
1/32

Intro Network Simplex GPU-based Implementation Results Future works

A note on a GPU-based
Network Simplex Algorithm

Stefano Gualandia and L.M. Rousseaub

(a) Università di Pavia, Dipartimento di Matematica
(b) CIRRELT-Polytech. Montrèal, Dept de Math et Gènie Industriel

Aussois 2020

email: stefano.gualandi@unipv.it
twitter: @famo2spaghi
blog: http://stegua.github.com

2/32

Intro Network Simplex GPU-based Implementation Results Future works

Balanced Transportation Problem

3/32

Intro Network Simplex GPU-based Implementation Results Future works

Computation of Wasserstein distances [Cut13, PC+19]

k = 2: grey scale images
[RTG00, BGV18, ABGV18]

k = 3: color images [PW09],
origin of universe [FMMS02]

k = 300: word embedding [KSKW15]

k = 200: gene-expression (work in
progress)

4/32

Intro Network Simplex GPU-based Implementation Results Future works

Transportation Problem as Min Cost Flow

5/32

Intro Network Simplex GPU-based Implementation Results Future works

Geometric Transportation Problem

6/32

Intro Network Simplex GPU-based Implementation Results Future works

Transportation Problem: LP model

Given a bipartite graph G = (I ∪ J ,E),

min
∑
{i,j}∈E

cijπij (1)

s.t.
∑
{i,j}∈E

πij = µi , ∀i ∈ I (2)

∑
{i,j}∈E

πij = νj , ∀j ∈ J (3)

(flow variables) πij ≥ 0, ∀{i , j} ∈ E . (4)

We consider balanced problem:
∑

i∈I µi =
∑

j∈J νJ .

We have a linear number of constraints: |I|+ |J |,
a quadratic number of variables: |I| × |J |,
but only a linear number of basic variables: |I|+ |J | − 1.

7/32

Intro Network Simplex GPU-based Implementation Results Future works

Dense Geometric Transportation Problem

8/32

Intro Network Simplex GPU-based Implementation Results Future works

Can we compute the cost coefficients cij on the fly?

8/32

Intro Network Simplex GPU-based Implementation Results Future works

Can we compute the cost coefficients cij on the fly?

8/32

Intro Network Simplex GPU-based Implementation Results Future works

Can we compute the cost coefficients cij on the fly?

8/32

Intro Network Simplex GPU-based Implementation Results Future works

Can we compute the cost coefficients cij on the fly?

8/32

Intro Network Simplex GPU-based Implementation Results Future works

Can we compute the cost coefficients cij on the fly?

9/32

Intro Network Simplex GPU-based Implementation Results Future works

Call for Column Generation

10/32

Intro Network Simplex GPU-based Implementation Results Future works

LP Simplex vs Network Simplex

(a) LP Simplex Algorithm

1 Generate Initial BFS

2 Choose Entering Variable

3 Determine Leaving Variable

4 Move to New Basic Solution

(b) Network Simplex Algorithm

1 Generate Initial Basis Tree

2 Choose Entering Arc

3 Determine Leaving Arc

4 Move to New Basic Tree

Steps 2–4 are repeated until an optimal solution is found (no negative reduced
cost arc/variable exists). We refer to:

The best sequential implementation of the Network Simplex Algorithm
is contained in the COIN-OR Lemon Graph Library [Kov15]

The best parallel implementation of the Network Simplex Algorithm is
given by [BVDPPH11], which is yet a fork of Lemon

10/32

Intro Network Simplex GPU-based Implementation Results Future works

LP Simplex vs Network Simplex

(a) LP Simplex Algorithm

1 Generate Initial BFS

2 Choose Entering Variable

3 Determine Leaving Variable

4 Move to New Basic Solution

(b) Network Simplex Algorithm

1 Generate Initial Basis Tree

2 Choose Entering Arc

3 Determine Leaving Arc

4 Move to New Basic Tree

Steps 2–4 are repeated until an optimal solution is found (no negative reduced
cost arc/variable exists). We refer to:

The best sequential implementation of the Network Simplex Algorithm
is contained in the COIN-OR Lemon Graph Library [Kov15]

The best parallel implementation of the Network Simplex Algorithm is
given by [BVDPPH11], which is yet a fork of Lemon

10/32

Intro Network Simplex GPU-based Implementation Results Future works

LP Simplex vs Network Simplex

(a) LP Simplex Algorithm

1 Generate Initial BFS

2 Choose Entering Variable

3 Determine Leaving Variable

4 Move to New Basic Solution

(b) Network Simplex Algorithm

1 Generate Initial Basis Tree

2 Choose Entering Arc

3 Determine Leaving Arc

4 Move to New Basic Tree

Steps 2–4 are repeated until an optimal solution is found (no negative reduced
cost arc/variable exists). We refer to:

The best sequential implementation of the Network Simplex Algorithm
is contained in the COIN-OR Lemon Graph Library [Kov15]

