Intro	Network Simplex	GPU-based Implementation	Results	Future works

A note on a GPU-based Network Simplex Algorithm

Stefano Gualandi^a and L.M. Rousseau^b

(^a) Università di Pavia, Dipartimento di Matematica (^b) CIRRELT-Polytech. Montrèal, Dept de Math et Gènie Industriel

Aussois 2020

email: stefano.gualandi@unipv.it twitter: @famo2spaghi blog: http://stegua.github.com

ntro	Network Simplex	GPU-based Implementation	Results	Future works
0000000	0000000			
Dalanca	d Transportat	tion Droblom		

Balanced Transportation Problem

Intro	Network Simplex	GPU-based Implementation	Results	Future works
0000000				
C				

Computation of Wasserstein distances [Cut13, PC⁺19]

- k = 2: grey scale images [RTG00, BGV18, ABGV18]
- k = 3: color images [PW09], origin of universe [FMMS02]

- k = 300: word embedding [KSKW15]
- k = 200: gene-expression (work in progress)

Transportation Problem as Min Cost Flow

ntro	Network Simplex	GPU-based Implementation	Results	Future works
00000000				
Coomo	ric Transport	tion Droblom		

Intro	Network Simplex	GPU-based Implementation	Results	Future works
00000000				

Transportation Problem: LP model

Given a bipartite graph $G = (I \cup J, E)$,

$$\min \sum_{\{i,j\}\in E} c_{ij}\pi_{ij} \tag{1}$$

s.t.
$$\sum_{\{i,j\}\in E} \pi_{ij} = \mu_i, \quad \forall i \in I$$
 (2)

$$\sum_{\{i,j\}\in E} \pi_{ij} = \nu_j, \quad \forall j \in J$$
(3)

(flow variables)
$$\pi_{ij} \ge 0, \quad \forall \{i, j\} \in E.$$
 (4)

We consider **balanced** problem: $\sum_{i \in I} \mu_i = \sum_{j \in J} \nu_J$.

We have a linear number of constraints: |I| + |J|, a quadratic number of variables: $|I| \times |J|$, but only a linear number of basic variables: |I| + |J| - 1.

Intro	Network Simplex	GPU-based Implementation	Results	Future works
00000000				
_				

Dense Geometric Transportation Problem

Intro ○○○○○●○	Network Simplex	GPU-based Implementation	Results	Future works

Intro	Network Simplex	GPU-based Implementation	Results	Future works
00000000				

 Intro
 Network Simplex
 GPU-based Implementation
 Results
 Future works

 00000000
 00000000
 0000000
 000000
 000000
 000000

 Intro
 Network Simplex
 GPU-based Implementation
 Results
 Future works

 0000000
 0000000
 000000
 00000
 000
 000

Intro Network Simplex OPU-based Implementation Results Future works

Intro	Network S	Simplex	GPU-based Implementation	Results	Future works
0000000					
		6			

Call for Column Generation

ntro 00000000	Network SimplexG●○○○○○○○○○	PU-based Implementation	Results	Future works
LP Sim	plex vs Network S	implex		
	(a) LP Simplex Algorithm	(b) Networ	k Simplex Algorithn	n
0	Generate Initial BFS	 Generate I 	nitial Basis Tree	
2	Choose Entering Variable	2 Choose Er	itering Arc	
3	Determine Leaving Variable	3 Determine	Leaving Arc	
4	Move to New Basic Solution	4 Move to M	lew Basic Tree	

I ntro 00000000	Network SimplexG●○○○○○○○○	PU-based Implementation	Results	Future works
LP Sin	nplex vs Network S	Simplex		
	(a) LP Simplex Algorithm	(b) Networ	k Simplex Algorithr	n
0	Generate Initial BFS	🚺 Generate	Initial Basis Tree	
2	Choose Entering Variable	2 Choose Er	ntering Arc	
6	Determine Leaving Variable	3 Determine	e Leaving Arc	
(4)	Move to New Basic Solution	4 Move to M	New Basic Tree	

The **best sequential implementation** of the Network Simplex Algorithm is contained in the COIN-OR Lemon Graph Library [Kov15]

I ntro 00000000	Network SimplexG●○○○○○○○○	PU-based Implementation	Results	Future works
LP Sin	nplex vs Network S	Simplex		
	(a) LP Simplex Algorithm	(b) Networ	k Simplex Algorithr	n
0	Generate Initial BFS	🚺 Generate	Initial Basis Tree	
2	Choose Entering Variable	2 Choose Er	ntering Arc	
6	Determine Leaving Variable	3 Determine	e Leaving Arc	
(4)	Move to New Basic Solution	4 Move to M	New Basic Tree	

The **best sequential implementation** of the Network Simplex Algorithm is contained in the COIN-OR Lemon Graph Library [Kov15]

The **best parallel implementation** of the Network Simplex Algorithm is given by [BVDPPH11], which is yet a fork of Lemon

Barrier, Primal, and Dual Simplex refer to Gurobi v8.0 Cycle Canceling, Cost Scaling, and Network Simplex to COIN-OR Lemon

For a review of parallel implementation: *Towards a practical parallelisation of the simplex method*, by J.A.J Hall [Hal10].

