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Abstract

We discuss the asymptotic behavior of certain models of dissipative systems obtained
from a suitable modification of Kac caricature of a Maxwellian gas. It is shown that
global equilibria different from concentration are possible if the energy is not finite. These
equilibria are distributed like stable laws, and attract initial densities which belong to
the normal domain of attraction. If the initial density is assumed of finite energy, with
higher moments bounded, it is shown that the solution converges for large–time to a
profile with power law tails. These tails are heavily dependent of the collision rule.

Key words. Granular gases, Boltzmann-like dissipative equations, long-time behavior of
solutions. AMS(MOS) subject classification. 76P05, 82C40.

1 Introduction

In recent times the study of the free and driven cooling of dissipative granular gases has
received a lot of attention. Essential progresses have been made for simplified models, in
particular thanks to the consideration of the Boltzmann equation for inelastic Maxwell par-
ticles, both for the free case without energy input [4, 2], and for the driven case [11, 13, 5].
Inelastic Maxwell models share with elastic Maxwell molecules the property that the collision
rate in the Boltzmann equation is independent of the relative velocity of the colliding pair. In
granular gases however it is usual to consider Boltzmann-like equations for partially inelastic
hard spheres. This choice relies on the physical hypothesis that the grains must be cohesion-
less, which implies the hard-sphere interaction only, and no long-range forces of any kind.
Hence, inelastic Maxwell models do not describe real particles, but only pseudo-particles with
collision rules between pre- and post-collisional velocities, defined to be the same as for the
partially inelastic hard spheres with a constant coefficient of restitution. These models are
of interest for granular fluids in spatially homogeneous states because of the mathematical
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simplifications resulting from a velocity independent collision rate. Among others properties,
it is remarkable that the inelastic Maxwell models exhibit similarity solutions. Although it is
not too difficult to describe possible classes of these solutions, it is in general quite difficult
to show that these solutions represent the intermediate asymptotic of a wide class of initial
conditions.

In kinetic theory of rarefied gases, the first results of this type were obtained by Bobylev
and Cercignani [5, 6] for similarity solutions to the elastic Boltzmann equation characterized
by the atypical property to have infinite energy. It was shown that these solutions describe a
large-time asymptotic of a class of initial distributions. The study of the analogous problem
for the inelastic Maxwell models leaded to stronger results. Ernst and Brito [15, 16] studied
the large-time behavior of solutions and conjectured that these solutions must have a self-
similar asymptotic for a wide class of initial data. The first proof of Ernst-Brito conjecture
for a sub-class of isotropic initial conditions was obtained in [8]. The (unphysical) restriction
to the initial condition was subsequently removed in [9], where it was proven that the self-
similar solution attracts all data which initially have finite moments of some order greater
than two (the energy).

On the contrary to elastic collisions, partially inelastic collisions have a nontrivial outcome
as well in one dimension, and the one-dimensional idealization is a nontrivial adjunct to more
realistic studies. The choice of a one–dimensional Boltzmann equation represents in general
a compromise between the requirement to have a good approximation of dilute granular
systems from the physical point of view, and reasonable difficulties of solutions both from
the mathematical and numerical point of views. Among others, a one–dimensional model of
the Boltzmann equation for hard-spheres performing partially inelastic collisions, where the
coefficient of restitution depends on the relative speed, has been recently studied in [25].

One–dimensional pseudo–Maxwellian inelastic gases where studied [1]. This study led to
the discovery of an exact similarity solution for a freely cooling pseudo–Maxwellian inelastic
gas [1]. This solution, which has an algebraic high energy tail like 1/v4, can be used to test
the class of initial values that are attracted in large–time.

In this paper we introduce and study a one-dimensional dissipative kinetic model which is
sufficiently rich to exhibit a variety of steady states and similarity solutions. The model can
be viewed as a dissipative generalization of the Kac caricature of a Maxwell gas introduced
in the fifties [23]. Kac model has been fruitfully used from that time on, to find explicit rates
of convergence towards the Maxwellian equilibrium [24, 27], since its simple structure (with
respect to the full Boltzmann equation) makes possible to carry out exact computations.
We introduce and discuss the inelastic Kac model together with its representation in Fourier
space, in Sections 2 and 3. Here we will in addition discuss the existence of non Maxwellian
equilibria, showing that these equilibria have infinite energy. Section 4 illustrates how the
problem we are dealing with is deeply connected with the central limit theorem for stable
laws, like the classical central limit theorem is closely connected with the convergence towards
equilibrium of the elastic Boltzmann or Kac equation. Having in mind this connection, in
Section 5 and 6 we obtain both uniqueness and convergence results in terms of a distance
which has been used recently in connection with the Boltzmann equation [17, 26] and the
central limit theorem for stable laws [18] as well. The main result is that these Maxwellian
equilibria attract any initial data which is in a suitable (small) domain of attraction. The
second part of the paper deals with the existence of exact (similarity) solutions, and to the
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proof of Ernst–Brito conjecture, that is to the proof of the convergence of the solution towards
a steady state. In particular, we will discuss the importance of the inelasticity rule to get the
tails of these steady states. The main result here is that the rate of convergence depends of
the number of finite moments of the steady state itself. For the case one can handle explicitly,
that is for the self-similar solution found in [1], that has all moments bounded of order 2+α,
with 0 ≤ α < 1 , one shows that this solution represents the intermediate asymptotic of any
other solution which has 2+α moments bounded, with an explicit rate of convergence which
can be evaluated in function of the maximum order of moments of the initial datum. The
results here show that the situation with self–similar asymptotics is very close to the case of
the multidimensional inelastic Maxwell model studied in [9]. The last Section is devoted to
possible extensions and applications of the techniques.