The best parallel implementation of the Network Simplex Algorithm is
given by [BVDPPH11], which is yet a fork of Lemon

11/32

Intro Network Simplex GPU-based Implementation Results Future works

Network Simplex vs. Other Methods [BGV18]

0

5

10

15

20

25

30

35

EMD Barrier Dual Simplex Primal Simplex Cycle Canceling Cost Scaling Network Simplex

R
un

tim
e

in
 s

ec
on

ds

Barrier, Primal, and Dual Simplex refer to Gurobi v8.0
Cycle Canceling, Cost Scaling, and Network Simplex to COIN-OR Lemon

12/32

Intro Network Simplex GPU-based Implementation Results Future works

Parallel Network Simplex

(a) LP Simplex Algorithm

1 Generate Initial BFS

2 Choose Entering Variable

3 Determine Leaving Variable

4 Move to New Basic Solution

(b) Network Simplex Algorithm

1 Generate Initial Basis Tree

2 Choose Entering Arc (in parallel)

3 Determine Leaving Arc (2 threads)

4 Move to New Basic Tree

Steps 2–4 are repeated until an optimal solution is found (no negative reduced
cost arc/variable exists). We refer to:

For a review of parallel implementation: Towards a practical parallelisation of
the simplex method, by J.A.J Hall [Hal10].

For a parallel Network Simplex algorithm: Parallel simplex for large pure
network problems: Computational testing and sources of speedup [BH94].

To avoid cycling: Strong Feasible Basis [Cun76]

We are not aware of any successful implementation of the
Network Simplex using a modern GPU.

12/32

Intro Network Simplex GPU-based Implementation Results Future works

Parallel Network Simplex

(a) LP Simplex Algorithm

1 Generate Initial BFS

2 Choose Entering Variable

3 Determine Leaving Variable

4 Move to New Basic Solution

(b) Network Simplex Algorithm

1 Generate Initial Basis Tree

2 Choose Entering Arc (in parallel)

3 Determine Leaving Arc (2 threads)

4 Move to New Basic Tree

Steps 2–4 are repeated until an optimal solution is found (no negative reduced
cost arc/variable exists). We refer to:

For a review of parallel implementation: Towards a practical parallelisation of
the simplex method, by J.A.J Hall [Hal10].

For a parallel Network Simplex algorithm: Parallel simplex for large pure
network problems: Computational testing and sources of speedup [BH94].

To avoid cycling: Strong Feasible Basis [Cun76]

We are not aware of any successful implementation of the
Network Simplex using a modern GPU.

13/32

Intro Network Simplex GPU-based Implementation Results Future works

Column (or cut) generation perspective
Considering a subset of the arc variables Ē ⊂ E :

(a) Restricted Master Problem

min
∑

{i,j}∈Ē

cijπij (5)

s.t.
∑

{i,j}∈Ē

πij ≥ µi ,∀i ∈ I (6)

∑
{i,j}∈Ē

πij ≤ νj , ∀j ∈ J (7)

πij ≥ 0, ∀{i , j} ∈ Ē . (8)

(b) Dual Restricted Master Problem

max
∑
i∈I

µi ui −
∑
j∈J

νj vj (9)

s.t. ui − vj ≤ cij ,∀{i , j} ∈ Ē (10)
ui ≥ 0,∀i ∈ I (11)
vj ≥ 0, ∀j ∈ J. (12)

The pricing (separation) problem is:

(P1) c∗ij = min
{i,j}∈E\Ē

cij − ūi + v̄j . (13)

Separation of constraint (10) is “embarrassingly simple”,

hence, well suited for GPU computation

13/32

Intro Network Simplex GPU-based Implementation Results Future works

Column (or cut) generation perspective
Considering a subset of the arc variables Ē ⊂ E :

(a) Restricted Master Problem

min
∑

{i,j}∈Ē

cijπij (5)

s.t.
∑

{i,j}∈Ē

πij ≥ µi ,∀i ∈ I (6)

∑
{i,j}∈Ē

πij ≤ νj , ∀j ∈ J (7)

πij ≥ 0, ∀{i , j} ∈ Ē . (8)

(b) Dual Restricted Master Problem

max
∑
i∈I

µi ui −
∑
j∈J

νj vj (9)

s.t. ui − vj ≤ cij ,∀{i , j} ∈ Ē (10)
ui ≥ 0,∀i ∈ I (11)
vj ≥ 0, ∀j ∈ J. (12)

The pricing (separation) problem is:

(P1) c∗ij = min
{i,j}∈E\Ē

cij − ūi + v̄j . (13)

Separation of constraint (10) is “embarrassingly simple”,
hence, well suited for GPU computation

14/32

Intro Network Simplex GPU-based Implementation Results Future works

A closer look at the pricing subproblem
We can rewrite the pricing subproblem as

(P2) c∗ij = min
i∈I
{δi} (14)

where δi = min
j∈J
{cij − ūi + v̄j} (15)

Using the squared Euclidean distance, we get (for ||·||2):