For a parallel Network Simplex algorithm: *Parallel simplex for large pure network problems: Computational testing and sources of speedup* [BH94].

To avoid cycling: Strong Feasible Basis [Cun76]

For a review of parallel implementation: *Towards a practical parallelisation of the simplex method*, by J.A.J Hall [Hal10].

For a parallel Network Simplex algorithm: *Parallel simplex for large pure network problems: Computational testing and sources of speedup* [BH94].

To avoid cycling: Strong Feasible Basis [Cun76]

We are not aware of any successful implementation of the Network Simplex using a modern GPU.

Intro Netw	Network Simplex	GPU-based Implementation	Results	Future works
	0000000			

Column (or cut) generation perspective

Considering a subset of the arc variables $\bar{E} \subset E$:

(a) Restricted Master Problem		(b) Dual Restricted Master Problem		
min $\sum_{\{i,j\}\in ar E} c_{ij}\pi_{ij}$	(5)	$\max \sum_{i \in I} \mu_i u_i - \sum_{j \in J} \nu_j v_j$	(9)	
s.t. $\sum_{\{i,j\}\in \overline{E}}\pi_{ij}\geq \mu_i, \forall i\in I$	(6)	s.t. $u_i - v_j \leq c_{ij}, orall \{i, j\} \in ar{E}$ $u_i \geq 0, orall i \in I$	(10) (11)	
$\sum_{\{i,j\}\inar{E}}\pi_{ij}\leq u_j, orall j\in J$	(7)	$v_j \geq 0, orall j \in J.$	(12)	
$\pi_{ij} \geq 0, orall \{i, j\} \in ar{E}.$	(8)			

The pricing (separation) problem is:

$$(\mathsf{P}_{1}) \quad c_{ij}^{*} = \min_{\{i,j\} \in E \setminus \bar{E}} c_{ij} - \bar{u}_{i} + \bar{v}_{j}.$$
(13)

Separation of constraint (10) is "embarrassingly simple",

Intro Netw	Network Simplex	GPU-based Implementation	Results	Future works
	0000000			

Column (or cut) generation perspective

Considering a subset of the arc variables $\overline{E} \subset E$:

(a) Restricted Master Problem		(b) Dual Restricted Master Problem		
min $\sum_{\{i,j\}\inar E}c_{ij}\pi_{ij}$	(5)	$\max \sum_{i \in I} \mu_i u_i - \sum_{j \in J} \nu_j v_j \tag{9}$		
s.t. $\sum_{\{i,j\}\in \tilde{E}}\pi_{ij}\geq \mu_i, \forall i\in I$	(6)	s.t. $u_i - v_j \leq c_{ij}, \forall \{i, j\} \in \overline{E}$ (10) $u_i \geq 0, \forall i \in I$ (11)		
$\sum_{\{i,j\}\inar{E}}\pi_{ij}\leq u_j, orall j\in J$	(7)	$v_j \ge 0, \forall j \in J.$ (12)		
$\pi_{ij} \geq 0, orall \{i, j\} \in ar{E}.$	(8)			

The pricing (separation) problem is:

$$(\mathsf{P}_{1}) \quad c_{ij}^{*} = \min_{\{i,j\} \in E \setminus \bar{E}} c_{ij} - \bar{u}_{i} + \bar{v}_{j}.$$
(13)

Separation of constraint (10) is "embarrassingly simple", hence, well suited for GPU computation

Intro	Network Simplex	GPU-based Implementation	Results	Future works
	0000000			
A closer	look at the	pricing cubproblem		

We can rewrite the pricing subproblem as

$$(\mathsf{P}_{2}) \quad c_{ij}^{*} = \min_{i \in I} \{\delta_{i}\}$$
(14)

where
$$\delta_i = \min_{j \in J} \left\{ c_{ij} - \bar{u}_i + \bar{v}_j \right\}$$
(15)

Intro	Network Simplex	GPU-based Implementation	Results	Future works
	00000000			
A	leaf an dea			

