TDG
method reads: find u, € V,(Tx) s.1.

An(up, vp) = iw™? 5thvp-ndS+/ (1-10)gv,dsS,
o o0
YV vp € Vp(Th), where (F} = interior skeleton)
An(u, v) ::/ {u} [Troln ds +uﬂ/ B[Vnuln[Vroly dS
Fh Fh
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Th Th
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a0 20
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o0 oQ



Variational formulation of the TDG

With this fluxes, summming over the elements K € Tp, the TDG
method reads: find u, € V,(Tx) s.1.

An(up, vp) = iw™? 5thvp-ndS+/ (1-10)gv,dsS,
0 a0

YV vp € Vp(Th), where (F} = interior skeleton)

An(u, v) ::/ (U} Vo] dS +iw [ BIVauln[Vroln dS
7

T
h 'Fh

—/fI{th}[[B]]NdS —|—iw/ﬂa[[u]]1v'[[l_)]]zvd5

+/ (1-0)uViyv-ndS +iw’1/ 6Vhu-nVyv-ndS
o J OO

— [ 6Viu-nodS +iw/ (1-6)udS.
o0 o

up — (Im Ap(up, up))? is @ norm on the Trefftz space = 3! u,.



“Unconditional quasi-optimality”
On the Trefftz space
T(Th) = {u € L2(Q): vk € H2(K), —Av—w?v=0ineach K € Th},

Vo,weT(Th) : quasi-optimality:
Im Ap(v,v) = [[[v]]|%, = |llu = uplll7, < 3|lJu—vp|l| £+
[ An(w, v)| < 2{[|wll| £+ |[v]]] 7, Yop € Vp(Th) C T(Th).

Using norms  |||v]||%, ¢:W71H51/2Wh”ﬂ H2

+o o gel],
0]7
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TDG p-convergence

Monk-Wang duality fechnique
[Wwllpaq) < Clw, h,Q, Th, o, B, 0)|[|wl]| 7, Yw € T(Th)
— quasi-optimality in L?(£2)-norm.

Assume for now: best approximation estimates for plane or
circular waves (shown later in this talk).



TDG p-convergence

Monk-Wang duality fechnique
HwHLZ(Q) < C(w,h,Q,Th, o, B, 5)|||w|||]:h Yw e T(ﬂl)

— quasi-optimality in L?(£2)-norm.

Assume for now: best approximation estimates for plane or
circular waves (shown later in this talk).

We obtain (h- and) p-estimates for plane/circular waves (2D):

1 lo ki%
= upllz, <Clmye 4 (RN g,

log(p) ) *
w lu = tp| gy SC(wh) diaxn(n)h“( » ) ltllet 10,00

on quasi-uniform meshes with meshsize h.

Slightly different orders of convergence in p in 3D.



Numerical tests

Plane wave spaces, w = 10, h = 1/v2, L?-norm of errors:
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Smooth solution in C*>(R?)
u(x) = Jp (w|x|) cos 4
exponential convergence.

Singular solution in H3=<(Q2)
u(x) = Js (w[x|) cos(56)

algebraic convergence.

Numerical instability / ill-condifioning for high p!



The road map

| | Helmholtz | Maxwell |

Formulation of TDG v ~ Helm.
DG ||| - ||| 7,-Quasi optimality v ~ Helm.
Duality argument L2() H(div, Q)

hp exponential convergence

Approximation by GHPs

Approximation by PWs




Part I



The best approximation estimates

The analysis of any plane wave Trefftz method requires
best approximation estimates:

~Au—-w?u=0 inD € Tp, u € H"(D),

diam(D)=h, peN, d,...,d,eS"}

inf
&eCP

< Ce(h,p) [[ullgperr(py >
HI(D)

p
u— § Oteelw d[X
(=1

with explicit  ¢(h, p) ~=% 0.

p—0o0

20



The best approximation estimates

The analysis of any plane wave Trefftz method requires
best approximation estimates:

~Au—-w?u=0 inD € Tp, u € H"(D),

diam(D) =h, peN, di,...,d, SV

p
. iwd,-
nf lu=—> ae®™ < Ce(h,p) [[ullgpesi (py »
(=1 HI(D)
with explicit  ¢(h, p) ~=% 0.
p—o0

Goal: precise estimates on ¢(h, p)
» for plane and circular/spherical waves;
» bothin h and p (simultaneously);
» in 2 and 3 dimensions;
» with explicit bounds in the wavenumber w.

20



The Vekua theory in N dimensions

We need an old (1940s) tool from PDE analysis: Vekua theory.