δi = min
j∈J

{∣∣∣∣x i − y j
∣∣∣∣2 − ūi + v̄j

}
= min

j∈J

{ k∑
h=1

(xih − yjh)2 − ūi + v̄j

}
= min

j∈J

{
||x i ||2+||y j ||2−2 〈x i , y j〉 − ūi + v̄j

}
= ||x i ||2−ūi + min

j∈J

{
||y j ||2+v̄j − 2 〈x i , y j〉

}
= ũi + min

j∈J

{
ṽj − 2 〈x i , y j〉

}
= ũi + min

j∈J

{
ṽj − 2

k∑
h=1

xih yjh

}
(16)

We can pre-compute ||x i ||2 and ||y j ||2 once for all, and ũi and ṽj once
per pricing. The important computation is the dot product 〈x i , y j〉.

14/32

Intro Network Simplex GPU-based Implementation Results Future works

A closer look at the pricing subproblem
We can rewrite the pricing subproblem as

(P2) c∗ij = min
i∈I
{δi} (14)

where δi = min
j∈J
{cij − ūi + v̄j} (15)

Using the squared Euclidean distance, we get (for ||·||2):

δi = min
j∈J

{∣∣∣∣x i − y j
∣∣∣∣2 − ūi + v̄j

}
= min

j∈J

{ k∑
h=1

(xih − yjh)2 − ūi + v̄j

}

= min
j∈J

{
||x i ||2+||y j ||2−2 〈x i , y j〉 − ūi + v̄j

}
= ||x i ||2−ūi + min

j∈J

{
||y j ||2+v̄j − 2 〈x i , y j〉

}
= ũi + min

j∈J

{
ṽj − 2 〈x i , y j〉

}
= ũi + min

j∈J

{
ṽj − 2

k∑
h=1

xih yjh

}
(16)

We can pre-compute ||x i ||2 and ||y j ||2 once for all, and ũi and ṽj once
per pricing. The important computation is the dot product 〈x i , y j〉.

14/32

Intro Network Simplex GPU-based Implementation Results Future works

A closer look at the pricing subproblem
We can rewrite the pricing subproblem as

(P2) c∗ij = min
i∈I
{δi} (14)

where δi = min
j∈J
{cij − ūi + v̄j} (15)

Using the squared Euclidean distance, we get (for ||·||2):

δi = min
j∈J

{∣∣∣∣x i − y j
∣∣∣∣2 − ūi + v̄j

}
= min

j∈J

{ k∑
h=1

(xih − yjh)2 − ūi + v̄j

}
= min

j∈J

{
||x i ||2+||y j ||2−2 〈x i , y j〉 − ūi + v̄j

}

= ||x i ||2−ūi + min
j∈J

{
||y j ||2+v̄j − 2 〈x i , y j〉

}
= ũi + min

j∈J

{
ṽj − 2 〈x i , y j〉

}
= ũi + min

j∈J

{
ṽj − 2

k∑
h=1

xih yjh

}
(16)

We can pre-compute ||x i ||2 and ||y j ||2 once for all, and ũi and ṽj once
per pricing. The important computation is the dot product 〈x i , y j〉.

14/32

Intro Network Simplex GPU-based Implementation Results Future works

A closer look at the pricing subproblem
We can rewrite the pricing subproblem as

(P2) c∗ij = min
i∈I
{δi} (14)

where δi = min
j∈J
{cij − ūi + v̄j} (15)

Using the squared Euclidean distance, we get (for ||·||2):

δi = min
j∈J

{∣∣∣∣x i − y j
∣∣∣∣2 − ūi + v̄j

}
= min

j∈J

{ k∑
h=1

(xih − yjh)2 − ūi + v̄j

}
= min

j∈J

{
||x i ||2+||y j ||2−2 〈x i , y j〉 − ūi + v̄j

}
= ||x i ||2−ūi + min

j∈J

{
||y j ||2+v̄j − 2 〈x i , y j〉

}

= ũi + min
j∈J

{
ṽj − 2 〈x i , y j〉

}
= ũi + min

j∈J

{
ṽj − 2

k∑
h=1

xih yjh

}
(16)

We can pre-compute ||x i ||2 and ||y j ||2 once for all, and ũi and ṽj once
per pricing. The important computation is the dot product 〈x i , y j〉.

14/32

Intro Network Simplex GPU-based Implementation Results Future works

A closer look at the pricing subproblem
We can rewrite the pricing subproblem as

(P2) c∗ij = min
i∈I
{δi} (14)

where δi = min
j∈J
{cij − ūi + v̄j} (15)

Using the squared Euclidean distance, we get (for ||·||2):

δi = min
j∈J

{∣∣∣∣x i − y j
∣∣∣∣2 − ūi + v̄j

}
= min

j∈J

{ k∑
h=1

(xih − yjh)2 − ūi + v̄j

}
= min

j∈J

{
||x i ||2+||y j ||2−2 〈x i , y j〉 − ūi + v̄j

}
= ||x i ||2−ūi + min

j∈J

{
||y j ||2+v̄j − 2 〈x i , y j〉

}
= ũi + min

j∈J

{
ṽj − 2 〈x i , y j〉

}
=

ũi + min
j∈J

{
ṽj − 2

k∑
h=1

xih yjh

}
(16)

We can pre-compute ||x i ||2 and ||y j ||2 once for all, and ũi and ṽj once
per pricing. The important computation is the dot product 〈x i , y j〉.