We can rewrite the pricing subproblem as

$$(\mathsf{P}_{2}) \quad c_{ij}^{*} = \min_{i \in I} \{\delta_{i}\}$$
(14)

where

$$\delta_i = \min_{j \in J} \left\{ c_{ij} - \bar{u}_i + \bar{v}_j \right\}$$
(15)

$$\delta_i = \min_{j \in J} \left\{ \left| \left| \mathbf{x}_i - \mathbf{y}_j \right| \right|^2 - \bar{u}_i + \bar{v}_j \right\} = \min_{j \in J} \left\{ \sum_{h=1}^k (x_{ih} - y_{jh})^2 - \bar{u}_i + \bar{v}_j \right\}$$

Intro	Network Simplex	GPU-based Implementation	Results	Future works
	00000000			
A	leaf an dea			

We can rewrite the pricing subproblem as

$$(\mathsf{P}_2) \quad c_{ij}^* = \min_{i \in I} \left\{ \delta_i \right\}$$
(14)

where $\delta_i = \min_{j \in J} \left\{ c_{ij} - \bar{u}_i + \bar{v}_j \right\}$ (15)

$$\delta_{i} = \min_{j \in J} \left\{ \left| \left| \mathbf{x}_{i} - \mathbf{y}_{j} \right| \right|^{2} - \bar{u}_{i} + \bar{v}_{j} \right\} = \min_{j \in J} \left\{ \sum_{h=1}^{k} (x_{ih} - y_{jh})^{2} - \bar{u}_{i} + \bar{v}_{j} \right\}$$
$$= \min_{j \in J} \left\{ \left| \left| \mathbf{x}_{i} \right| \right|^{2} + \left| \left| \mathbf{y}_{j} \right| \right|^{2} - 2 \left\langle \mathbf{x}_{i}, \mathbf{y}_{j} \right\rangle - \bar{u}_{i} + \bar{v}_{j} \right\}$$

Intro	Network Simplex	GPU-based Implementation	Results	Future works
	00000000			
A 1	1 1 1 1			

We can rewrite the pricing subproblem as

$$(\mathsf{P}_{2}) \quad c_{ij}^{*} = \min_{i \in I} \{\delta_{i}\}$$
(14)

where $\delta_i = \min_{j \in J} \{ c_{ij} - \bar{u}_i + \bar{v}_j \}$ (15)

$$\delta_{i} = \min_{j \in J} \left\{ \left| \left| \mathbf{x}_{i} - \mathbf{y}_{j} \right| \right|^{2} - \bar{u}_{i} + \bar{v}_{j} \right\} = \min_{j \in J} \left\{ \sum_{h=1}^{k} (x_{ih} - y_{jh})^{2} - \bar{u}_{i} + \bar{v}_{j} \right\}$$

$$= \min_{j \in J} \left\{ \left| \left| \mathbf{x}_{i} \right| \right|^{2} + \left| \left| \mathbf{y}_{j} \right| \right|^{2} - 2 \left\langle \mathbf{x}_{i}, \mathbf{y}_{j} \right\rangle - \bar{u}_{i} + \bar{v}_{j} \right\}$$

$$= \left| \left| \mathbf{x}_{i} \right| \right|^{2} - \bar{u}_{i} + \min_{j \in J} \left\{ \left| \left| \mathbf{y}_{j} \right| \right|^{2} + \bar{v}_{j} - 2 \left\langle \mathbf{x}_{i}, \mathbf{y}_{j} \right\rangle \right\}$$

Intro	Network Simplex	GPU-based Implementation	Results	Future works
	00000000			
A 1	1 1 1 1			

We can rewrite the pricing subproblem as

$$(\mathsf{P}_{2}) \quad c_{ij}^{*} = \min_{i \in I} \{\delta_{i}\}$$
(14)

where $\delta_i = \min_{j \in J} \left\{ c_{ij} - \bar{u}_i + \bar{v}_j \right\}$ (15)

$$\delta_{i} = \min_{j \in J} \left\{ \left| \left| \mathbf{x}_{i} - \mathbf{y}_{j} \right| \right|^{2} - \bar{u}_{i} + \bar{v}_{j} \right\} = \min_{j \in J} \left\{ \sum_{h=1}^{k} (x_{ih} - y_{jh})^{2} - \bar{u}_{i} + \bar{v}_{j} \right\}$$

$$= \min_{j \in J} \left\{ \left| \left| \mathbf{x}_{i} \right| \right|^{2} + \left| \left| \mathbf{y}_{j} \right| \right|^{2} - 2 \left\langle \mathbf{x}_{i}, \mathbf{y}_{j} \right\rangle - \bar{u}_{i} + \bar{v}_{j} \right\}$$

$$= \left| \left| \mathbf{x}_{i} \right| \right|^{2} - \bar{u}_{i} + \min_{j \in J} \left\{ \left| \left| \mathbf{y}_{j} \right| \right|^{2} + \bar{v}_{j} - 2 \left\langle \mathbf{x}_{i}, \mathbf{y}_{j} \right\rangle \right\}$$

$$= \tilde{u}_i + \min_{j \in J} \left\{ \tilde{v}_j - 2 \left\langle \mathbf{x}_i, \mathbf{y}_j \right\rangle \right\} =$$

