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Time-harmonic PDEs, waves and Trefftz methods

Consider time-harmonic PDEs, e.g., Helmholtz and Maxwell eq.s

−∆u − ω2u = 0, ∇× (∇× E)− ω2E = 0, ω > 0.

Their solutions are “waves”, oscillates with wavelength λ = 2π/ω.

At high frequencies, ω ≫ 1, (piecewise) polynomial
approximation is very expensive, standard FEMs are not good.

Desired: more accuracy for less DOFs. Possible strategy:

Trefftz methods are finite element schemes such that test and
trial functions are solutions of Helmholtz (or Maxwell. . . )
equation in each element K of the mesh Th , e.g.:

Vp ⊂ T (Th) =
{

v ∈ L2(Ω) : −∆v − ω2v = 0 in each K ∈ Th

}

.

E.g.: TDG/PWDG, UWVF, VTCR, DEM, (m)DGM, FLAME, WBM, MFS, LS, PUM/PUFEM, GFEM. . .
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Typical Trefftz basis functions for Helmholtz
1 plane waves, x 7→ eiωx·d d ∈ S

N−1 (PWs)
2 circular / spherical waves, eilψ Jl(ω|x|), Y m

l ( x

|x|
) jl(ω|x|)

3 corner waves, 4 fundamental solutions/multipoles,
5 wavebands, 6 evanescent waves, . . .

1 2 3

4 5 6
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Best approximation estimates
The analysis of any plane wave Trefftz method requires
best approximation estimates:

−∆u − ω2u = 0 in (bdd., Lip.) D ⊂ R
N , u ∈ Hk+1(D),

diam(D) = h, p ∈ N, d1, . . . ,dp ∈ S
N−1,

inf
~α∈Cp

∥
∥
∥
∥
∥
u −

p
∑

ℓ=1

αℓe
iω dℓ·x

∥
∥
∥
∥
∥

H j(D)

≤ C ǫ(h,p) ‖u‖Hk+1(D) ,

with explicit ǫ(h,p)
h→0−−−→
p→∞

0.

Goal: precise estimates on ǫ(h,p)

◮ for plane and circular/spherical waves;

◮ both in h and p (simultaneously);

◮ in 2 and 3 dimensions;

◮ with explicit bounds in the wavenumber ω;

◮ (suitable for hp-schemes);

◮ for Helmholtz, Maxwell, elasticity, plates,. . .
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Previous results & outline

Only few results available:

◮ [CESSENAT AND DESPRÉS 1998], using Taylor polynomials,
h-convergence, 2D, L2-norm, order is not sharp;

◮ [MELENK 1995], using Vekua theory, no ω-dependence,
p-convergence for plane w., h and p for circular w., 2D.

We follow the general strategy of Melenk.

Outline:
◮ algebraic best approximation estimates:

◮ Vekua theory;
◮ approximation by circular and spherical waves;
◮ approximation by plane waves;

◮ exponential estimates for hp-schemes;

◮ (extension to Maxwell equations).
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Part I

Vekua theory



Vekua theory in N dimensions

We need an old (1940s) tool from PDE analysis: Vekua theory.

D ⊂ R
N , open, star-shaped wrt. 0, ω > 0.

Define two continuous functions:

M1,M2 : D × [0,1] → R

M1(x, t) = −ω|x|
2

√
t

N−2

√
1 − t

J1

(
ω|x|

√
1 − t

)
,

M2(x, t) = − iω|x|
2

√
t

N−3

√
1 − t

J1

(
iω|x|

√

t(1 − t)
)
.

0

J1(t), J1(it)

The Vekua operators

V1,V2 : C0(D)→ C0(D),

Vj[φ](x) := φ(x) +

∫ 1

0

Mj(x, t)φ(tx)dt ∀ x ∈ D, j = 1,2.
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4 properties of Vekua operators

1 V2 = (V1)
−1

2 ∆φ = 0 ⇐⇒ (−∆− ω2) V1[φ] = 0

Main idea of Vekua theory:

Harmonic functions
V2←−−−−−−−−−−−−→
V1

Helmholtz solutions

3 Continuity in (ω-weighted) Sobolev norms, explicit in ω

[H j(D),W j,∞(D), j ∈ N]

4 P =
Harmonic

polynomial
⇐⇒ V1[P] = circular/spherical wave

[

eilψ Jl(ωr)
︸ ︷︷ ︸

2D

, Y m
l ( x

|x|
) jl(ω|x|)

︸ ︷︷ ︸

3D

]
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Part II

Approximation by circular waves



Vekua operators & approximation by GHPs

−∆u − ω2u = 0, u ∈ Hk+1(D),

↓ V2

V2[u] is harmonic =⇒ can be approximated
by harmonic polynomials

(harmonic Bramble–Hilbert in h,
Complex analysis in p-2D [Melenk], new result in p-3D),