14/32

Intro Network Simplex GPU-based Implementation Results Future works

A closer look at the pricing subproblem
We can rewrite the pricing subproblem as

(P2) c∗ij = min
i∈I
{δi} (14)

where δi = min
j∈J
{cij − ūi + v̄j} (15)

Using the squared Euclidean distance, we get (for ||·||2):

δi = min
j∈J

{∣∣∣∣x i − y j
∣∣∣∣2 − ūi + v̄j

}
= min

j∈J

{ k∑
h=1

(xih − yjh)2 − ūi + v̄j

}
= min

j∈J

{
||x i ||2+||y j ||2−2 〈x i , y j〉 − ūi + v̄j

}
= ||x i ||2−ūi + min

j∈J

{
||y j ||2+v̄j − 2 〈x i , y j〉

}
= ũi + min

j∈J

{
ṽj − 2 〈x i , y j〉

}
= ũi + min

j∈J

{
ṽj − 2

k∑
h=1

xih yjh

}
(16)

We can pre-compute ||x i ||2 and ||y j ||2 once for all, and ũi and ṽj once
per pricing. The important computation is the dot product 〈x i , y j〉.

14/32

Intro Network Simplex GPU-based Implementation Results Future works

A closer look at the pricing subproblem
We can rewrite the pricing subproblem as

(P2) c∗ij = min
i∈I
{δi} (14)

where δi = min
j∈J
{cij − ūi + v̄j} (15)

Using the squared Euclidean distance, we get (for ||·||2):

δi = min
j∈J

{∣∣∣∣x i − y j
∣∣∣∣2 − ūi + v̄j

}
= min

j∈J

{ k∑
h=1

(xih − yjh)2 − ūi + v̄j

}
= min

j∈J

{
||x i ||2+||y j ||2−2 〈x i , y j〉 − ūi + v̄j

}
= ||x i ||2−ūi + min

j∈J

{
||y j ||2+v̄j − 2 〈x i , y j〉

}
= ũi + min

j∈J

{
ṽj − 2 〈x i , y j〉

}
= ũi + min

j∈J

{
ṽj − 2

k∑
h=1

xih yjh

}
(16)

We can pre-compute ||x i ||2 and ||y j ||2 once for all, and ũi and ṽj once
per pricing. The important computation is the dot product 〈x i , y j〉.

15/32

Intro Network Simplex GPU-based Implementation Results Future works

A closer look at the pricing subproblem

We can rewrite the pricing subproblem as

(P2) c∗ij = min
i∈I
{δi} (17)

where δi = min
j∈J
{cij − ūi + v̄j} (18)

Using the squared Euclidean distance, we get (for ||·||2):

δi = ũi + min
j∈J

{
ṽj − 2 〈x i , y j〉

}

Let X be the matrix with a row for each vector x i , and Y be the
matrix with a column for each vector y j , then, in vector notation:

δ = ũ + f (ṽ,XY)

... matrix multiplication is exactly what GPU are good for!

15/32

Intro Network Simplex GPU-based Implementation Results Future works

A closer look at the pricing subproblem

We can rewrite the pricing subproblem as

(P2) c∗ij = min
i∈I
{δi} (17)

where δi = min
j∈J
{cij − ūi + v̄j} (18)

Using the squared Euclidean distance, we get (for ||·||2):

δi = ũi + min
j∈J

{
ṽj − 2 〈x i , y j〉

}

Let X be the matrix with a row for each vector x i , and Y be the
matrix with a column for each vector y j , then, in vector notation:

δ = ũ + f (ṽ,XY)

... matrix multiplication is exactly what GPU are good for!

16/32

Intro Network Simplex GPU-based Implementation Results Future works

Pre-tests to skip and stop pricing subproblems 1/2

Still, whenever is possible we want to avoid to compute 〈x i , y j〉

Lemma 1 (Bounding the pricing problem per node)
Given the following:

1 c i = minj{cij} (Precomputed only once)

2 v = minj{v̄j} (Precomputed once per pricing)

3 δ̄i < 0 current best cut violation (i-th incumbent)

Whenever
ūi ≤ c i + v − δ̄i , (19)

Then, δ̄i is the optimal value for the i-th pricing suproblem:

δi = min
j∈J
{cij − ūi + v̄j}

(... and hence, we can skip or stop the computation for 〈x i , y j〉)