Intro	Network Simplex	GPU-based Implementation	Results	Future works
	00000000			
	1 1 1 1			

We can rewrite the pricing subproblem as

$$(\mathsf{P}_{2}) \quad c_{ij}^{*} = \min_{i \in I} \{\delta_{i}\}$$
(14)

where $\delta_i = \min_{j \in J} \left\{ c_{ij} - \bar{u}_i + \bar{v}_j \right\}$ (15)

$$\delta_{i} = \min_{j \in J} \left\{ \left| \left| \mathbf{x}_{i} - \mathbf{y}_{j} \right| \right|^{2} - \bar{u}_{i} + \bar{v}_{j} \right\} = \min_{j \in J} \left\{ \sum_{h=1}^{k} (x_{ih} - y_{jh})^{2} - \bar{u}_{i} + \bar{v}_{j} \right\}$$

$$= \min_{j \in J} \left\{ \left| \left| \mathbf{x}_{i} \right| \right|^{2} + \left| \left| \mathbf{y}_{j} \right| \right|^{2} - 2 \left\langle \mathbf{x}_{i}, \mathbf{y}_{j} \right\rangle - \bar{u}_{i} + \bar{v}_{j} \right\}$$

$$= \left| \left| \mathbf{x}_{i} \right| \right|^{2} - \bar{u}_{i} + \min_{j \in J} \left\{ \left| \left| \mathbf{y}_{j} \right| \right|^{2} + \bar{v}_{j} - 2 \left\langle \mathbf{x}_{i}, \mathbf{y}_{j} \right\rangle \right\}$$

$$= \tilde{u}_{i} + \min_{j \in J} \left\{ \tilde{v}_{j} - 2 \left\langle \mathbf{x}_{i}, \mathbf{y}_{j} \right\rangle \right\} = \tilde{u}_{i} + \min_{j \in J} \left\{ \tilde{v}_{j} - 2 \sum_{h=1}^{k} x_{ih} y_{jh} \right\}$$
(16)

Intro	Network Simplex	GPU-based Implementation	Results	Future works
	00000000			
	1 1 1 1			

We can rewrite the pricing subproblem as

$$(P_2) \quad c_{ij}^* = \min_{i \in I} \{\delta_i\}$$
(14)

where $\delta_i = \min_{j \in J} \left\{ c_{ij} - \bar{u}_i + \bar{v}_j \right\}$ (15)

Using the squared Euclidean distance, we get (for $||\cdot||_2$):

$$\delta_{i} = \min_{j \in J} \left\{ \left| \left| \mathbf{x}_{i} - \mathbf{y}_{j} \right| \right|^{2} - \bar{u}_{i} + \bar{v}_{j} \right\} = \min_{j \in J} \left\{ \sum_{h=1}^{k} (x_{ih} - y_{jh})^{2} - \bar{u}_{i} + \bar{v}_{j} \right\}$$

$$= \min_{j \in J} \left\{ \left| \left| \mathbf{x}_{i} \right| \right|^{2} + \left| \left| \mathbf{y}_{j} \right| \right|^{2} - 2 \left\langle \mathbf{x}_{i}, \mathbf{y}_{j} \right\rangle - \bar{u}_{i} + \bar{v}_{j} \right\}$$

$$= \left| \left| \mathbf{x}_{i} \right| \right|^{2} - \bar{u}_{i} + \min_{j \in J} \left\{ \left| \left| \mathbf{y}_{j} \right| \right|^{2} + \bar{v}_{j} - 2 \left\langle \mathbf{x}_{i}, \mathbf{y}_{j} \right\rangle \right\}$$

$$= \tilde{u}_{i} + \min_{j \in J} \left\{ \tilde{v}_{j} - 2 \left\langle \mathbf{x}_{i}, \mathbf{y}_{j} \right\rangle \right\} = \tilde{u}_{i} + \min_{j \in J} \left\{ \tilde{v}_{j} - 2 \sum_{h=1}^{k} x_{ih} y_{jh} \right\}$$
(16)

We can pre-compute $||\mathbf{x}_i||^2$ and $||\mathbf{y}_j||^2$ once for all, and \tilde{u}_i and \tilde{v}_j once per pricing. The important computation is the dot product $\langle \mathbf{x}_i, \mathbf{y}_i \rangle$.