2 The inelastic Kac model

We shall consider here a Boltzmann-type equation for a granular gas subject to dissipative
collisions and only for space independent data. This simple one-dimensional kinetic model,
which can be viewed as the dissipative generalization of the Kac caricature of a Maxwellian
gas [23], reads

∂f

∂t
(v, t) = Qp(f, f)(v, t) (1)

where the right-hand side of (1) describes the rate of change of the density function f due to
dissipative collisions,

Qp(f, f)(v) =
∫

R×[0,2π]

dθ

2π
dw

[
χ−1f(v∗∗p )f(w∗∗p )− f(v)f(w)

]
. (2)

The velocities (v∗∗p , w∗∗p ) are the pre collisional velocities of the so–called inverse collision,
which results with (v, w) as post collisional velocities. Given (v, w), the post collisional
velocities (v∗p, w∗p) are defined simply generalizing the Kac rule

v∗p = v cos θ| cos θ|p − w sin θ| sin θ|p
w∗p = v sin θ| sin θ|p + v cos θ| cos θ|p. (3)

In (3) the positive constant p < +∞ measures the degree of inelasticity. If p = 0, the
binary collision is elastic and we obtain the classical Kac equation, where the post collisional
velocities are given by a rotation in the (v, w) plane. The factor χ = | sin θ|2+2p + | cos θ|2+2p

in the gain term appears respectively from the Jacobian of the transformation dv∗∗dw∗∗ into
dvdw. The lost of energy in a single binary collision depends on the choice of the inelasticity
parameter p, and it is given by

(v∗p)
2 + (w∗p)

2 = (v2 + w2)
(| sin θ|2+2p + | cos θ|2+2p

)
. (4)

The structure of the inelastic Kac equation is similar to the inelastic Boltzmann equation
for a Maxwell gas, and also here mass is conserved, while energy is nonincreasing. However,
momentum is not conserved unless it is zero initially, and therefore this will be the only case
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considered. Moreover, the Kac equation does not obey an H-theorem. Here normalizations
are chosen so that

∫

R
f(v, 0) dv = 1 ;

∫

R
vf(v, 0) dv = 0 ;

∫

R
v2f(v, 0) dv = 1. (5)

One of the important properties of Maxwell models is that the moment equations form a set
of closed equations. Indeed, given any function ϕ = ϕ(v), the evolution of 〈ϕ〉 is given by

d

dt

∫

R
ϕ(v)f(v, t) dv =

1
2

∫

R2×[0,2π]

dθ

2π
dv dw

[
ϕ(v∗p) + ϕ(w∗p)− ϕ(v)− ϕ(w)

]
f(v)f(w) . (6)

Choosing ϕ(v) = v2 shows that the average kinetic energy of granular temperature T (t) = 〈v2〉
keeps decreasing at a rate proportional to the inelasticity

γp = 1−
∫ 2π

0

dθ

2π

(| sin θ|2+2p + | cos θ|2+2p
)
. (7)

Thus, if the initial density has finite temperature, the solution to the inelastic Kac equation
does not reach the Maxwellian ω(v) = (2π)−1/2 exp[−v2/2], but is approaching a Dirac delta
function δ(v) for large times. It is well-known [16] that the rate of decay of the energy in
Maxwell models does not satisfy Haff’s law [19], which predicts a decay like t−2 for a gas
composed of inelastic hard spheres. However this rate of decay can be easily obtained for
Maxwell models by rescaling the time (see the discussion in [16]).

3 The Fourier transform of Kac equation and steady

states of infinite energy

The Kac model (1) can be studied in weak form

d

dt

∫
ϕ(v) f(v) dv =

∫

R×R×[0,2π]

dθ

2π

{
ϕ(v∗p)− ϕ(v)

}
f(v) f(w) dv dw

we shall study this with the normalization conditions (5). It is equivalent to use the Fourier
transform of the equation [3]:

∂f̂(ξ, t)
∂t

= Q̂p

(
f̂ , f̂

)
(ξ, t), (8)

where f̂(ξ, t) is the Fourier transform of f(x, t),

f̂(ξ, t) =
∫

R
e−iξv f(v, t) dv,

and

Q̂p

(
f̂ , f̂

)
(ξ) =

∫ 2π

0

dθ

2π

[
f̂(ξ+

p )f̂(ξ−p )− f̂(ξ)f̂(0)
]
. (9)
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In (9) 



ξ+
p = ξ cos θ| cos θ|p

ξ−p = ξ sin θ| sin θ|p,
(10)

and the initial conditions (5) turn into

f̂(0) = 1, f̂ ′(0) = 0, f̂ ′′(0) = −1,

f̂ ∈ C2(Rd). Hence equation (8) can be rewritten as

∂f̂(ξ, t)
∂t

+ f̂(ξ, t) =
∫ 2π

0

dθ

2π
f̂(ξ+

p )f̂(ξ−p ). (11)

Note that
|ξ+

p |2/(1+p) + |ξ−p |2/(1+p) = |ξ|2/(1+p). (12)

It is immediate to split (11) into a system of equations for the real and imaginary parts of f̂ .
Thus we write f̂(ξ, t) = φ(ξ, t) + iψ(ξ, t), and obtain for the real part

∂φ(ξ, t)
∂t

+ φ(ξ, t) =
∫ 2π

0

dθ

2π
φ(ξ+

p )φ(ξ−p ), (13)

with
φ(ξ, 0) = Ref̂(ξ, 0)

and for the imaginary part

∂ψ(ξ, t)
∂t

+ ψ(ξ, t) =
∫ 2π

0

dθ

2π
ψ(ξ+

p )φ(ξ−p ), (14)

with
ψ(ξ, 0) = Imf̂(ξ, 0).

The interesting aspect of this splitting, as observed in [17] for the elastic Kac equation, is
that the real part (which corresponds to the even part of f) satisfies the same equation as
f̂ , while in the equation for ψ (which corresponds to the odd part of f) the right-hand side
vanishes. Thus

ψ(ξ, t) = ψ0(ξ)e−t, (15)

and the same holds for the odd part of the solution f . One would like then to obtain a similar
result for the real part.

If we leave the usual hypothesis of solutions having finite energy, it is immediate to show
that the dissipative Kac equation admits nontrivial steady states. In fact, in consequence of
equality (12), the collision operator (9) vanishes if f(v) = Mp(v), where

M̂p(ξ) = exp
{
−σ|ξ| 2

1+p

}
, σ > 0. (16)

The function (16) is nothing but the characteristic function of a stable distribution of exponent
s = 2/(1 + p), where 0 < s < 2 [21, 22].
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It is well–known that a Maxwellian is a strictly stable distribution (corresponding to
p = 0), while the Cauchy law is 1–stable [22]. This enlightens a remarkable difference
between the problem of convergence towards equilibrium for the elastic and the inelastic
Kac models, the former being the analogous of the classical central limit theorem, while the
latter is the analogous of the central limit theorem for stable laws. Having in mind this
analogy, it becomes clear that, while in the elastic case convergence towards the Maxwellian
is proven under weak assumptions on the initial data (essentially finite moments of order
strictly greater than two) [17], in the inelastic case convergence towards the steady state can
be proven only if the initial data belong to the so-called normal domain of attraction [21, 22].