16/32

Intro Network Simplex GPU-based Implementation Results Future works

Pre-tests to skip and stop pricing subproblems 1/2

Still, whenever is possible we want to avoid to compute 〈x i , y j〉

Lemma 1 (Bounding the pricing problem per node)
Given the following:

1 c i = minj{cij} (Precomputed only once)

2 v = minj{v̄j} (Precomputed once per pricing)

3 δ̄i < 0 current best cut violation (i-th incumbent)

Whenever
ūi ≤ c i + v − δ̄i , (19)

Then, δ̄i is the optimal value for the i-th pricing suproblem:

δi = min
j∈J
{cij − ūi + v̄j}

(... and hence, we can skip or stop the computation for 〈x i , y j〉)

17/32

Intro Network Simplex GPU-based Implementation Results Future works

Pre-tests to skip and stop pricing subproblems 2/2

Still, whenever is possible we want to avoid to compute 〈x i , y j〉

Lemma 2 (Bounding the pricing problem per arc)
Given a node j ∈ J such that

ūi − v̄j > cij and let c̄ij = cij − ūi − v̄j

then, for every other node h ∈ J \ {j} such that

||yh||2 + vh − c̄ij > 2 ||xi || ||yh|| (20)

we can avoid to compute 〈x i , y j〉.

Where in the proof we exploit the cost structure:

cij = ||xi ||2 + ||yj ||2 − 2〈x i , y j 〉 (21)

≥ ||xi ||2 + ||yj ||2 − 2|〈x i , y j 〉| (22)

≥ ||xi ||2 + ||yj ||2 − 2 ||xi || ||yj || . (23)

17/32

Intro Network Simplex GPU-based Implementation Results Future works

Pre-tests to skip and stop pricing subproblems 2/2

Still, whenever is possible we want to avoid to compute 〈x i , y j〉

Lemma 2 (Bounding the pricing problem per arc)
Given a node j ∈ J such that

ūi − v̄j > cij and let c̄ij = cij − ūi − v̄j

then, for every other node h ∈ J \ {j} such that

||yh||2 + vh − c̄ij > 2 ||xi || ||yh|| (20)

we can avoid to compute 〈x i , y j〉.

Where in the proof we exploit the cost structure:

cij = ||xi ||2 + ||yj ||2 − 2〈x i , y j 〉 (21)

≥ ||xi ||2 + ||yj ||2 − 2|〈x i , y j 〉| (22)

≥ ||xi ||2 + ||yj ||2 − 2 ||xi || ||yj || . (23)

18/32

Intro Network Simplex GPU-based Implementation Results Future works

From Theory to Practice

19/32

Intro Network Simplex GPU-based Implementation Results Future works

Memory Bandwidth Bottlenecks

20/32

Intro Network Simplex GPU-based Implementation Results Future works

Threading Hierarchy

NVIDIA Quadro P6000 has 60 SM with 64 cores each: 3840 cores in total

20/32

Intro Network Simplex GPU-based Implementation Results Future works

Threading Hierarchy

NVIDIA Quadro P6000 has 60 SM with 64 cores each: 3840 cores in total

21/32

Intro Network Simplex GPU-based Implementation Results Future works

GPU-based Implementation: Simplified Model

Each single GPU thread computes: ṽj − 2〈x i , y j〉 with j ∈ J̄
Each thread block computes: δ̃i = minj∈J̄

{
ṽj − 2 〈x i , y j〉

}
, with i ∈ Ī

21/32

Intro Network Simplex GPU-based Implementation Results Future works

GPU-based Implementation: Simplified Model

Each single GPU thread computes: ṽj − 2〈x i , y j〉 with j ∈ J̄
Each thread block computes: δ̃i = minj∈J̄

{
ṽj − 2 〈x i , y j〉

}
, with i ∈ Ī

21/32

Intro Network Simplex GPU-based Implementation Results Future works

GPU-based Implementation: Simplified Model

Each single GPU thread computes: ṽj − 2〈x i , y j〉 with j ∈ J̄
Each thread block computes: δ̃i = minj∈J̄

{
ṽj − 2 〈x i , y j〉

}
, with i ∈ Ī

21/32

Intro Network Simplex GPU-based Implementation Results Future works

GPU-based Implementation: Simplified Model

Each single GPU thread computes: ṽj − 2〈x i , y j〉 with j ∈ J̄
Each thread block computes: δ̃i = minj∈J̄

{
ṽj − 2 〈x i , y j〉

}
, with i ∈ Ī

21/32

Intro Network Simplex GPU-based Implementation Results Future works

GPU-based Implementation: Simplified Model

Each single GPU thread computes: ṽj − 2〈x i , y j〉 with j ∈ J̄
Each thread block computes: δ̃i = minj∈J̄

{
ṽj − 2 〈x i , y j〉

}
, with i ∈ Ī

21/32

Intro Network Simplex GPU-based Implementation Results Future works

GPU-based Implementation: Simplified Model

Each single GPU thread computes: ṽj − 2〈x i , y j〉 with j ∈ J̄
Each thread block computes: δ̃i = minj∈J̄