Intro	Network Simplex	GPU-based Implementation	Results	Future works
	00000000			
A clocor	look at the	pricing cubproblem		

We can rewrite the pricing subproblem as

$$(\mathsf{P}_{2}) \quad c_{ij}^{*} = \min_{i \in I} \{\delta_{i}\}$$
(17)

where
$$\delta_i = \min_{j \in J} \left\{ c_{ij} - \bar{u}_i + \bar{v}_j \right\}$$
(18)

Using the squared Euclidean distance, we get (for $||\cdot||_2$):

$$\delta_i = \tilde{u}_i + \min_{j \in J} \left\{ \tilde{v}_j - 2 \left\langle \mathbf{x}_i, \mathbf{y}_j \right\rangle \right\}$$

Let X be the matrix with a row for each vector x_i , and Y be the matrix with a column for each vector y_i , then, in vector notation:

$$\delta = \tilde{u} + f(\tilde{v}, XY)$$

Intro	Network Simplex	GPU-based Implementation	Results	Future works
	00000000			
A clocor	look at the	pricing cubproblem		

We can rewrite the pricing subproblem as

$$(\mathsf{P}_{2}) \quad c_{ij}^{*} = \min_{i \in I} \{\delta_{i}\}$$
(17)

where
$$\delta_i = \min_{j \in J} \{ c_{ij} - \bar{u}_i + \bar{v}_j \}$$
(18)

Using the squared Euclidean distance, we get (for $||\cdot||_2$):

$$\delta_i = \tilde{u}_i + \min_{j \in J} \left\{ \tilde{v}_j - 2 \left\langle \mathbf{x}_i, \mathbf{y}_j \right\rangle \right\}$$

Let X be the matrix with a row for each vector x_i , and Y be the matrix with a column for each vector y_i , then, in vector notation:

$$\boldsymbol{\delta} = \tilde{\boldsymbol{u}} + f(\tilde{\boldsymbol{v}}, \boldsymbol{XY})$$

... matrix multiplication is exactly what GPU are good for!

Intro	Network Simplex	GPU-based Implementation	Results	Future works	
	00000000				
				~	

Pre-tests to skip and stop pricing subproblems 1/2

Still, whenever is possible we want to avoid to compute $\langle \mathbf{x}_i, \mathbf{y}_i \rangle$

Pre-tests to skip and stop pricing subproblems 1/2

Still, whenever is possible we want to avoid to compute $\langle \mathbf{x}_i, \mathbf{y}_i \rangle$

Lemma 1 (Bounding the pricing problem per node)

Given the following:

- **3** $\bar{\delta}_i < 0$ current best cut violation (*i-th incumbent*)

Whenever

$$\bar{u}_i \leq \underline{c}_i + \underline{v} - \bar{\delta}_i, \tag{19}$$

Then, $\overline{\delta}_i$ is the optimal value for the *i*-th pricing suproblem:

$$\delta_i = \min_{j \in J} \left\{ c_{ij} - \bar{u}_i + \bar{v}_j \right\}$$

(... and hence, we can skip or stop the computation for $\langle \mathbf{x}_i, \mathbf{y}_i \rangle$)

Intro	Network Simplex	GPU-based Implementation	Results	Future works
	0000000			

Pre-tests to skip and stop pricing subproblems 2/2

Still, whenever is possible we want to avoid to compute $\langle \mathbf{x}_i, \mathbf{y}_i \rangle$

Lemma 2 (Bounding the pricing problem per arc)

Given a node $j \in J$ such that

$$ar{u}_i - ar{v}_j > c_{ij}$$
 and let $ar{c}_{ij} = c_{ij} - ar{u}_i - ar{v}_j$

then, for every other node $h \in J \setminus \{j\}$ such that

$$||y_h||^2 + v_h - \bar{c}_{ij} > 2 ||x_i|| ||y_h||$$
(20)

we can avoid to compute $\langle \mathbf{x}_i, \mathbf{y}_j \rangle$.

Intro	Network Simplex	GPU-based Implementation	Results	Future works
	0000000			

Pre-tests to skip and stop pricing subproblems 2/2

Still, whenever is possible we want to avoid to compute $\langle \mathbf{x}_i, \mathbf{y}_i \rangle$

Lemma 2 (Bounding the pricing problem per arc)

Given a node $j \in J$ such that

$$ar{u}_i - ar{v}_j > c_{ij}$$
 and let $ar{c}_{ij} = c_{ij} - ar{u}_i - ar{v}_j$

then, for every other node $h \in J \setminus \{j\}$ such that

$$||y_h||^2 + v_h - \bar{c}_{ij} > 2 ||x_i|| ||y_h||$$
(20)

we can avoid to compute $\langle \mathbf{x}_i, \mathbf{y}_j \rangle$.

