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Balanced Transportation Problem
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Computation of Wasserstein distances [Cut13, PC+19]

k = 2: grey scale images
[RTG00, BGV18, ABGV18]

k = 3: color images [PW09],
origin of universe [FMMS02]

k = 300: word embedding [KSKW15]

k = 200: gene-expression (work in
progress)
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Transportation Problem as Min Cost Flow
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Geometric Transportation Problem
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Transportation Problem: LP model

Given a bipartite graph G = (I ∪ J ,E ),

min
∑
{i,j}∈E

cijπij (1)

s.t.
∑
{i,j}∈E

πij = µi , ∀i ∈ I (2)

∑
{i,j}∈E

πij = νj , ∀j ∈ J (3)

(flow variables) πij ≥ 0, ∀{i , j} ∈ E . (4)

We consider balanced problem:
∑

i∈I µi =
∑

j∈J νJ .

We have a linear number of constraints: |I|+ |J |,
a quadratic number of variables: |I| × |J |,
but only a linear number of basic variables: |I|+ |J | − 1.
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Dense Geometric Transportation Problem
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Can we compute the cost coefficients cij on the fly?
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Call for Column Generation
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LP Simplex vs Network Simplex

(a) LP Simplex Algorithm

1 Generate Initial BFS

2 Choose Entering Variable

3 Determine Leaving Variable

4 Move to New Basic Solution

(b) Network Simplex Algorithm

1 Generate Initial Basis Tree

2 Choose Entering Arc

3 Determine Leaving Arc

4 Move to New Basic Tree

Steps 2–4 are repeated until an optimal solution is found (no negative reduced
cost arc/variable exists). We refer to:

The best sequential implementation of the Network Simplex Algorithm
is contained in the COIN-OR Lemon Graph Library [Kov15]

The best parallel implementation of the Network Simplex Algorithm is
given by [BVDPPH11], which is yet a fork of Lemon
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Network Simplex vs. Other Methods [BGV18]
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Parallel Network Simplex

(a) LP Simplex Algorithm

1 Generate Initial BFS

2 Choose Entering Variable

3 Determine Leaving Variable

4 Move to New Basic Solution

(b) Network Simplex Algorithm

1 Generate Initial Basis Tree

2 Choose Entering Arc (in parallel)

3 Determine Leaving Arc (2 threads)

4 Move to New Basic Tree

Steps 2–4 are repeated until an optimal solution is found (no negative reduced
cost arc/variable exists). We refer to:

For a review of parallel implementation: Towards a practical parallelisation of
the simplex method, by J.A.J Hall [Hal10].

For a parallel Network Simplex algorithm: Parallel simplex for large pure
network problems: Computational testing and sources of speedup [BH94].

To avoid cycling: Strong Feasible Basis [Cun76]

We are not aware of any successful implementation of the
Network Simplex using a modern GPU.
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Column (or cut) generation perspective
Considering a subset of the arc variables Ē ⊂ E :

(a) Restricted Master Problem

min
∑

{i,j}∈Ē

cijπij (5)

s.t.
∑

{i,j}∈Ē

πij ≥ µi ,∀i ∈ I (6)

∑
{i,j}∈Ē

πij ≤ νj , ∀j ∈ J (7)

πij ≥ 0, ∀{i , j} ∈ Ē . (8)

(b) Dual Restricted Master Problem

max
∑
i∈I

µi ui −
∑
j∈J

νj vj (9)

s.t. ui − vj ≤ cij ,∀{i , j} ∈ Ē (10)
ui ≥ 0,∀i ∈ I (11)
vj ≥ 0, ∀j ∈ J. (12)

The pricing (separation) problem is:

(P1) c∗ij = min
{i,j}∈E\Ē

cij − ūi + v̄j . (13)

Separation of constraint (10) is “embarrassingly simple”,

hence, well suited for GPU computation
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A closer look at the pricing subproblem
We can rewrite the pricing subproblem as

(P2) c∗ij = min
i∈I
{δi} (14)

where δi = min
j∈J
{cij − ūi + v̄j} (15)

Using the squared Euclidean distance, we get (for ||·||2):