{
ṽj − 2 〈x i , y j〉

}
, with i ∈ Ī

21/32

Intro Network Simplex GPU-based Implementation Results Future works

GPU-based Implementation: Simplified Model

Each single GPU thread computes: ṽj − 2〈x i , y j〉 with j ∈ J̄
Each thread block computes: δ̃i = minj∈J̄

{
ṽj − 2 〈x i , y j〉

}
, with i ∈ Ī

22/32

Intro Network Simplex GPU-based Implementation Results Future works

Pricing on the GPU: Threads, Blocks, and Grids
Each GPU block gets a subset of supplies Ī ⊂ I and demands J̄ ⊂ J

δ̃i = min
j∈J̄

{
ṽj − 2

k∑
h=1

xih yjh

}
,

The GPU thread hierarchy is organized as follows:

Check the pretests, and if passed:

Each single GPU thread computes: ṽj − 2〈x i , y j〉

Each thread (out of two) within a GPU block cooperates in finding
the minimum over J̄ , using a parallel reduction algorithm (over the
block-shared memory) [H+07].

Inter block (grid) cooperation is achieved via atomic updates on the
global GPU memory for computing for every i ∈ I the optimal δi .

In the end, we get in parallel the optimal δi for every i ∈ I.

23/32

Intro Network Simplex GPU-based Implementation Results Future works

GPU-based Network Simplex for Dense Problems

We solve a sequence of very sparse network problems.
We keep in memory only O(|I|+ |J |) arc variables.

Copy from host to GPU: x i , y j , ||y i ||2, ||y j ||2

Compute Ē ⊂ E , and an initial basis tree

1 Solve the corresponding sparse transportation problem using
our sequential (incremental) Network Simplex algorithm

2 Compute dual multipliers ũi and ṽj , and copy them on GPU
3 Using the GPU: Compute δi for each supply.

If every δi ≥ 0, stop the algorithm
4 Whenever δi < 0, copy from GPU to host the corresponding

cost cij and add arc {i , j} to Ē .
5 Important: Remove (aggressively) from Ē all the variables

with a reduced costs greater than τ > 0. Go back to (1).

23/32

Intro Network Simplex GPU-based Implementation Results Future works

GPU-based Network Simplex for Dense Problems

We solve a sequence of very sparse network problems.
We keep in memory only O(|I|+ |J |) arc variables.

Copy from host to GPU: x i , y j , ||y i ||2, ||y j ||2

Compute Ē ⊂ E , and an initial basis tree

1 Solve the corresponding sparse transportation problem using
our sequential (incremental) Network Simplex algorithm

2 Compute dual multipliers ũi and ṽj , and copy them on GPU
3 Using the GPU: Compute δi for each supply.

If every δi ≥ 0, stop the algorithm
4 Whenever δi < 0, copy from GPU to host the corresponding

cost cij and add arc {i , j} to Ē .
5 Important: Remove (aggressively) from Ē all the variables

with a reduced costs greater than τ > 0. Go back to (1).

23/32

Intro Network Simplex GPU-based Implementation Results Future works

GPU-based Network Simplex for Dense Problems

We solve a sequence of very sparse network problems.
We keep in memory only O(|I|+ |J |) arc variables.

Copy from host to GPU: x i , y j , ||y i ||2, ||y j ||2

Compute Ē ⊂ E , and an initial basis tree

1 Solve the corresponding sparse transportation problem using
our sequential (incremental) Network Simplex algorithm

2 Compute dual multipliers ũi and ṽj , and copy them on GPU

3 Using the GPU: Compute δi for each supply.
If every δi ≥ 0, stop the algorithm

4 Whenever δi < 0, copy from GPU to host the corresponding
cost cij and add arc {i , j} to Ē .

5 Important: Remove (aggressively) from Ē all the variables
with a reduced costs greater than τ > 0. Go back to (1).

23/32

Intro Network Simplex GPU-based Implementation Results Future works

GPU-based Network Simplex for Dense Problems

We solve a sequence of very sparse network problems.
We keep in memory only O(|I|+ |J |) arc variables.

Copy from host to GPU: x i , y j , ||y i ||2, ||y j ||2

Compute Ē ⊂ E , and an initial basis tree

1 Solve the corresponding sparse transportation problem using
our sequential (incremental) Network Simplex algorithm

2 Compute dual multipliers ũi and ṽj , and copy them on GPU
3 Using the GPU: Compute δi for each supply.

If every δi ≥ 0, stop the algorithm

4 Whenever δi < 0, copy from GPU to host the corresponding
cost cij and add arc {i , j} to Ē .

5 Important: Remove (aggressively) from Ē all the variables
with a reduced costs greater than τ > 0. Go back to (1).

23/32

Intro Network Simplex GPU-based Implementation Results Future works

GPU-based Network Simplex for Dense Problems

We solve a sequence of very sparse network problems.
We keep in memory only O(|I|+ |J |) arc variables.