Where in the proof we exploit the cost structure:

$$c_{ij} = ||x_i||^2 + ||y_j||^2 - 2\langle x_i, y_j \rangle$$
(21)

$$\geq ||x_i||^2 + ||y_j||^2 - 2|\langle \boldsymbol{x}_i, \boldsymbol{y}_j \rangle|$$
(22)

$$\geq ||x_i||^2 + ||y_j||^2 - 2 ||x_i|| ||y_j||.$$
(23)

Intro	Network Simplex	GPU-based Implementation	Results	Future works
		000000		
From T	heary to Prac	tica		

Memory Bandwidth Bottlenecks

NVIDIA Quadro P6000 has 60 SM with 64 cores each: 3840 cores in total 20/32

Intro 00000000	Network Simplex	GPU-base ○○○●○○○	d Implementation	Results	Future works
GPU-base	ed Implementa	tion:	Simplified	Model	

Intro 00000000	Network Simplex	GPU-based Implementation	Results	Future works

GPU-based Implementation: Simplified Model

Intro 00000000	Network Simplex	GPU-based Implementation	Results	Future works	
CDUU		: C: I:C I	N / I I		

GPU-based Implementation: Simplified Model

Each single GPU thread computes: $\tilde{v}_j - 2\langle \mathbf{x}_i, \mathbf{y}_j \rangle$ with $j \in \overline{J}$ Each thread block computes: $\tilde{\delta}_i = \min_{i \in \overline{J}} \{ \tilde{v}_j - 2 \langle \mathbf{x}_i, \mathbf{y}_j \rangle \}$, with $i \in \overline{I}$

Intro 00000000	Network Simplex	GPU-based Implementation	Results	Future works	
GPU-base	ed Implementa	ation: Simplified	d Model		

Each single GPU thread computes: $\tilde{v}_j - 2\langle \mathbf{x}_i, \mathbf{y}_j \rangle$ with $j \in \overline{J}$ Each thread block computes: $\tilde{\delta}_i = \min_{i \in \overline{J}} \{ \tilde{v}_j - 2 \langle \mathbf{x}_i, \mathbf{y}_j \rangle \}$, with $i \in \overline{I}$

Intro Network Simplex		GPU-based Implementation	Results	Future works	
		0000000			
CDUL					

GPU-based Implementation: Simplified Model

Each single GPU thread computes: $\tilde{v}_j - 2\langle \mathbf{x}_i, \mathbf{y}_j \rangle$ with $j \in \overline{J}$ Each thread block computes: $\tilde{\delta}_i = \min_{j \in \overline{J}} \{ \tilde{v}_j - 2 \langle \mathbf{x}_i, \mathbf{y}_j \rangle \}$, with $i \in \overline{I}$

ntro Network Simplex		GPU-based Implementation	Results	Future works	
		0000000			

GPU-based Implementation: Simplified Model

Each single GPU thread computes: $\tilde{v}_j - 2\langle \mathbf{x}_i, \mathbf{y}_j \rangle$ with $j \in \overline{J}$ Each thread block computes: $\tilde{\delta}_i = \min_{j \in \overline{J}} \{ \tilde{v}_j - 2 \langle \mathbf{x}_i, \mathbf{y}_j \rangle \}$, with $i \in \overline{I}$

Pricing on the GPU: Threads, Blocks, and Grids

Each GPU block gets a subset of supplies $\bar{I} \subset I$ and demands $\bar{J} \subset J$

$$\tilde{\delta}_i = \min_{j \in \bar{J}} \left\{ \tilde{v}_j - 2\sum_{h=1}^k x_{ih} y_{jh} \right\},\,$$

The GPU thread hierarchy is organized as follows:

- Check the pretests, and if passed:
- Each single GPU thread computes: $\tilde{v}_j 2\langle \boldsymbol{x}_i, \boldsymbol{y}_i \rangle$
- Each thread (out of two) within a GPU block cooperates in finding the minimum over \overline{J} , using a parallel reduction algorithm (over the block-shared memory) [H⁺07].
- Inter block (grid) cooperation is achieved via atomic updates on the global GPU memory for computing for every i ∈ I the optimal δ_i.

In the end, we get in parallel the optimal δ_i for every $i \in I$.