4 Central limit theorem for stable laws and dissi-

pation of energy

We illustrate in this section the analogies between the convergence towards a stable law in
the central limit theorem [22] and the large-time asymptotic of the dissipative Kac equation.
The central limit theorem for a centered p–stable law with distribution θ consists of finding
the set of distributions F such that, when dealing with the normalized sum

Sn =
X1 + ... + Xn

n1/s

of the independent and identically distributed random variables Xi with common distribution
function F , the distribution Fn of the sum Sn converges to θ. Let us denote with f(x), x ∈ R,
the probability density function of the random variables Xi, where f is normalized to satisfy
5, and with fn(x) the density of S2n , n ≥ 1. Then, since

S2n+1 =
1

21/s
S2n +

1
21/s

S∗2n ,

where S2n and S∗2n are independent and identically distributed,

fn+1(x) =
∫

R
dy 21/sfn

(
21/s(x− y)

)
21/sfn

(
21/sy

)
. (17)

Let us change variable into the integral in (17), setting x − y = 1
2(x + z) (which implies

y = 1
2(x− z)). We obtain

fn+1(x) =
∫

R
dz 2

2−s
s fn

(
x + z

2
s−1

s

)
fn

(
x− z

2
s−1

s

)
. (18)

Since fn(x) has unit mass, we can rewrite (17) as

fn+1(x) = fn(x) +
∫

R
dz

{
2

2−s
s fn

(
x + z

2
s−1

s

)
fn

(
x− z

2
s−1

s

)
− fn(x)fn(z)

}
(19)

The recursive relation (19) can be viewed as the explicit Euler scheme (at discrete times
∆t = 1) of the kinetic equation

∂f

∂t
(x, t) = Q∗

s(f, f)(x, t), (20)
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where
Q∗

s(f, f)(x) =
∫

R
dz

{
2

2−s
s f (x∗∗s ) f (z∗∗s )− f(x)f(z)

}
. (21)

In (21) (x∗∗s , z∗∗s ) are the pre-collisional velocities in the collision having (x, z) as post-
collisional velocities. Hence, the post-collisional velocities (x∗s, z∗s ) are related to (x, z) by
the relations

x∗s = 1
2s (x + z) (22)

z∗s = 1
2s (x− z). (23)

Since for s < 2
(x∗s)

2 + (z∗s )2 = 2
s−2

s
(
x2 + z2

)
< x2 + z2,

the operator is mass preserving while it dissipates the second moment (energy).
This clarifies the deep analogies between the classical problem of the convergence towards

a stable law, and the cooling problem in kinetic theory of dissipative gases. From this analogy
it follows at once that methods developed for the former problem can be fruitfully applied to
the latter. Recently, the rate of convergence towards a stable law in the central limit theorem
has been investigated by means of a probability metric which allows for explicit computations
[18]. The importance of this metric in the analysis of the convergence towards equilibrium
for the elastic Kac equation has been remarked in [17]. We introduce and discuss this metric
in the forthcoming section.

5 Existence and uniqueness of solutions

Denote by P(R) the class of all probability distributions, and with Ps(R), s > 0, the class of
all probability distributions F ∈ P such that

∫

R
|v|s dF (v) < ∞.

We introduce a metric on Ps(Rd) by

ds(F,G) = sup
ξ∈R

|f̂(ξ)− ĝ(ξ)|
|ξ|s (24)

where f̂ is the Fourier transform of F ,

f̂(ξ) =
∫

R
e−iξv dF (v).

Let us write s = m + α, where m is an integer and 0 ≤ α < 1. In order that ds(F, G) be
finite, it suffices that F and G have the same moments up to order m.

The norm (24) has been introduced in [17] to investigate the trend to equilibrium of the
solutions to the Boltzmann equation for Maxwell molecules. There, the case s = 2 + α,
α > 0, was considered. Further applications of ds, with s = 4, were studied in [10], while
the cases s = 2 and s = 2 + α, α > 0, have been considered in [12] in connection with the
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so-called Mc Kean graphs [24]. The case s = 2 was subsequently used in [26], in connection
with the uniqueness of the non cut-off Boltzmann equation for Maxwell molecules. A further
application of the general case s > 0 to the finding of Berry–Essen type bounds in the central
limit theorem for a stable law has been given in [18]. In this paper, we shall be interested
mainly in this last case, which presents several analogies with the problem under study.

The existence of a solution to equation (1) can be seen easily using the same methods
available for the elastic Kac model. In particular, a solution can be expressed as a Wild
sum [3, 10]. Let f and g be two solutions of the Kac equation (1), and f̂ , ĝ their Fourier
transforms. Then, given any positive constant s,

∂

∂t

(
f̂ − ĝ

)

|ξ|s +
f̂(ξ)− ĝ(ξ)

|ξ|s =
∫ 2π

0

dθ

2π

f̂(ξ+
p )f̂(ξ−p )− ĝ(ξ+

p )ĝ(ξ−p )
|ξ|s . (25)

Now, we do the usual splitting

∣∣∣∣∣
f̂(ξ+

p )f̂(ξ−p )− ĝ(ξ+
p )ĝ(ξ−p )

|ξ|s

∣∣∣∣∣ ≤ |f̂(ξ+
p )|

∣∣∣∣∣
f̂(ξ−p )− ĝ(ξ−p )

|ξ−p |s

∣∣∣∣∣
|ξ−p |s
|ξ|s

+ |ĝ(ξ−p )|
∣∣∣∣∣
f̂(ξ+

p )− ĝ(ξ+
p )

|ξ+
p |s

∣∣∣∣∣
|ξ+|s
|ξ|s

≤ sup

∣∣∣∣∣
f̂ − ĝ

|ξ|s

∣∣∣∣∣

(
|ξ−p |s + |ξ+

p |s
|ξ|s

)

Owing to condition (12), if we choose s = 2/(1 + p) we obtain
∣∣∣∣∣
f̂(ξ+

p )f̂(ξ−p )− ĝ(ξ+
p )ĝ(ξ−p )

|ξ|2/(1+p)

∣∣∣∣∣ ≤ sup

∣∣∣∣∣
f̂ − ĝ

|ξ|2/(1+p)

∣∣∣∣∣ . (26)

We set

h(t, ξ) =
f̂(ξ)− ĝ(ξ)
|ξ|2/(1+p)

.

The preceding computation shows that

∂h

∂t
≤ (‖h‖∞ − h) . (27)

Gronwall’s lemma proves at once that ‖h(t)‖∞ is non increasing. We have

Theorem 5.1 Let f(t) and g(t) be two solutions of the Kac equation (1), Then, if s ≥
2/(1 + p), for all times t ≥ 0,

ds(f(t), g(t)) ≤ ds(f(0), g(0)).