δi = min
j∈J

{∣∣∣∣x i − y j
∣∣∣∣2 − ūi + v̄j

}
= min

j∈J

{ k∑
h=1

(xih − yjh)2 − ūi + v̄j

}
= min

j∈J

{
||x i ||2+||y j ||2−2 〈x i , y j〉 − ūi + v̄j

}
= ||x i ||2−ūi + min

j∈J

{
||y j ||2+v̄j − 2 〈x i , y j〉

}
= ũi + min

j∈J

{
ṽj − 2 〈x i , y j〉

}
= ũi + min

j∈J

{
ṽj − 2

k∑
h=1

xih yjh

}
(16)

We can pre-compute ||x i ||2 and ||y j ||2 once for all, and ũi and ṽj once
per pricing. The important computation is the dot product 〈x i , y j〉.
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}
= min

j∈J

{
||x i ||2+||y j ||2−2 〈x i , y j〉 − ūi + v̄j
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}
= ||x i ||2−ūi + min
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= ũi + min

j∈J

{
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A closer look at the pricing subproblem

We can rewrite the pricing subproblem as

(P2) c∗ij = min
i∈I
{δi} (17)

where δi = min
j∈J
{cij − ūi + v̄j} (18)

Using the squared Euclidean distance, we get (for ||·||2):

δi = ũi + min
j∈J

{
ṽj − 2 〈x i , y j〉

}

Let X be the matrix with a row for each vector x i , and Y be the
matrix with a column for each vector y j , then, in vector notation:

δ = ũ + f (ṽ,XY )

... matrix multiplication is exactly what GPU are good for!
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Pre-tests to skip and stop pricing subproblems 1/2

Still, whenever is possible we want to avoid to compute 〈x i , y j〉

Lemma 1 (Bounding the pricing problem per node)
Given the following:

1 c i = minj{cij} (Precomputed only once)

2 v = minj{v̄j} (Precomputed once per pricing)

3 δ̄i < 0 current best cut violation (i-th incumbent)

Whenever
ūi ≤ c i + v − δ̄i , (19)

Then, δ̄i is the optimal value for the i-th pricing suproblem:

δi = min
j∈J
{cij − ūi + v̄j}

(... and hence, we can skip or stop the computation for 〈x i , y j〉)
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Pre-tests to skip and stop pricing subproblems 2/2

Still, whenever is possible we want to avoid to compute 〈x i , y j〉

Lemma 2 (Bounding the pricing problem per arc)
Given a node j ∈ J such that

ūi − v̄j > cij and let c̄ij = cij − ūi − v̄j

then, for every other node h ∈ J \ {j} such that

||yh||2 + vh − c̄ij > 2 ||xi || ||yh|| (20)

we can avoid to compute 〈x i , y j〉.

Where in the proof we exploit the cost structure:

cij = ||xi ||2 + ||yj ||2 − 2〈x i , y j 〉 (21)

≥ ||xi ||2 + ||yj ||2 − 2|〈x i , y j 〉| (22)

≥ ||xi ||2 + ||yj ||2 − 2 ||xi || ||yj || . (23)
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From Theory to Practice
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Memory Bandwidth Bottlenecks
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Threading Hierarchy

NVIDIA Quadro P6000 has 60 SM with 64 cores each: 3840 cores in total
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GPU-based Implementation: Simplified Model

Each single GPU thread computes: ṽj − 2〈x i , y j〉 with j ∈ J̄
Each thread block computes: δ̃i = minj∈J̄

{
ṽj − 2 〈x i , y j〉

}
, with i ∈ Ī
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21/32

Intro Network Simplex GPU-based Implementation Results Future works

GPU-based Implementation: Simplified Model

Each single GPU thread computes: ṽj − 2〈x i , y j〉 with j ∈ J̄
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Pricing on the GPU: Threads, Blocks, and Grids
Each GPU block gets a subset of supplies Ī ⊂ I and demands J̄ ⊂ J

δ̃i = min
j∈J̄

{
ṽj − 2

k∑
h=1

xih yjh

}
,

The GPU thread hierarchy is organized as follows:

Check the pretests, and if passed:

Each single GPU thread computes: ṽj − 2〈x i , y j〉

Each thread (out of two) within a GPU block cooperates in finding
the minimum over J̄ , using a parallel reduction algorithm (over the
block-shared memory) [H+07].