↓ V1

u can be approximated by GHPs:

generalized
harmonic

polynomials
:= V1

[
harmonic

polynomials

]

= circular/spherical waves.
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The approximation by GHPs: h-convergence

inf

P∈

{

harmonic
polynomials

of degree ≤L

}

∥
∥ u − V1[P]
︸ ︷︷ ︸

=V1[V2[u]−P]

∥
∥

j,ω,D
≤ C inf

P
‖V2[u]− P‖j,ω,D contin. of V1,

≤ C hk+1−j ǫ(L) ‖V2[u]‖k+1,ω,D
harmonic

approx. results,

≤ C hk+1−j ǫ(L) ‖u‖k+1,ω,D contin. of V2.

For the h-convergence, Bramble–Hilbert theorem is enough:
it provides a harmonic polynomial!

The constant C depends on ωh, not on ω alone:

C = C · (1 + ωh)j+6e
3
4ωh .
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Harmonic approximation: p-convergence

Assume D is star-shaped wrt Bρ0
.

In 2 dimensions,
sharp p-estimate! [MELENK]:

ǫ(L) =

(
log(L + 2)

L + 2

)λ(k+1−j)

.

If D convex, λ = 1. Otherwise λ = min(re-entrant corner of D)/π.

In 2D, use complex analysis: R2 ↔ C, harmonic↔ holomorphic.

——

We can prove an analogous result in N dimensions:

ǫ(L) = L−λ(k+1−j),

where λ > 0 is a geometric unknown parameter.

If u is the restriction of a solution in a larger domain (2 or 3D),
the convergence in L is exponential.
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Part III

Approximation by plane waves



The approximation of GHPs by plane waves

Link between plane waves and circular/spherical waves:
Jacobi–Anger expansion

2D e
iz cos θ =

∑

l∈Z

i
l
Jl(z) e

ilθ
z ∈ C, θ ∈ R,

3D e
irξ·η

︸ ︷︷ ︸

plane wave

= 4π
∑

l≥0

l∑

m=−l

i
l

jl(r) Y
m
l (ξ)

︸ ︷︷ ︸

GHP

Y m
l (η) ξ, η ∈ S

2
, r ≥ 0.

We need the other way round:

GHP ≈ linear combination of plane waves

◮ truncation of J–A expansion,

◮ careful choice of directions (in 3D),

◮ solution of a linear system,

◮ residual estimates,

→ explicit error bound,
∼ hkq− q

2 .
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The choice of the PW directions in 3D

(In 2D any choice of PW directions is allowed,
estimate depends on minimal angular distance.)

3D Jacobi–Anger gives the matrix {M}l,m;k = Y m
l (dk)

that depends on the choice of the directions dk .

Problem: an upper bound on
∥
∥M−1

∥
∥ is needed

but M is not even always invertible!

Solution:

◮ there exists an optimal choice of dk s.t.
∥
∥M−1

∥
∥

1
≤ 2
√
π p;

◮ it corresponds to the extremal systems of SLOAN–WOMERSLEY

for quadrature on S
2, computable/downloadable;

◮ some simple choices of points give good result,
heuristic: dk have to be as “equispaced” as possible.

With these choices→ analogous results as in 2D.
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The final approximation by plane waves

−∆u − ω2u = 0
V2−→ −∆V2[u] = 0

harmonic approx. ↓

Circular waves
V1←− Harmonic polyn.

↓ (Jacobi–Anger)−1

Plane waves

Final estimate (algebraic convergence)

inf
α∈Cp

∥
∥
∥
∥
∥
u −

p
∑

ℓ=1

αℓe
iω x·dℓ

∥
∥
∥
∥
∥

j,ω,D

≤ C(ωh) hk+1−jq−λ(k+1−j) ‖u‖k+1,ω,D

In 2D: p = 2q + 1, λ(D) explicit, ∀ dℓ.
In 3D: p = (q + 1)2

︸ ︷︷ ︸

better than poly.!

, λ(D) unknown, special dℓ.

(p = dimension, q = “degree” of approximating space.)
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Part IV

Exponential bounds for hp-schemes



What do we need?

Assume u can be extended outside D (true for most elements).

Bounds with exponential dependence on
“plane wave degree” q are easy.

But it is harder to have explicit dependence on the size of the
extension and on the element shape (needed because Trefftz
methods do not allow mappings to reference elements).

Even for affine scaling:
P

q(K̂) −→ P
q(K)

PW q(K̂) −→???

Only step to be improved is harmonic approximation.
Only 2D considered.
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Assumption and tools

Assumption on element D: (Very weak!)

◮ D ⊂ R
2 s.t. diam(D) = 1, star-shaped wrt Bρ, 0 < ρ < 1/2.