Copy from host to GPU: x i , y j , ||y i ||2, ||y j ||2

Compute Ē ⊂ E , and an initial basis tree

1 Solve the corresponding sparse transportation problem using
our sequential (incremental) Network Simplex algorithm

2 Compute dual multipliers ũi and ṽj , and copy them on GPU
3 Using the GPU: Compute δi for each supply.

If every δi ≥ 0, stop the algorithm
4 Whenever δi < 0, copy from GPU to host the corresponding

cost cij and add arc {i , j} to Ē .
5 Important: Remove (aggressively) from Ē all the variables

with a reduced costs greater than τ > 0. Go back to (1).

24/32

Intro Network Simplex GPU-based Implementation Results Future works

Multicore CPU Network Simplex for Dense Problems

We solve a sequence of very sparse network problems.
We keep in memory only O(|I|+ |J |) arc variables.

Copy from host to GPU: x i , y j , ||y i ||2, ||y j ||2

Compute Ē ⊂ E , and an initial basis tree

1 Solve the corresponding sparse transportation problem using
our sequential (incremental) Network Simplex algorithm

2 Compute dual multipliers ũi and ṽj , copy them on the GPU
3 Using CPU cores: Compute δi for each supply.

If every δi ≥ 0, stop the algorithm
4 Whenever δi < 0, copy from GPU to host the corresponding

cost cij and add arc {i , j} to Ē .
5 Important: Remove (aggressively) from Ē all the variables

with a reduced costs greater than τ > 0. Go back to (1).

25/32

Intro Network Simplex GPU-based Implementation Results Future works

Implementation details: Code and Dataset

All the algorithms coded in standard ANSI C++11

First implementation using the Microsoft AMP C++ library.
Current development using NVIDIA CUDA toolkit.

Multicore CPU parallel algorithms use OpenMP 4.5.

As benchmarks, with locations x i , y j ∈ R2, we use:
1 Random assignment problems.
2 DOTmark grey scale images [SSG17], a standard benchmark

for computing Wasserstein distances.

All results refer to a Dell workstation with an Intel Xeon CPU, 10
physical cores at 3.3GHz, 32GB of RAM, equipped with an NVIDIA
Quadro P6000 GPU.

26/32

Intro Network Simplex GPU-based Implementation Results Future works

Random Assignment - Pricing subproblems

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

4096 8192 16384 32768 65536

(b) Problem size

P
er

ce
nt

ag
e

of
 r

un
tim

e
fo

r
so

lv
in

g
th

e
pr

ic
in

g
su

bp
ro

bl
em

 CPU MultiCore GPU

Problem size refer to |I| = |J |.

27/32

Intro Network Simplex GPU-based Implementation Results Future works

Random Assignment - Details for larger instances

Average Running time RAM
Size Method CG Iter Master Pricing Total (stdev) Vars % (MB)
32 768 CPU 213.0 32.4 514.4 546.8 (61.8) 0.35% 69.3

MultiCore 213.0 33.3 50.2 83.5 (9.5) 0.35% 69.8
GPU 214.0 35.3 4.7 40.0 (4.5) 0.35% 57.5

65 536 CPU 506.0 209.3 4547.6 4756.9 (470.8) 0.21% 83.6
MultiCore 504.1 203.6 454.4 658.0 (53.8) 0.20% 84.1
GPU 497.1 220.1 35.4 255.6 (15.0) 0.20% 82.3

28/32

Intro Network Simplex GPU-based Implementation Results Future works

Random Assignment - Details for larger instances

29/32

Intro Network Simplex GPU-based Implementation Results Future works

DOTmark grey scale images [SSG17] (45 inst. per size)

Comparison with the Parallel Network Simplex (PNS) [BVDPPH11],
which stores the cost coefficient matrix on the RAM memory.

100

101

102

103

4096 8192 16384 32768 65536

(a) Problem size

R
un

tim
e

in
 s

ec
on

ds

 CG, DotMark PNS, DotMark

102

103

4096 8192 16384 32768 65536

(b) Problem size

R
an

do
m

 A
cc

es
s

M
em

or
y

in
 M

eg
ab

yt
e

CG − DotMark PNS − DotMark

30/32

Intro Network Simplex GPU-based Implementation Results Future works

Conclusions

1 We have implemented an incremental two staged GPU-based
Network Simplex (source code coming soon on Github)

2 Working with GPU is technically tricky, but we can do it!

3 Even when memory is not an issue, our approach is faster than
storing the full matrix in memory (as in [BVDPPH11])

4 We are currently working on a new single-cell RNA classification
problem, where points x i , y j ∈ R200

30/32

Intro Network Simplex GPU-based Implementation Results Future works

Conclusions

1 We have implemented an incremental two staged GPU-based
Network Simplex (source code coming soon on Github)

2 Working with GPU is technically tricky

, but we can do it!