Inter block (grid) cooperation is achieved via atomic updates on the
global GPU memory for computing for every i ∈ I the optimal δi .

In the end, we get in parallel the optimal δi for every i ∈ I.



23/32

Intro Network Simplex GPU-based Implementation Results Future works

GPU-based Network Simplex for Dense Problems

We solve a sequence of very sparse network problems.
We keep in memory only O(|I|+ |J |) arc variables.

Copy from host to GPU: x i , y j , ||y i ||2, ||y j ||2

Compute Ē ⊂ E , and an initial basis tree

1 Solve the corresponding sparse transportation problem using
our sequential (incremental) Network Simplex algorithm

2 Compute dual multipliers ũi and ṽj , and copy them on GPU
3 Using the GPU: Compute δi for each supply.

If every δi ≥ 0, stop the algorithm
4 Whenever δi < 0, copy from GPU to host the corresponding

cost cij and add arc {i , j} to Ē .
5 Important: Remove (aggressively) from Ē all the variables

with a reduced costs greater than τ > 0. Go back to (1).
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Multicore CPU Network Simplex for Dense Problems

We solve a sequence of very sparse network problems.
We keep in memory only O(|I|+ |J |) arc variables.

Copy from host to GPU: x i , y j , ||y i ||2, ||y j ||2

Compute Ē ⊂ E , and an initial basis tree

1 Solve the corresponding sparse transportation problem using
our sequential (incremental) Network Simplex algorithm

2 Compute dual multipliers ũi and ṽj , copy them on the GPU
3 Using CPU cores: Compute δi for each supply.

If every δi ≥ 0, stop the algorithm
4 Whenever δi < 0, copy from GPU to host the corresponding

cost cij and add arc {i , j} to Ē .
5 Important: Remove (aggressively) from Ē all the variables

with a reduced costs greater than τ > 0. Go back to (1).
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Implementation details: Code and Dataset

All the algorithms coded in standard ANSI C++11

First implementation using the Microsoft AMP C++ library.
Current development using NVIDIA CUDA toolkit.

Multicore CPU parallel algorithms use OpenMP 4.5.

As benchmarks, with locations x i , y j ∈ R2, we use:
1 Random assignment problems.
2 DOTmark grey scale images [SSG17], a standard benchmark

for computing Wasserstein distances.

All results refer to a Dell workstation with an Intel Xeon CPU, 10
physical cores at 3.3GHz, 32GB of RAM, equipped with an NVIDIA
Quadro P6000 GPU.
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Random Assignment - Pricing subproblems
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Random Assignment - Details for larger instances

Average Running time RAM
Size Method CG Iter Master Pricing Total (stdev) Vars % (MB)
32 768 CPU 213.0 32.4 514.4 546.8 (61.8) 0.35% 69.3

MultiCore 213.0 33.3 50.2 83.5 (9.5) 0.35% 69.8
GPU 214.0 35.3 4.7 40.0 (4.5) 0.35% 57.5

65 536 CPU 506.0 209.3 4547.6 4756.9 (470.8) 0.21% 83.6
MultiCore 504.1 203.6 454.4 658.0 (53.8) 0.20% 84.1
GPU 497.1 220.1 35.4 255.6 (15.0) 0.20% 82.3
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Random Assignment - Details for larger instances
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DOTmark grey scale images [SSG17] (45 inst. per size)

Comparison with the Parallel Network Simplex (PNS) [BVDPPH11],
which stores the cost coefficient matrix on the RAM memory.
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Conclusions

1 We have implemented an incremental two staged GPU-based
Network Simplex (source code coming soon on Github)

2 Working with GPU is technically tricky, but we can do it!

3 Even when memory is not an issue, our approach is faster than
storing the full matrix in memory (as in [BVDPPH11])

4 We are currently working on a new single-cell RNA classification
problem, where points x i , y j ∈ R200
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Questions?

Thanks!
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