D c RN starshaped wrt, 0, w > 0.
Define two continuous functions:

Mi,M,:Dx[0,1] - R

My 1) =~ <2 \‘/GT_ i (@RI =D,

Ma(x,t) = ‘“2|"| \\//__J1(1w|x|\/ 1—10).

The Vekua operators

Vilg](x) := ¢(x) + /01 M;(x, t)¢(tx) dt, VxeD, j=1,2.

21



4 properties of Vekua operators

] Vo = (V1)™!

2 A=0 =  (-A-uw?)Vi[g]=0

Main idea of Vekua theory:

Vs
Harmonic functions —— —  Helmholiz solutions
\ %1

3 Continuity in (w-weighted) Sobolev norms, explicit in w
(H/(D), W»>=(D), j € N)

4 P= gocllyr/rr?oor?wligl < V;[P] = circular/spherical wave

e gwr), Y () dwlx)
—_— —
2D 3D

29



Vekua operators & approximation by GHPs

2

—Au—w?u=0, u € H'(D),

v

can be approximated
by harmonic polynomials

(harmonic Bramble-Hilbert in h,
Complex analysis in p-2D (Melenk), new result in p-3D),

v

u can be approximated by GHPs:

Volu] is harmonic =

generalized
harmonic =V
polynomials

harmonic

. = circular/spherical waves.
polynomials

(— Bounds applicable to any GHP-based Trefftz schemes!)

213



The approximation of GHPs by plane waves

Link between plane waves and circular/spherical waves:
Jacobi-Anger expansion

o0 elzcose E lJ( ) 119 ZE(C7 9€R7
lez
3D lrén =47 E E l_]z ) Yim( )Yl,m(n) 5777682, r>o.
plone wave >0 m=—1 GHP =

We need the other way round:

GHP = linear combination of plane waves

» fruncation of J-A expansion,

» careful choice of directions (in 3D),
» solutfion of a linear system,

» residual estimates,

— explicit error bound.

2/



The final approximation by plane waves

Vo

—Au—w?u=0 — —~AValu] =0
harmonic approx. |
v ;
Circular waves — Harmonic polyn.

1 (Jacobi-Anger)™*
Plane waves

Final estimate

inf

k1 —A(lc+1—j
aECP < C(wh) R gAYyl o

p
u— 2 :aéeth-dg
(=1

j,w,D
IN2D: p=2q+1, A(D) explicit, v dy.
IN3D: p=(q+1)%, AD) unknown, speciald,.
N—————
better than poly.!
If u extends outside D: exponential order in q. (Same for GHPs.)

bls



The road map

| | Helmholtz | Maxwell
Formulation of TDG v ~ Helm.
DG ||| - ||| 7,-Quasi optimality v ~ Helm.
Duality argument L2() H(div, Q)
hp exponential convergence
Approximation by GHPs v v (p non sharp)
Approximation by PWs v v (non sharp)
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What do we want?

hp-convergence is achieved by combination of mesh
refinement and increase of #DOFs per element,

Typical hp-result on a priori graded meshes for Laplace 2D:

U — U111 pn < Ce=PV/#DOFs C,b> 0.
Dl ()

28



What do we want?

hp-convergence is achieved by combination of mesh
refinement and increase of #DOFs per element,

Typical hp-result on a priori graded meshes for Laplace 2D:

U — U111 pn < Ce=PV/#DOFs C,b> 0.
Dl ()

We prove, for TDG + plane/circular wave basis, Helmholtz 2D:

[ = tnpl| o) < CePVEPO B> 0.

28



What do we need?

Consider 2D Helmholiz impedance (+Dirichlet) BVRE
with piecewise analytic domain 2 and boundary conditions g.

So far we have proved:
» unconditional well-posedness and quasi-optimality,
» approximation bounds in h and p simultaneously.

What else do we need to obtain exponential convergence?
» specify meshes and fluxes (modify duality);
» analyfic regularity and extendibility of solutions;
» improved approximation bounds. ..

2Q



Explicit dependence on element geometry

Polynomial FEM: best approximation bounds on K € Ty
obtained by scaling to reference element K.

Au+w?u=0inK, — pullback ii(x) := u(F(x)) is not Trefftz
— not approximable by Trefftz basis.

PYK) — PY(K)

Even for affine scaling:
p PW4(K) —777

Every element K has "its own” approximation bound
— constants depend on the shape of K —  (in principle)
not uniformly bounded on unstructured graded meshes.

We want “universal bounds” independent of the geometry,
but. ..



Explicit dependence on element geometry

Polynomial FEM: best approximation bounds on K € Ty
obtained by scaling to reference element K.

Au+w?u=0inK, — pullback ii(x) := u(F(x)) is not Trefftz
— not approximable by Trefftz basis.

