Corso di Algebra lineare - a.a. 2011-2012

Prova scritta del 22.02.2012

Compito A

Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano in esso P e Q i punti di coordinate rispettivamente (2, -1, 1) e (1, -1, 0), C il punto di coordinate (2, 2, 1) e T quello di coordinate (2, 3, -1); sia π_1 un piano di cui sappiamo solo che la giacitura è generata dai due vettori $^t(2, 3, 0)$ e $^t(0, 1, 1)$, π_2 il piano di equazione 2x + y - z = 2 e poniamo $v = ^t(5, -3, 2)$.

- a) Scrivere un'equazione cartesiana per il piano π_3 parallelo a π_1 e passante per P, equazioni cartesiane per la retta r_1 passante per Q e con giacitura generata da v e un'equazione cartresiana per la sfera S con centro nel punto C e raggio R=4;
- b) trovare un'equazione cartesiana per la retta r_2 passante per T e ortogonale a π_2 e determinare la posizione relativa di π_2 ed S e quella di r_1 ed S;
- c) dimostrare che i punti equidistanti da P e T formano un piano e determinarne un'equazione parametrica.

Punti (3+4+3)

Esercizio 2. Si consideri l'applicazione lineare dipendente da un parametro $t \in \mathbb{R}$, $F_t : \mathbb{R}^3 \to \mathbb{R}^3$, tale che

```
F_t(1,1,1) = (2,2,2) \ F_t(1,1,0) = (10-t,10+t,2) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (12-t,12+t,4) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (14-t,14+t,6) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (16-t,16+t,8) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (16-t,16+t,8) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (16-t,16+t,8) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (16-t,16+t,8) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (16-t,16+t,8) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (16-t,16+t,8) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (16-t,16+t,8) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (16-t,16+t,8) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (16-t,16+t,8) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (16-t,16+t,8) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (16-t,16+t,8) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (16-t,16+t,8) \ F_t(1+t,-1+t,t) = (3t+2,3t-2,2t) \\ F_t(1,1,1) = (2,2,2), \ F_t(1,1,0) = (2t+2,3t-2,2t)
```

- 1. Trovare la matrice A_t associata ad F_t nelle basi canoniche di \mathbb{R}^3 .
- 2. Dire per quali valore del parametro reale t, A_t è diagonalizzabile sui reali.
- 3. Calcolare autovalori e autovettori di A_0 .
- 4. Calcolare la segnatura di ${}^{t}A_1 + A_1$.

Punti (4+5+3+3)

Esercizio 3. Sia $A \neq 0$ una matrice reale non nulla di ordine 3, supponiamo che la sua traccia e la traccia di A^2 siano nulle: $tr(A) = tr(A^2) = 0$. Vero o Falso:

- 1. A può essere antisimmetrica.
- $2.\ A$ non può essere antisimmetrica.
- 3. A può essere simmetrica.
- 4. A può essere diagonalizzzabile sui reali.

- 5. A può avere determinante = 1.
- 6. A non può avere determinante = 1.
- 7. A può essere ortogonale.
- 8. A non può essere ortogonale.
- 9. Se il rango di A è 1 allora A è nil
potente.
- 10. Se il rango di A è 2 allora A è nilpotente.
- 11. Se il determinante di A è nullo allora A è nilpotente.
- 12. Se il determinate di A^2 è nullo allora A è nilpotente.

Punti (1+2+2)

Corso di Algebra lineare - a.a. 2009-2010

Prova scritta del 27.09.2010

Compito **B**

Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano in esso P e Q i punti di coordinate rispettivamente (-1,1,2) e (-1,0,1), C il punto di coordinate (2,1,2) e T quello di coordinate (3,-1,2); sia π_1 un piano di cui sappiamo solo che la giacitura è generata dai due vettori $^t(3,0,2)$ e $^t(1,1,0)$, π_2 il piano di equazione x-y+2z=1 e poniamo $v=^t(-3,2,5)$.

- a) Scrivere un'equazione cartesiana per il piano π_3 parallelo a π_1 e passante per P, equazioni cartesiane per la retta r_1 passante per Q e con giacitura generata da v e un'equazione cartesiana per la sfera S con centro nel punto C e raggio R=2;
- b) trovare un'equazione cartesiana per la retta r_2 passante per T e ortogonale a π_2 e determinare la posizione relativa di π_2 ed S e quella di r_1 ed S;
- c) dimostrare che i punti equidistanti da P e T formano un piano e determinarne un'equazione parametrica.

Punti (3+4+3)

Esercizio 2. Si consideri l'applicazione lineare dipendente da un parametro $t \in \mathbb{R}$, $F_t : \mathbb{R}^3 \to \mathbb{R}^3$, tale che $F_t(1,1,1) = (2-t,2-t,2-t)$, $F_t(1,1,0) = (2,1-t,1-t)$, $F_t(t,1,0) = (3t-1,0,t^2)$.

- 1. Trovare la matrice A_t associata ad F_t nelle basi canoniche di \mathbb{R}^3 .
- 2. Dire per quali valore del parametro reale t, A_t è diagonalizzabile sui reali.
- 3. Calcolare autovalori e autovettori di A_1 .
- 4. Calcolare la segnatura di ${}^{t}A_1 + A_1$.

Punti (4+5+3+3)

Esercizio 3. Siano A e B due matrici quadrate reale simmetriche definite positive di ordine 3, sia I la matrice identica :

Vero o Falso:

- 1. Il prodotto AB può essere antisimmetrica.
- 2. Se A + B I non e' definita positiva allora AB + BA I non è definita positiva.
- 3. Se AB BA + I è sempre invertibile

Punti (1+2+2)