3 Even when memory is not an issue, our approach is faster than
storing the full matrix in memory (as in [BVDPPH11])

4 We are currently working on a new single-cell RNA classification
problem, where points x i , y j ∈ R200

30/32

Intro Network Simplex GPU-based Implementation Results Future works

Conclusions

1 We have implemented an incremental two staged GPU-based
Network Simplex (source code coming soon on Github)

2 Working with GPU is technically tricky, but we can do it!

3 Even when memory is not an issue, our approach is faster than
storing the full matrix in memory (as in [BVDPPH11])

4 We are currently working on a new single-cell RNA classification
problem, where points x i , y j ∈ R200

30/32

Intro Network Simplex GPU-based Implementation Results Future works

Conclusions

1 We have implemented an incremental two staged GPU-based
Network Simplex (source code coming soon on Github)

2 Working with GPU is technically tricky, but we can do it!

3 Even when memory is not an issue, our approach is faster than
storing the full matrix in memory (as in [BVDPPH11])

4 We are currently working on a new single-cell RNA classification
problem, where points x i , y j ∈ R200

30/32

Intro Network Simplex GPU-based Implementation Results Future works

Conclusions

1 We have implemented an incremental two staged GPU-based
Network Simplex (source code coming soon on Github)

2 Working with GPU is technically tricky, but we can do it!

3 Even when memory is not an issue, our approach is faster than
storing the full matrix in memory (as in [BVDPPH11])

4 We are currently working on a new single-cell RNA classification
problem, where points x i , y j ∈ R200

31/32

Intro Network Simplex GPU-based Implementation Results Future works

Thanks to the sponsor: NVIDIA

We gratefully acknowledge the support of NVIDIA Corporation with the
donation of the Quadro P6000 GPU used for this research.

31/32

Intro Network Simplex GPU-based Implementation Results Future works

Thanks to the sponsor: NVIDIA

We gratefully acknowledge the support of NVIDIA Corporation with the
donation of the Quadro P6000 GPU used for this research.

32/32

Intro Network Simplex GPU-based Implementation Results Future works

Questions?

Thanks!

32/32

Intro Network Simplex GPU-based Implementation Results Future works

Gennaro Auricchio, Federico Bassetti, Stefano Gualandi, and Marco
Veneroni.
Computing Kantorovich-Wasserstein distances on d-dimensional
histograms using (d+1)-partite graphs.
Advances in Neural Information Processing Systems, 2018.

Federico Bassetti, Stefano Gualandi, and Marco Veneroni.
On the computation of Kantorovich-Wasserstein distances between
2D-histograms by uncapacitated minimum cost flows.
arXiv preprint arXiv:1804.00445, 2018.

Richard S Barr and Betty L Hickman.
Parallel simplex for large pure network problems: Computational testing
and sources of speedup.
Operations Research, 42(1):65–80, 1994.

Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang
Heidrich.
Displacement interpolation using Lagrangian mass transport.
ACM Transactions on Graphics (TOG), 30(6):158, 2011.

William H Cunningham.

32/32

Intro Network Simplex GPU-based Implementation Results Future works

A network simplex method.
Mathematical Programming, 11(1):105–116, 1976.

Marco Cuturi.
Sinkhoirn distances: Lightspeed computation of optimal transport.
In Advances in Neural Information Processing Systems, pages 2292–2300,
2013.

Uriel Frisch, Sabino Matarrese, Roya Mohayaee, and Andrei Sobolevski.
A reconstruction of the initial conditions of the universe by optimal mass
transportation.
Nature, 417(6886):260, 2002.

Mark Harris et al.
Optimizing parallel reduction in cuda.
Nvidia developer technology, 2(4):70, 2007.

JAJ Hall.
Towards a practical parallelisation of the simplex method.
Computational Management Science, 7(2):139–170, 2010.

Péter Kovács.
Minimum-cost flow algorithms: an experimental evaluation.

32/32

Intro Network Simplex GPU-based Implementation Results Future works

Optim. Methods Softw., 30(1):94–127, 2015.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger.
From word embeddings to document distances.
In International Conference on Machine Learning, pages 957–966, 2015.

Gabriel Peyré, Marco Cuturi, et al.
Computational optimal transport.
Foundations and Trends R© in Machine Learning, 11(5-6):355–607, 2019.

Ofir Pele and Michael Werman.
Fast and robust Earth Mover’s Distances.
In Computer vision, 2009 IEEE 12th international conference on, pages
460–467. IEEE, 2009.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas.
The Earth Mover’s Distance as a metric for image retrieval.
International Journal of Computer Vision, 40(2):99–121, 2000.

Jörn Schrieber, Dominic Schuhmacher, and Carsten Gottschlich.
Dotmark–a benchmark for discrete optimal transport.
IEEE Access, 5:271–282, 2017.

	Intro
	
	
	
	
	
	
	
	

	Network Simplex
	
	
	
	
	
	
	
	

	GPU-based Implementation
	
	
	
	
	
	
	

	Results
	
	
	
	
	

	Future works
	
	