In particular, let f0 be a nonnegative density with finite moment of order s = 2/(1+p). Then,
there exists a unique weak solution f(t) of the Kac equation, such that f(0) = f0.
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6 Convergence to equilibrium

In the central limit problem, the normal domain of attraction (NDA) of a s–stable law
consists of the set of distributions F such that, when dealing with the normalized sum

Sn =
X1 + ... + Xn

n1/s

of the independent and identically distributed random variables Xi with common distribution
function F , Sn converges to Ms. Hence, the normal domain of attraction is characterized by
requiring that, for all ξ ∈ N ,

lim
n→∞n

(
f̂(ξ/n1/s)− 1

)
= −σ|ξ|s.

Equivalent definitions of the NDA in terms of properties of the distribution function can be
found in [22].

As in the classical problem for a normal law, informations on the rate of convergence and
restriction of the set of NDA (in order to get a rate of convergence) depend on the choice of
the metric. In terms of the Fourier-based metric defined by (24), it is natural to introduce
the set

Dσ,s = {f ∈ P, f̂(ξ) = 1− σ|ξ|s + ψf (ξ), with
ψf (ξ)
|ξ|s ∈ L∞(R)}. (28)

The importance of such a set for the convergence towards equilibrium for the inelastic Kac
model is easily understood if one realizes that in the elastic case Dσ,2 contains all densities
with bounded second moment, with a precise control of the remainder ψf , which has to decay
faster than |ξ|2 [17].

It is clear that the ds(f, g) is finite when f and g belong to the set Dσ,s. Notice also that
the stable steady state Ms belongs to Dσ,s (and actually the remainder goes to 0 faster than
|ξ|s).

Following [18], the convergence problem towards equilibrium, will be discussed by intro-
ducing the Fourier domain of attraction (FDA)

D0
σ,s =

{
f ∈ Dσ,s,

ψ(ξ)
|ξ|s −−−→

ξ→0
0
}

.

and a suitable subset of the set D0
σ,p. To this extent, we consider, for δ > 0, the set

Dδ
σ,s = {f ∈ D0

σ,s, |ψ(ξ)|/|ξ|s ≤ |ξ|δ}.

Notice that, with M̂s(ξ) = e−σ|ξ|s and f ∈ Dδ
σ,s, one has ds+δ(f, Ms) ≤ C < ∞.

A easy-to-check criterion ensuring that a given density f lies in Dδ
σ,s, relies on finiteness

of some pseudo-moment. For the normal case s = 2, Ms has all moments finite, so that
integrability of xα(f − Ms) is equivalent to integrability for xα f . This of course does not
apply when s < 2. Note also that, for s = 2, the set considered in [17] coincides with

{f ∈ P,

∫
|v|2+δ f(v) dv < ∞} ⊂ Dδ

σ,2

with a strict inclusion. We report here the following result obtained in [18],
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Lemma 6.1 Let 0 ≤ s < 1 and 0 < δ ≤ 1− s. Then, the following embedding holds

{f ∈ P,

∫
|v|s+δ |f(v)−Ms(v)| dv < ∞} ⊂ Dδ

σ,s.

Let 1 ≤ s < 2 and 0 ≤ δ ≤ 2− s. Then

{f ∈ P,

∫
|v|s+δ |f(v)−Ms(v)| dv < ∞,

∫
v (f(v)−Ms(v)) dv = 0} ⊂ Dδ

σ,s.

We prove the main result of this section.

Theorem 6.2 Let p > 1, and let f(t) be the unique solution of the Kac equation (1), corre-
sponding to the initial density f0 such that, for some 0 < δ ≤ p−1

p+1∫
|v|s+δ |f0(v)−Ms(v)| dv < ∞,

where s = 2/(1 + p). Then, f(t) converges exponentially fast in Fourier metric towards
equilibrium, and the following bound holds

ds+δ(f(t),Ms) ≤ ds+δ(f0,Ms) exp {−(1−Ap,δ)t} (29)

where

Ap,δ =
∫ 2π

0

dθ

2π

(
| sin θ|2+(1+p)δ + | cos θ|2+(1+p)δ

)
< 1

Let now 0 < p ≤ 1, and let f(t) be the unique solution of the Kac equation (1), corresponding
to the initial density f0 such that, for some 0 < δ ≤ 2p

p+1∫
|v|s+δ |f0(v)−Ms(v)| dv < ∞.

Then, f(t) converges exponentially fast in Fourier metric towards equilibrium, and bound
(??) holds.

Proof The proof is an easy consequence of the computations leading to Theorem 5.1.
Thanks to Lemma 6.1, the hypotheses on the initial value f0 are such that f̂0 ∈ Dδ

σ,s, so that
ds+δ(f0,Ms) is bounded. Given δ > 0, proceeding as before we get the bound

∣∣∣∣∣
f̂(ξ+

p )f̂(ξ−p )− ĝ(ξ+
p )ĝ(ξ−p )

|ξ|s+δ

∣∣∣∣∣ ≤ sup

∣∣∣∣∣
f̂ − ĝ

|ξ|s+δ

∣∣∣∣∣

(
|ξ−p |s+δ + |ξ+

p |s+δ

|ξ|s+δ

)
. (30)

Using the definitions of ξ−p , ξ+
p , one obtains

|ξ−p |s+δ + |ξ+
p |s+δ

|ξ|s+δ
= | sin θ|2+(1+p)δ + | cos θ|2+(1+p)δ.

Hence, from (25) follows
∣∣∣∣∣∣
∂

∂t

(
f̂ − ĝ

)

|ξ|s+δ
+

f̂(ξ)− ĝ(ξ)
|ξ|s+δ

∣∣∣∣∣∣
≤ Ap,δ

∥∥∥∥∥
f̂(ξ)− ĝ(ξ)
|ξ|s+δ

∥∥∥∥∥
∞

(31)

Gronwall’s lemma then proves (??).
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7 Similarity solutions

In the previous section we discussed, in connection with the freely cooling without energy
input of the dissipative Kac equation, the role of the steady states (16). Our main result
states that these Maxwellians represent the large–time asymptotic of any density which lies
initially in the corresponding domain of attraction, and that the convergence is exponentially
fast. Here, we will investigate the existence of exact solutions, and their importance in the
problem of cooling of the dissipative Kac equation. To this aim, given p > 0, we look for
solutions to the equation (1) for the density g(v, t), where g is defined through f via the
scaling

g(v, t) = e−αtf
(
e−αtv, t

)
, α > 0. (32)