Intro	Network Simplex		GPU-based Implementation			Results	Future works	
				~	_	_		

- Copy from host to GPU: $\mathbf{x}_i, \mathbf{y}_j, ||\mathbf{y}_i||^2, ||\mathbf{y}_j||^2$
- Compute $\overline{E} \subset E$, and an initial basis tree

- Copy from host to GPU: $\mathbf{x}_i, \mathbf{y}_j, ||\mathbf{y}_i||^2, ||\mathbf{y}_j||^2$
- Compute $\overline{E} \subset E$, and an initial basis tree
 - Solve the corresponding sparse transportation problem using our sequential (incremental) Network Simplex algorithm
 - **2** Compute dual multipliers \tilde{u}_i and \tilde{v}_j , and copy them on GPU

- Copy from host to GPU: $\mathbf{x}_i, \mathbf{y}_j, ||\mathbf{y}_i||^2, ||\mathbf{y}_j||^2$
- Compute $\overline{E} \subset E$, and an initial basis tree
 - Solve the corresponding sparse transportation problem using our sequential (incremental) Network Simplex algorithm
 - **2** Compute dual multipliers \tilde{u}_i and \tilde{v}_j , and copy them on GPU
 - **3** Using the GPU: Compute δ_i for each supply. If every $\delta_i \ge 0$, stop the algorithm

- Copy from host to GPU: $\mathbf{x}_i, \mathbf{y}_j, ||\mathbf{y}_i||^2, ||\mathbf{y}_j||^2$
- Compute $\overline{E} \subset E$, and an initial basis tree
 - Solve the corresponding sparse transportation problem using our sequential (incremental) Network Simplex algorithm
 - **2** Compute dual multipliers \tilde{u}_i and \tilde{v}_j , and copy them on GPU
 - **3** Using the GPU: Compute δ_i for each supply. If every $\delta_i \ge 0$, stop the algorithm
 - Whenever δ_i < 0, copy from GPU to host the corresponding cost c_{ij} and add arc {i, j} to Ē.
 - Important: Remove (aggressively) from *Ē* all the variables with a reduced costs greater than τ > 0. Go back to (1).

Multicore CPU Network Simplex for Dense Problems

- Copy from host to GPU: $x_i, y_j, ||y_i||^2, ||y_j||^2$
- Compute $\overline{E} \subset E$, and an initial basis tree
 - Solve the corresponding sparse transportation problem using our sequential (incremental) Network Simplex algorithm
 - **2** Compute dual multipliers \tilde{u}_i and \tilde{v}_j , copy them on the GPU
 - **3** Using CPU cores: Compute δ_i for each supply. If every $\delta_i \ge 0$, stop the algorithm
 - Whenever δ_i < 0, copy from GPU to host the corresponding cost c_{ij} and add arc {i, j} to Ē.
 - Important: Remove (aggressively) from *Ē* all the variables with a reduced costs greater than τ > 0. Go back to (1).

Intro 00000000	Network Simplex	GPU-based Implementation	Results ●○○○○	Future works

- Implementation details: Code and Dataset
 - $\bullet\,$ All the algorithms coded in standard ANSI C++11
 - First implementation using the Microsoft AMP C++ library. Current development using NVIDIA CUDA toolkit.
 - Multicore CPU parallel algorithms use OpenMP 4.5.
 - As benchmarks, with locations $\boldsymbol{x}_i, \boldsymbol{y}_i \in \mathbb{R}^2$, we use:
 - Random assignment problems.
 - **ODTmark** grey scale images [SSG17], a standard benchmark for computing Wasserstein distances.
 - All results refer to a Dell workstation with an Intel Xeon CPU, 10 physical cores at 3.3GHz, 32GB of RAM, equipped with an NVIDIA Quadro P6000 GPU.

Intro 00000000	Network Simplex	GPU-based Implementation	Results ○●○○○	Future works
	۸· ·			

Random Assignment - Pricing subproblems

Problem size refer to |I| = |J|.

Intro	Network Simplex	GPU-based Implementation	Results	Future works
			00000	

Random Assignment - Details for larger instances

		Average Running time R				RAM	
Size	Method	CG Iter	Master	Pricing	Total (stdev)	Vars %	(MB)
32768	CPU	213.0	32.4	514.4	546.8 (61.8)	0.35%	69.3
	MultiCore	213.0	33.3	50.2	83.5 (9.5)	0.35%	69.8
	GPU	214.0	35.3	4.7	40.0 (4.5)	0.35%	57.5
65 536	CPU	506.0	209.3	4547.6	4756.9 (470.8)	0.21%	83.6
	MultiCore	504.1	203.6	454.4	658.0 (53.8)	0.20%	84.1
	GPU	497.1	220.1	35.4	255.6 (15.0)	0.20%	82.3

Intro	Network Simplex	GPU-based Implementation	Results	Future works
			00000	

Random Assignment - Details for larger instances

		Average Running time R					RAM
Size	Method	CG Iter	Master	Pricing	Total (stdev)	Vars %	(MB)
32 768	CPU	213.0	32.4	514.4	546.8 (61.8)	0.35%	69.3
	MultiCore	213.0	33.3	50.2	83.5 (9.5)	0.35%	69.8
	GPU	214.0	35.3	4.7	40.0 (4.5)	0.35%	57.5
65 536	CPU	506.0	209.3	4547.6	4756.9 (470.8)	0.21%	83.6
	MultiCore	504.1	203.6	454.4	658.0 (53.8)	0.20%	84.1
	GPU	497.1	220.1	35.4	255.6 (15.0)	0.20%	82.3

Comparison with the Parallel Network Simplex (PNS) [BVDPPH11], which stores the cost coefficient matrix on the RAM memory.