PYK) — PY(K)

Even for affine scaling:
p PW4(K) —777

Every element K has "its own” approximation bound
— constants depend on the shape of K —  (in principle)
not uniformly bounded on unstructured graded meshes.

We want “universal bounds” independent of the geometry,
but...we get more: fully explicit bounds for curvilinear
non-convex elements.



Assumption and tools

Assumption on element D:
» D C R?s.t diam(D) = 1, stfarshapedwrt B,, 0 < p < 1/2.
Define:

>

Use:

| 4
| 4

Ds :={z € R? d(z,D) < 6},

M. Melenk’s ideas;

complex variable,
identification R? « C,

harmonic < holomorphic;

conformal map level sets,
Schwarz—Christoffel;

Hermite interpolant gy;

lot of “basic” geometry
and frigonometry, nested
polygons, plenty of
pictures. ..

(Very weak!)

£im {1 D convex,

2 aresin 2 < 1.
™ —p

11



Explicit approximation estimate

Approximation result

Let ne N, fholomorphicinDs;, 0<4d§<1/2,
h:=min {(£6/27)'/¢/3, p/4}, = 3qn of degree < n s.t.

vVvVvYVvyVvyVvyy

_72 7
If = @nllpoepy < 7072 R (1 4+ R) " [|f ]l oo () -

Fully explicit bound;

exponential in degree n;

h >"conformal distance”(D, dDs), related to physical dist. ¢;
in convex case h = min{4§/27, p/4};

extends to harmonic f /g, and derivatives (W>-norm);

extended to Helmholtz solutions and circular/plane waves
(fully explicit W7->°(D)-continuity of Vekua operators).



"Geometric meshes”

Sequence of meshes with:

» element diameters hx
geometrically graded (with 0 <o < 1)
towards domain corners;

/ » any star-shaped element allowed!

00 K star-shaped wrt B,p,, (Xk).

coo? o

p and o are important parameters in the convergence.
Increase #DOFs by simultaneously:

1 refining layer of small elements,
2 increasing number of PWs/CWs in each element.



The TDG flux parameters

We simply choose the flux parameters (hg := diam K)

h
a—a DAXKET, W o0 g AKy,  a,8,6 > 0 constant.
min{hg,, hg, }

This choice gives “balance” between approximation and
duality.

To guarantee shape-independence, we develop new trace
estimates with explicit dependence on the element geometry
through the parameter p.



Approximation in the elements

Need to bound infy,cv, |[u— vyl intwo cases:

1 Exponentially small elements at domain corners.

Use that in tiny elements PWs / CWs behave like P! polynomials.

Difficulty: Vu & L>*, u¢ H?.

23R



Approximation in the elements

Need to bound infy,cv, |[u— vyl intwo cases:

1 Exponentially small elements at domain corners.

Use that in tiny elements PWs / CWs behave like P! polynomials.

Difficulty: Vu & L>*, u¢ H?.

2 Larger elements away from corners.
Following Melenk, u € 62 ;. (92), weighted countably-normed
Ttw

space, and extends onoly’rlcolly (similar to Laplace solutions):
= hg ~ d(K,comers) ~ d(K, d(analyticity region of u)) VK.
= Wwe can use previous explicit bounds.



Approximation in the elements

Need to bound infy,cv, |[u— vyl intwo cases:

1 Exponentially small elements at domain corners.

Use that in tiny elements PWs / CWs behave like P! polynomials.

Difficulty: Vu & L>*, u¢ H?.

2 Larger elements away from corners.
Following Melenk, u € 62 ;. (92), weighted countably-normed
Ttw

space, and extends onoly’rlcolly (similar to Laplace solutions):
= hg ~ d(K,comers) ~ d(K, d(analyticity region of u)) VK.
= Wwe can use previous explicit bounds.

Putting everything together: desired exponential convergence

Jut = | < CeVFPF >0



The road map

| | Helmholtz | Maxwell
Formulation of TDG v ~ Helm.
DG ||| - ||| 7,-Quasi optimality v ~ Helm.
Duality argument L2() H(div, Q)
hp exponential convergence v (2D) X
Approximation by GHPs v v (p non sharp)
Approximation by PWs v v (non sharp)




Summary and open problems

What we have done:
» TDG formulation, unconditional well-posedness;

» approximation theory: holomorphic, harmonic, Helmholtz;

» h- and p-convergence for plane and spherical waves;
» exponential hp-convergence on graded meshes in 2D;
» (not discussed: extensions to Maxwell equations).

Plenty of possible research directions:
non-constant coefficients w(x);

adaptivity in PW directions;
Thank you | other PDEs, time-domain;

new bases;
defeat ill-conditioning, . . .

A A A A A
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