Let us point out that thanks to its definition, when α = γp/2, e−αt =
√

T (t), and
∫

R
v2g(v, t) dv = 1, (33)

i.e. the granular temperature of g(v, t) does not change with time.
We deduce now the evolution equation for the rescaled distribution function g. To simplify

notations, let us set, for any p > 0, γ = γp, ṽ = eαtv. We have

∂f

∂t
(v, t) = αeαtg(ṽ, t) + eαtαṽ

∂g

∂ṽ
(ṽ, t) + eαt ∂g

∂t
(ṽ, t) (34)

= eαt

{
∂g

∂t
(ṽ, t) + α

∂

∂ṽ
(ṽg(ṽ, t))

}
,

while

Qp(f, f)(v) =
∫

R
dw

∫ 2π

0

dθ

2π

[
χ−1f(v∗∗)f(w∗∗)− f(v)f(w)

]
= (35)

=
∫

R
dw̃

∫ 2π

0

dθ

2π
eαt

[
χ−1g(ṽ∗∗)g(w̃∗∗)− g(ṽ)g(w̃)

]

= eαtQp(g, g)(ṽ).

Thus the kinetic equation for g reads

∂g(ṽ, t)
∂t

+ α
∂(ṽg)
∂ṽ

= Qp(g, g)(ṽ). (36)

Note that, if g∞ is a stationary solution of (36), from (32) it follows that

f∞(v) = eαtg∞
(
eαtv, t

)
(37)

is a similarity solution of (1). Let us look for stationary solutions of (36), which solve

α
∂

∂ṽ
(ṽg(ṽ, t)) = Qp(g, g)(ṽ, t) (38)

As remarked in section 3, the analysis of (38) is simpler by using Fourier transform, which
reads

−αξ
∂ĝ

∂ξ
= Q̂p(ĝ, ĝ)(ξ). (39)
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For any given p > 0, we look then for solutions to the equation

−αξ
∂ĝ

∂ξ
+ ĝ(ξ) =

∫ 2π

0

dθ

2π
ĝ(ξ+

p )ĝ(ξ−p ), (40)

By equality (12), it follows that, for all σ > 0

∫ 2π

0

dθ

2π

(
1 + σ|ξ+

p |2/(1+p)
)(

1 + σ|ξ−p |2/(1+p)
)

=

1 + σ|ξ|2/(1+p) + σ2|ξ|4/(1+p)

∫ 2π

0

dθ

2π
sin2 θ cos2 θ = 1 + σ|ξ|2/(1+p) +

σ2

8
|ξ|4/(1+p).

Hence, if
ĝ∞(ξ) =

(
1 + σ|ξ|2/(1+p)

)
exp

{
−σ|ξ| 2

1+p

}
, (41)

it follows that
∫ 2π

0

dθ

2π
ĝ∞(ξ+

p )ĝ∞(ξ−p ) =
(

1 + σ|ξ|2/(1+p) +
σ2

8
|ξ|4/(1+p)

)
exp

{
−σ|ξ| 2

1+p

}
.

Since

−αξ
∂ĝ∞
∂ξ

+ ĝ∞(ξ) =
(

1 + σ|ξ|2/(1+p) +
2ασ2

1 + p
|ξ|4/(1+p)

)
exp

{
−σ|ξ| 2

1+p

}
,

ĝ∞ solves (40) if α = (1 + p)/16.
Now, the question is to understand if ĝ∞,p is the Fourier transform of a probability density.

By expanding it in Taylor series, one immediately comes to the conclusion that, if p < 1,
ĝ∞,p can not be the Fourier transform of a nonnegative function. In fact,

ĝ∞,p(ξ) = 1− σ2|ξ|4/(1+p) + o
(
|ξ|4/(1+p)

)
,

where 4/(1+p) > 2. Thus, the second moment of g∞(v) has to be equal to zero, which implies
at once that g∞,p(v) is degenerate. A completely different situation appears when p ≥ 3. In
this range of p, ĝ∞,p(ξ) is convex and satisfies all the conditions of Polya theorem ([22], page
168). Then ĝ∞,p(ξ) is the characteristic function of an absolutely continuous distribution
function. We are not able to draw similar conclusions for 1 < p < 3, even if we conjecture
that in this range of the dissipation parameter ĝ∞,p(ξ) is a characteristic function. We proved

Theorem 7.1 For all p > 0 the dissipative Kac equation (1) possesses a exact solution
f∞,p(v, t), defined by

f∞,p(v, t) = exp
{

1 + p

16
t

}
g∞,p

(
exp

{
1 + p

16
t

}
v, t

)
, (42)

where ĝ∞,p(ξ) is given by (41). If p ≥ 3 or p = 1, f∞,p(v, t) is nonnegative.
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The domain of attraction of these exact solutions (when p ≥ 3) can be easily recovered
owing to the same method we used in Section 6 to study the convergence towards the steady
states Ms. We obtain

Theorem 7.2 Let p ≥ 3, and let f(t) be the unique solution of the Kac equation (1), corre-
sponding to the initial density f0 such that, for some 0 < δ ≤ p−1

p+1

∫
|v|2s+δ |f0(v)− g∞,p(v)| dv < ∞,

where s = 2/(1 + p). Then, f(t) converges exponentially fast in Fourier metric towards
equilibrium, and the following bound holds

d2s+δ(f(t), f∞,p(t)) ≤ d2s+δ(f0, g∞,p) exp {−(1−Bp,δ)t} (43)

where

Bp,δ =
∫ 2π

0

dθ

2π

(
| sin θ|4+(1+p)δ + | cos θ|4+(1+p)δ

)
< 1

The value p = 1 separates from the others, because of the fact that only in this case
the temperature of the steady state is finite. We remark in fact that, while for p > 1 the
temperature of the steady state is zero, when p < 1 its temperature is unbounded. Let us set
σ = 1. When p = 1, we can easily recover the form of the steady state in the velocity space,
since ĝ∞,1(ξ) satisfies the equality

ĝ ′′
∞,1(ξ) = (−1 + |ξ|)e−|ξ| = −2e−|ξ| + ĝ∞,1(ξ). (44)

Now, recalling that e−|ξ| is the Fourier transform of the Cauchy density
(
π(1 + v2)

)−1, (44)
implies

(1 + v2)g∞,1(v) =
2

π(1 + v2)
,

that is
g∞,1(v) =

2
π(1 + v2)2

(45)