Define:

◮ Dδ := {z ∈ R
2,d(z,D) < δ}, ξ :=

{

1 D convex,
2
π arcsin ρ

1−ρ < 1.
Use:
◮ M. Melenk’s ideas;

◮ complex variable,
identification R

2 ↔ C,
harmonic↔ holomorphic;

◮ conformal map level sets,
Schwarz–Christoffel;

◮ Hermite interpolant qn ;

◮ lot of “basic” geometry
and trigonometry,
nested polygons,
plenty of pictures. . .

0
ρ

∂PE

D
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Explicit approximation estimate

Approximation result
Let n ∈ N, f holomorphic in Dδ := {z ∈ R

2,d(z,D) < δ}, δ ≤ 1/2,
H := min

{
(ξδ/27)1/ξ/3, ρ/4

}
, ⇒ ∃qn of degree ≤ n s.t.

‖f − qn‖L∞(D) ≤ 7ρ−2 H
− 72

ρ4 (1 + H)−n ‖f ‖L∞(Dδ)
.

◮ Fully explicit bound;
◮ exponential in degree n;
◮ H ≥“conformal dist.”(D, ∂Dδ), related to physical dist. δ;
◮ in convex case H = min{δ/27, ρ/4};
◮ extends to harmonic f /qn and derivatives (W j,∞-norm);
◮ extended to Helmholtz solutions and circular/plane waves

(fully explicit W j,∞(D)-continuity of Vekua operators).

⇒
∥
∥
∥
∥
∥
u −

p
∑

ℓ=1

αℓe
iωx·dℓ

∥
∥
∥
∥
∥

W j,∞(D)

≤ C(ρ,δ,j,ωh)h
−j e−bp ‖u‖W 1,∞(Dδ)

.
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Explicit approximation estimate
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Part V

The electromagnetic case



Maxwell plane waves

The vector field E is solution of Maxwell’s equations if

∇× (∇× E)− ω2
E = 0 ⇐⇒

{

−∆Ej − ω2Ej = 0 j = 1,2,3,

div E = 0.

A vector plane wave aeiωx·d is a Maxwell solution iff

div(aeiωx·d) = iω(d · a)eiωx·d = 0, i.e., d · a = 0.

Basis of Maxwell plane waves:
{
aℓe

iωx·dℓ , aℓ × dℓe
iωx·dℓ

}

ℓ=1,...,(q+1)2

|aℓ| = |dℓ| = 1, dℓ · aℓ = 0.

aℓ

aℓ

dℓ

dℓ

×

Goal: prove convergence using 2(q + 1)2 plane waves and
Goal: preserving the Trefftz property.
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Maxwell plane wave approximation

1 E Maxwell ⇒ ∇×E Maxwell ⇒ (∇×E)1,2,3 Helmholtz
∥
∥
∥
∥
∇× E − Helmholtz

vector p.w.

∥
∥
∥
∥

j,ω,D

≤ C(hq
−λ)k+1−j ‖∇ × E‖k+1,ω,D .

2 With j ≥ 1, apply ∇× and reduce j (bad!):

∥
∥
∥
∥
∇×∇× E −∇×

[
Helmholtz

vector p.w.

]∥
∥
∥
∥

j−1,ω,D

≤ C(hq
−λ)k+1−j ‖∇ × E‖k+1,ω,D .

⇓

3

∥
∥
∥
∥
ω2E−Maxwell p.w.

∥
∥
∥
∥

j−1,ω,D

≤ C(hq−λ)k+1−j ‖∇ × E‖k+1,ω,D .

Mismatch between Sobolev indices and convergence order:
not sharp!
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Improvements and extensions

1 In the previous bound, we need only:

∇×
{

vector Helmholtz

trial space

}

⊂
{

Maxwell

trial space

}

,

⇒ same result for Maxwell spherical waves!
The space is defined via vector spherical harmonics.

2 How to get better orders?

◮ h-conv., spherical w.: X with Vekua theory,

◮ h-conv., plane w.: ≈ probably with vector Jacobi–Anger,

◮ p-conv.: !? no clue!

3 Same technique (+ special potential representation) used
for elastic wave equation and Kirchhoff–Love plates
(CHARDON).
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Conclusions

We have estimates for

◮ the approximation of Helmholtz and Maxwell solutions,

◮ by circular, spherical and plane waves,

◮ in 2D and 3D,

◮ with orders in h&p,

◮ explicit constants in ω, and

◮ exponential bounds, explicit in the geometry (in 2D).

Open problems:

◮ explicit convergence order (λ) in p in 3D (simple) domains,

◮ sharp bounds for vector equations,

◮ improved bounds for PWs with “optimal” directions,

◮ smooth coefficients (see IMBERT-GÉRARD),

◮ . . .

Thank you!
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