Intro	Network Simplex	GPU-based Implementation	Results	Future works
				000
Conclus	sions			

We have implemented an incremental two staged GPU-based Network Simplex (source code coming soon on Github)

Intro	Network Simplex	GPU-based Implementation	Results	Future works
				•00
Conclus	ions			

- We have implemented an incremental two staged GPU-based Network Simplex (source code coming soon on Github)
- **2** Working with GPU is technically tricky

Intro	Network Simplex	GPU-based Implementation	Results	Future works
				000
Conclus	sions			

- We have implemented an incremental two staged GPU-based Network Simplex (source code coming soon on Github)
- **2** Working with GPU is technically tricky, but we can do it!

Intro 00000000	Network Simplex	GPU-based Implementation	Results	Future works ●○○
Conclusi	ions			

- We have implemented an incremental two staged GPU-based Network Simplex (source code coming soon on Github)
- **2** Working with GPU is technically tricky, but we can do it!
- Even when memory is not an issue, our approach is faster than storing the full matrix in memory (as in [BVDPPH11])

Intro 00000000	Network Simplex	GPU-based Implementation	Results	Future works ●○○
Conclusio	ons			

- We have implemented an incremental two staged GPU-based Network Simplex (source code coming soon on Github)
- **2** Working with GPU is technically tricky, but we can do it!
- Even when memory is not an issue, our approach is faster than storing the full matrix in memory (as in [BVDPPH11])
- **④** We are currently working on a new single-cell RNA classification problem, where points $x_i, y_i \in \mathbb{R}^{200}$

Intro Network Simplex GPU-based Implementation Results Future works

Thanks to the sponsor: NVIDIA

 Intro
 Network Simplex
 GPU-based Implementation
 Results
 Future works

 0000000
 0000000
 0000000
 000000
 000000

Thanks to the sponsor: NVIDIA

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Quadro P6000 GPU used for this research.

Intro	Network Simplex	GPU-based Implementation	Results	Future works
				000
Questio	ns?			

Thanks!

Gennaro Auricchio, Federico Bassetti, Stefano Gualandi, and Marco Veneroni.

Computing Kantorovich-Wasserstein distances on d-dimensional histograms using (d+1)-partite graphs.

Advances in Neural Information Processing Systems, 2018.

Federico Bassetti, Stefano Gualandi, and Marco Veneroni.

On the computation of Kantorovich-Wasserstein distances between 2D-histograms by uncapacitated minimum cost flows.

arXiv preprint arXiv:1804.00445, 2018.

Richard S Barr and Betty L Hickman.

Parallel simplex for large pure network problems: Computational testing and sources of speedup.

Operations Research, 42(1):65-80, 1994.

Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich.

Displacement interpolation using Lagrangian mass transport.

ACM Transactions on Graphics (TOG), 30(6):158, 2011.

William H Cunningham.

Intro	Network Simplex	GPU-based Implementation	Results	Future works
				00

A network simplex method.

Mathematical Programming, 11(1):105–116, 1976.

Marco Cuturi.

Sinkhoirn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, pages 2292–2300, 2013.

Uriel Frisch, Sabino Matarrese, Roya Mohayaee, and Andrei Sobolevski. A reconstruction of the initial conditions of the universe by optimal mass transportation.

Nature, 417(6886):260, 2002.

Mark Harris et al.

Optimizing parallel reduction in cuda.

Nvidia developer technology, 2(4):70, 2007.

JAJ Hall.

Towards a practical parallelisation of the simplex method. *Computational Management Science*, 7(2):139–170, 2010.

Péter Kovács.

Minimum-cost flow algorithms: an experimental evaluation.

Optim. Methods Softw., 30(1):94–127, 2015.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document distances.

In International Conference on Machine Learning, pages 957–966, 2015.

Gabriel Peyré, Marco Cuturi, et al.

Computational optimal transport.

Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Ofir Pele and Michael Werman.

Fast and robust Earth Mover's Distances.

In *Computer vision, 2009 IEEE 12th international conference on*, pages 460–467. IEEE, 2009.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The Earth Mover's Distance as a metric for image retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.

Jörn Schrieber, Dominic Schuhmacher, and Carsten Gottschlich. Dotmark–a benchmark for discrete optimal transport. *IEEE Access*, 5:271–282, 2017.