The density g∞,1(v) has been found before as similarity solution of the Ulam model (see [1]).
We can improve in this case the result of Theorem 7.2, by showing for p = 1 the Ernst–Brito
conjecture for the inelastic Kac model. The stationary solution g∞,1 possesses moments of
order 2 +λ, for 0 < λ < 1. Let us consider two initial densities f0 and h0 such that, for some
λ > 0, ∫

R
|v|2+λf0(v) dv < +∞,

∫

R
|v|2+λh0(v) dv < +∞

Without loss of generality, suppose that λ < 1. Consider now the metric (24) defined in
section (5), and let us proceed as in Section 6. For any ξ it results

|f̂(ξ, t)− ĥ(ξ, t)|
|ξ|2+λ

≤ exp{−(1−A1,λ)t} (46)
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where A1,λ is defined as

A1,λ =
∫ 2π

0

dθ

2π
[|ξ+

1 |2+λ + |ξ−1 |2+λ]

=
∫ 2π

0

dθ

2π
[| cos θ|2(2+λ) + | sin θ|2(2+λ)]

(47)

Remind now that the rescaled distribution g has been defined trough the change of vari-
ables ṽ = ve−αt. If p = 1, α = 1/8, which implies ṽ = v√

T (t)
. For the Fourier variable ξ,

turns into ξ̃ = ξ
√

T (t). Let us define f̃(v, t) =
√

T (t)f
(√

T (t)v, t
)
. Inserting the scaling

into (46), we get

d2+λ

(
f̃(v, t), g∞,1(v)

)
≤ d2+λ (f0, g∞,1) exp {−[(1−A1,λ)− (2 + λ)/8]t}

It turns out that exponential convergence to g∞ occurs as soon as

G(λ) =
2 + λ

8
+ A1,λ − 1 < 0 (48)

i.e., more explicitly, when

2 + λ

2
{1−

∫ 2π

0

dθ

2π
[| cos θ|4 + | sin θ|4]}

+
∫ 2π

0

dθ

2π
(| sin θ|2(2+λ) + | cos θ|2(2+λ) < 1 (49)

It is clear that G(0) = 0. Moreover, with a direct computation we obtain G(1) = 0. Owing
to expression (49) we recover that G(λ) is convex. Hence we can conclude that G(λ) < 0 for
any 0 < λ < 1. For such a choice of λ,

‖f̂(
ξ√
T

, t)− ĝ∞,1(ξ)‖2+λ → 0 (50)

exponentially with respect to time.

Theorem 7.3 Let p = 1, and let g∞,1(v) be given by (45). Let f(v, t) be the solution of the
Kac equation (1), corresponding to the initial density f0 such that, for some 0 < λ < 1

∫
|v|2+λ f0(v) dv < ∞.

Then, f̃(v, t) =
√

T (t)f
(√

T (t)v, t
)

converges exponentially fast in Fourier metric towards
equilibrium, and the following bound holds

d2+λ(f̃(t), g∞,1) ≤ d2+λ(f0, g∞,1) exp {−|G(λ)|t} (51)

where G(λ) is given by (48).
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Theorem 7.3 is nothing but the Ernst–Brito conjecture for the case p = 1. In fact, the
steady state g∞,1(v) of unit temperature attracts all then (rescaled) solutions to the inelastic
Kac equation which initially have some moment higher than two which is initially bounded.
In the next Section we will discuss the possibility to verify the same conjecture for p 6= 1.

8 Similarity solutions of bounded temperature

In Section 7 we studied the existence of steady states of the equation (36), where g was
obtained from f via (32). We found explicit stationary solutions to (36) provided α =
(1 + p)/16. Unlikely, in general these solutions do not have bounded temperature. For this
reason, in what follows we look for the existence of stationary solutions to (36) under the
assumption α = γ/2, with

γ = γp = 1−
∫ 2π

0

θ

2π
(| sin θ|2(1+p) + | cos θ|2(1+p)). (52)

Within this choice of α, and assuming that stationary solutions exist, by (33) their tempera-
ture is finite. If p = 1, we found that a stationary solution with bounded temperature exists,
and that this solution satisfies in addition

∫
|v|δ g∞,1(v) dv < ∞, δ < 3.

Let us suppose that a stationary solution to (36) with bounded temperature exists, and let
us investigate wether or not this solution has some moment of order greater than two which
is bounded. This can be done by studying the behavior of the stationary solution ĝ in a
neighbor of ξ = 0. Because of the requirement that the temperature has to be finite, we
assume that for small ξ the following expansion holds

ĝ∞,p(|ξ|) = 1− ξ2 + A|ξ|a + o(|ξ|a). (53)

We now insert this expression in (40) and check wether the resulting equation admits a
solution for the exponent a. We obtain

1− ξ2 + A|ξ|a − γ

2
{−2ξ2 + Aa|ξ|a}+ o(|ξa|) = 1− ξ2

∫ 2π

0

dθ

2π
[| cos θ|2+2p + sin θ2+2p]

+A|ξ|a
∫ 2π

0
[| cos θ|(1+p)a + sin θ(1+p)a] + o(|ξa|)

(54)

Summing up with respect to powers of ξ, we have

−(1− γ)ξ2 + A(1− aγ

2
)|ξ|a + · · · = −ξ2

∫ 2π

0

dθ

2π
(| cos θ|2+2p + | sin θ|2+2p)

A|ξ|a
∫ 2π

0

dθ

2π
(| cos θ|(1+p)a + | sin θ|(1+p)a) + . . .

(55)
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Since the coefficients of |ξ2| are automatically equal by definition of γ, it turns out that
equality occurs if

1− aγ

2
=

∫ 2π

0

dθ

2π
(| cos θ|(1+p)a + | sin θ|(1+p)a) (56)

We now focus on equation (56) and prove the following

Lemma 8.1 Let Gp(λ) be the function defined as

Gp(λ) =
2 + λ

2
γ +

∫ 2π

0

dθ

2π
(| cos θ|(1+p)(2+λ) + | sin θ|(1+p)(2+λ))− 1. (57)

Then, there exists p̄ > 1 such that, if p ≥ p̄, Gp(λ) = 0, only for λ1 = 0 , while if p < p̄,
Gp(λ) = 0 for λ1 = 0 and λ2 > 0. In this case Gp(λ) < 0 for any λ ∈ (0, λ2).

Proof By definition (7) we get

Gp(λ) =
2 + λ

2

{
1−

∫ 2π

0

dθ

2π
[| cos θ|2+2p + | sin θ|2+2p]

}

+
∫ 2π

0

dθ

2π
(| sin θ|(1+p)(2+λ) + | cos θ|(1+p)(2+λ) − 1 =

=
2 + λ

2

{
1− 2

∫ 2π

0

dθ

2π
| sin θ|2+2p

}
+ 2

∫ 2π

0

dθ

2π
(| sin θ|(1+p)(2+λ) − 1

Let us evaluate the first and the second derivative of Gp(λ).

G ′
p (λ) =

1
2

{
1− 2

∫ 2π

0

dθ

2π
| sin θ|2+2p

}
+ 2(1 + p)

∫ 2π

0

dθ

2π
| sin θ|(1+p)(2+λ) log | sin θ|} (58)

and

G ′′
p (λ) = 2(1 + p)2

∫ 2π

0

dθ

2π
| sin θ|(1+p)(2+λ)[log(sin θ)]2 (59)

It follows that Gp(λ) is a convex function on its domain since G ′′
p (λ) > 0 for every λ ≥ 0. It

is easy to see that λ = 0 is a solution of (56). On the other hand, due to the convexity and
to the fact that limλ→+∞Gp(λ) = +∞, there exists λ2 > 0 such that Gp(λ2) = 0 any time
G ′

p (λ = 0) < 0. Now

G ′
p (λ = 0) =

1
2
−

∫ 2π

0

dθ

2π
| sin θ|2+2p + 2(1 + p)

∫ 2π

0

dθ

2π
| sin θ|2+2p log | sin θ|

=
1
2
−

∫ 2π

0

dθ

2π
| sin θ|2+2p(1− log | sin θ|2+2p)

(60)

Note that the integral decreases with respect to p, while it is strictly bigger than 1/2 if p = 0.
This ensures that there exists exactly one value p = p̄ such that

1
2
−

∫ 2π

0

dθ

2π
| sin θ|2+2p̄(1− log | sin θ|2+2p̄) = 0. (61)
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Then, we can conclude that p̄ > 1, since we showed in the previous section that λ2 = 1 if
p = 1.

Gathering all these computations, we can conclude that, if p < p̄, there exists λ2 > 0 such
that Gp(λ2) = 0

The importance of lemma 8.1 is related both to the existence of a stationary solution to
equation

∂g

∂t
− γp

2
∂

∂v
(vg(v)) = Qp(g, g)(v), (62)

to the domain of attraction of the solution itself, and to the evolution of moments for the
solution to equation (62).

9 Evolution of moments and convergence

We will first discuss the evolution of moments for the solution to equation (62). By construc-
tion, the temperature of g(v, t) is constant in time, and equal to 1 thanks to the normalization
conditions (5). We can use the computations leading to (6), choosing ϕ(v) = |v|2+λ, where for
the moment the positive constant λ ≤ 1. For the sake of simplicity, we set γ = γp. Suppose
that the initial density g0(v) = f0(v) is such that

∫

R
|v|2+λg0(v) dv = mλ < ∞. (63)

Then, since the contribution due to the term γ
2

∂
∂v (vg(v)) can be evaluated integrating by

parts, ∫

R
|v|2+λ γ

2
∂

∂v
(vg(v)) dv = −γ

2
(2 + λ)

∫

R
|v|2+λg(v, t) dv,

we obtain
d

dt

∫

R
|v|2+λg(v, t) dv =

(
−1 +

γ

2
(2 + λ)

)∫

R
|v|2+λg(v, t) dv (64)

+
∫

R2×[0,2π]

dθ

2π
dv dw|v∗p|2+λg(v)g(w) . (65)

Let us recover a suitable upper bound for the last integral in (65). Owing to definition (4)

|v∗p| = |v cos θ| cos θ|p − w sin θ| sin θ|p| ≤ |v|| cos θ|1+p + |w|| sin θ|1+p

On the other hand, given any two constants a, b, and 0 < λ ≤ 1 the following inequality holds

(|a|+ |b|)λ ≤ |a|λ + |b|λ. (66)

Hence, choosing a = |v|| cos θ|1+p and b = |w|| sin θ|1+p,

|v∗p|2+λ ≤ (|a|+ |b|)2
(
|a|λ + |b|λ

)
.
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Now, consider that
∫

R2×[0,2π]

dθ

2π
dv dw

(
|a|2+λ + |b|2+λ

)
g(v)g(w) =

(∫ 2π

0

dθ

2π
(| sin θ|(1+p)(2+λ) + | cos θ|(1+p)(2+λ)

) ∫

R
|v|2+λg(v, t) dv, (67)

while
∫

R2×[0,2π]

dθ

2π
dv dw|a|1+λ|b|g(v)g(w) =

∫

R2×[0,2π]

dθ

2π
dv dw|a||b|1+λg(v)g(w) =

∫ 2π

0

dθ

2π
| sin θ|(1+p)(1+λ)| cos θ|(1+p)

∫

R
|v|1+λg(v) dv

∫

R
|w|g(w) dw ≤

∫ 2π

0

dθ

2π
| sin θ|(1+p)(1+λ)| cos θ|(1+p). (68)

In fact, since λ ≤ 1 Hölder inequality and conservation of the temperature (5) imply

∫

R
|v|1+λg(v) dv

∫

R
|w|g(w) dw ≤

(∫

R
|v|2g(v) dv

)(1+λ)/2 (∫

R
|v|2g(v) dv

)1/2

= 1

Using the same ideas, we get
∫

R2×[0,2π]

dθ

2π
dv dw|a|λ|b|2g(v)g(w) =

∫

R2×[0,2π]

dθ

2π
dv dw|a|2|b|λg(v)g(w) =

∫ 2π

0

dθ

2π
| sin θ|(1+p)(λ)| cos θ|2

∫

R
|v|λg(v) dv

∫

R
|w|2g(w) dw ≤

∫ 2π

0

dθ

2π
| sin θ|(1+p)λ| cos θ|2. (69)

Grouping all these inequalities, and recalling the expression of Gp(λ) given by (57) we obtain
the differential inequality

d

dt

∫

R
|v|2+λg(v, t) dv = Gp(λ)

∫

R
|v|2+λg(v, t) dv + Bp,λ, (70)

where

Bp,λ = 4
∫ 2π

0

dθ

2π
| sin θ|(1+p)(1+λ)| cos θ|(1+p) + 2

∫ 2π

0

dθ

2π
| sin θ|(1+p)λ| cos θ|2. (71)

By Lemma 8.1, provided p < p̄, for any λ < λ2, Gp(λ) < 0. In this case, inequality (70) gives
un upper bound for the moment, that reads

∫

R
|v|2+λg(v, t) dv ≤ mλ +

Bp,λ

|Gp(λ)| < ∞. (72)
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In the case λ2 > 3 we can easily iterate our procedure to obtain that any moment of order
2+λ, with λ < λ2 which is bounded initially, remains bounded at any subsequent time. The
only difference now is that the explicit expression of the bound is more and more involved.

If p < p̄, we can immediately draw conclusions on the large–time convergence of class of
probability densities {g(v, t)}t≥0, By virtue of Prokhorov theorem (cfr. [22]) the existence of a
uniform bound on moments implies that this class is tight, so that any sequence {g(v, tn)}n≥0

contains an infinite subsequence which converges weakly to some probability measure g∞,p.
Thanks to the previous result, provided p < p̄, g∞,p possesses moments of order 2 + λ, for
0 < λ < λ2.

It is now immediate to show that this limit is unique. To this aim, let us consider two
initial densities f0(v) and h0(v) such that, for some 0 < λ < λ2,

∫

R
|v|2+λf0(v) dv < +∞,

∫

R
|v|2+λh0(v) dv < +∞.

Proceeding as in the proof of Theorem 7.3, for any ξ we obtain

|f̂(ξ, t)− ĥ(ξ, t)|
|ξ|2+λ

≤ exp{−(1−Ap,λ)t} (73)

where Ap,λ is defined as

Ap,λ =
∫ 2π

0

dθ

2π
[|ξ+

p |2+λ + |ξ−p |2+λ]

=
∫ 2π

0

dθ

2π
[| cos θ|(1+p)(2+λ) + | sin θ|(1+p)(2+λ)]

Remind now that, since ṽ = v/
√

T (t), g has temperature equal to 1. Therefore, if we

define f̃(v, t) =
√

T (t)f
(√

T (t)v, t
)
. Inserting the scaling into (46), we get

d2+λ

(
f̃(v, t), h̃(v, t)

)
≤ d2+λ (f0, h0) exp{−[(1−Ap,λ)− 2+λ

2 γ]t}
= d2+λ (f0, h0) exp{Gp(λ)t}. (74)

It turns out that the d2+λ-distance between subsequences converges to zero as soon as Gp(λ) <
0, which is true, after Lemma 8.1 for all 0 < λ < λ2. For such a choice of λ,

‖f̂(
ξ√
T

, t)− ĝ∞,p(ξ)‖2+λ → 0 (75)

exponentially with respect to time.
We can now show that the limit function g∞,p(v) is a stationary solution to (62). Thanks

to the previous computations, we know that if condition (63) holds, both the solution g(v, t)
to equation (62) and g∞,p(v) have moments of order 2+λ̄, with 0 < λ̄ < λ uniformly bounded.
Hence, for any t ≥ 0, proceeding as in the proof of Theorem 6.2, we obtain

d2+λ̄ (Qp(g(t), g(t)), Qp(g∞,p, g∞,p)) ≤ (1 + Ap,λ) d2+λ̄ (g(t), g∞,p) . (76)
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This implies the weak* convergence of Qp(g(t), g(t)) towards Qp(g∞,p, g∞,p). In particular,
due to the equivalence among different metrics which metricize the weak* convergence of
measures [17, 26], if C1

0 (R) denotes the set of compactly supported continuously differentiable
functions, endowed with its natural norm ‖ · ‖1, for all φ ∈ C1

0 (R),
∫

R
φ(v)Qp(g(t), g(t))(v) dv →

∫

R
φ(v)Qp(g∞,p, g∞,p)(v) dv. (77)

On the other hand, for all φ ∈ C1
0 (R), integration by parts gives

∫

R
φ(v)

∂

∂v
(vg(v, t)) dv = −

∫

R
vφ ′(v)g(v, t) dv. (78)

Since |vφ ′(v)| ≤ |v|‖φ ′‖1, and the temperature of g(v, t) is equal to unity, the convergence of
d2+λ̄ (g(t), g∞,p) to zero implies

∫

R
vφ ′(v)g(v, t) dv →

∫

R
vφ ′(v)g∞,p(v) dv. (79)

Finally, for all φ ∈ C1
0 (R) it holds

∫

R
φ(v)

{
∂

∂v
(vg∞,p(v))−Qp(g∞,p, g∞,p)(v)

}
dv = 0. (80)

This shows that g∞,p is the unique stationary solution to (62). We have

Theorem 9.1 Let p < p̄, where p̄ solves (61) and let g∞,p(v) be the unique stationary solution
to equation (62). Let f(v, t) be the solution of the Kac equation (1), corresponding to the
initial density f0 such that, for some 0 < λ < λ2

∫
|v|2+λ f0(v) dv < ∞.

Then, f̃(v, t) =
√

T (t)f
(√

T (t)v, t
)

satisfies

∫
|v|2+λ f̃(v, t) dv ≤ cp,λ < ∞.

If 0 < λ ≤ 1 the constant cp,λ is given by (72). Moreover, f̃(v, t) converges exponentially fast
in Fourier metric towards g∞,p(v), and the following bound holds

d2+λ(f̃(t), g∞,p) ≤ d2+λ(f0, g∞,p) exp {−|Gp(λ)|t} (81)

where Gp(λ) is given by (57).

Theorem 9.1 is nothing but the Ernst–Brito conjecture for the case p < p̄.
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10 Conclusions

In this paper we investigated the large–time behavior of a dissipative kinetic model obtained
by generalizing the classical model known as Kac caricature of a Maxwell gas. We found
connections between the cooling problem for this model and the classical central limit theorem
for stable laws. These connections enabled us to make use of arguments typical of probability
theory. The existence of stationary solutions with infinite energy is known also for the
standard inelastic Maxwell model [8]. These solutions, however, do not look like stable laws.
In analogy to the model discussed in this paper, we conjecture that these stationary solutions
possess a domain of attraction, and it would be highly interesting to investigate on the
existence of a central limit theorem.

Concerning the question posed by Ernst and Brito in [16], we showed that this conjecture
is true in the range of low dissipation given by p < p̄, characterized by the fundamental fact
that some moment of order greater than two for the rescaled equation (62) remains uniformly
bounded in time. In this range, in fact, the limit distribution is shown to be unique, and its
tails are completely determined in terms of the solution of a transcendental equation. We
left open the problem of the convergence in the range of high dissipation p ≥ p̄. In this
range of the parameter in fact it is not possible to conclude even with the existence of a limit
distribution (without uniqueness) with unit temperature. To our knowledge, the existence
of different regimes of dissipation for the same model which lead to completely different
behaviors, has never been observed before, and certainly requires further investigations.
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