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cDipartimento di Matematica, Universitá di Pavia, via Ferrata 1, I-27100 Pavia, Italy

Abstract

In this note we make use of mass transportation techniques to give a simple proof of the finite speed of propagation
of the solution to the one–dimensional porous medium equation. The result follows by showing that the difference
of support of any two solutions corresponding to different compactly supported initial data is a bounded in time
function of a suitable Monge–Kantorovich related metric. To cite this article: J. A. Carrillo, M. P. Gualdani, G.
Toscani, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Résumé

Dans cette note nous utilisons des techniques de transport de masse pour donner une preuve élémentaire de
la finitude de la vitesse de propagation des solutions de l’équation mono-dimensionnelle des milieux poreux. Le
résultat repose sur la preuve de la propriété suivante : la différence du support entre deux solutions quelconques
correspondant à des données initiales à support compact différentes est une fonction, bornée en temps, d’une
métrique de Monge–Kantorovitch appropriée. Pour citer cet article : J. A. Carrillo, M. P Gualdani, G. Toscani,
C. R. Acad. Sci. Paris, Ser. I 336 (2003).

1. Introduction

We consider the problem

ut = (um)xx, x ∈ R, t > 0, m > 1, (1)

u(x, 0) = u0(x), x ∈ R, (2)
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where u0 ∈ L1(R) ∩ L∞(R), u0 ≥ 0 and u0 is compactly supported.
Much is already known for problem (1)-(2): see [1,2,3,4,5] and the references therein for existence,

uniqueness and asymptotic behaviour results of the porous media equation. It also known that the de-
generacy at level u = 0 of the diffusivity D(u) = mum−1 causes the phenomenon called finite speed of
propagation. This means that the support of the solution u(·, t) to (1)-(2) is a bounded set for all t ≥ 0.
In fact it can be proved that the solution u(x, t) as t → +∞ converges to the Barenblatt source-type
solution U(x, t, C) with the same mass as the initial data.
In this paper we want to give a simple proof of the finite propagation property using mass transportation
techniques. Precisely, we prove that the difference of support of two solutions of (1)-(2) with different
compactly supported initial conditions is a bounded in time function of a suitable Monge-Kantorovich
related metric.

Theorem 1.1 Let u1(x, t) and u2(x, t) be strong solutions of (1)-(2) with initial conditions u01(x) and
u02(x) respectively, where u0i ∈ L1(R)∩L∞(R), u0i ≥ 0 and u0i is compactly supported, i = 1, 2, and let
Ωi = {(x, t) ∈ R× [0,+∞)/ui(x, t) > 0} , i = 1, 2.

Let ξi(t) = infx∈RΩi, Ξi(t) = supx∈RΩi, for t ≥ 0, i = 1, 2. Then

max {|ξ1(t)− ξ2(t)|, |Ξ1(t)− Ξ2(t)|} ≤ W∞(u01, u02), ∀t ∈ [0, +∞), (3)

where W∞(u01, u02) is a constant, which depends only on the initial data u01, u02 and is defined in (16).
The finite speed of propagation property follows by just taking as one of the solutions a time translation of
the explicit Barenblatt solution which is known to have compact support expanding at the rate t1/(m+1).

2. Proof

Consider a sequence of functions un ∈ C∞([0, +∞) × R), which are strong solutions (see [3]) of the
problems Pn

ut = (um)xx, x ∈ R, t > 0, m > 1, (4)

u(x, 0) = u0n(x), x ∈ R, (5)

where u0n(x), n ∈ N, is a sequence of bounded, integrable and strictly positive C∞-smooth functions
such that all their derivatives are bounded in R, the condition (m − 1)(u0

m
n )xx ≥ −au0n holds for

some constant a > 0, and u0n → u0 in L1(R) if n → +∞. We may always do it in such a way that
‖u0n‖L1(R) = ‖u0‖L1(R) and ‖u0n‖L∞(R) ≤ ‖u0‖L∞(R). From the L1-contraction property it follows that
un → u in C([0,+∞) : L1(R)) if n → +∞, where u is a strong solution of (1)-(2) (see [3], chapt.
III).

This sequence of regularized solutions can be further approximated by a sequence of initial boundary
value problems. We introduce a cutoff sequence θk ∈ C∞(R), 1 < k ∈ N, with the following properties:

θk(x) = 1 for |x| < k − 1, θk(x) = 0 for |x| ≥ k, 0 < θk < 1 for k − 1 < |x| < k. (6)

The initial boundary value problem Pnk

ut = (um)xx, x ∈ (−k, k), t > 0, (7)

u(x, 0) = u0nk(x) :=
u0n(x)θk(x)

‖u0n(x)θk(x)‖L1
, (8)

u(x, t) = 0 for |x| = k, t ≥ 0, (9)
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is mass preserving and has a unique solution unk(x, t) ∈ C∞((0, +∞) × [−k, k]) ∩ C([0, +∞) × [−k, k]),
strictly positive for x ∈ (−k, k) and zero at the boundary (see [3], prop.6, chapt.II). Because u0nk −→ u0n

as k −→ +∞, for all n ∈ N, unk → un in C([0, +∞) : L1(R)) if k → +∞, where un is solution of the
problem Pn.

Thanks to estimates independent of k for the moments of the solutions of the Pnk problems and passing
to the limit in the corresponding inequalities, it can be easily shown that the solution un(x, t) of (4)-(5)
enjoys an important property. It holds

∫

R

|x|pun(x, t)dx < +∞, ∀t ≥ 0, ∀p ∈ [1, +∞). (10)

We shall denote by Pp(R), with p ∈ [1, +∞), the set of all probability measures on R with finite
moments of order p. Let Π(µ, ν) be the set of all probability measures on R2 having µ, ν ∈ Pp(R) as
marginal distributions (see [6]). The Wasserstein p-distance between two probability measures µ, ν ∈
Pp(R) is defined as

Wp(µ, ν)p := inf
π∈Π(ν,µ)

∫

R2

|x− y|pdπ(x, y), ∀p ∈ [1, +∞). (11)

Wp defines a metric on Pp(R) (see [6]). Bound (10) then shows that the Wasserstein p-distance between
any two solutions which is initially finite, remains finite at any subsequent time.
Any probability measure µ on the real line can be described in terms of its cumulative distribution
function F (x) = µ((−∞, x]) which is a right-continuous and non-decreasing function with F (−∞) = 0
and F (+∞) = 1. Then, the generalized inverse of F defined by F−1(η) = inf{x ∈ R/F (x) > η} is also
a right-continuous and non-decreasing function on [0, 1].
Let µ, ν ∈ Pp(R) be probability measures and let F (x), G(x) be the respective distribution functions. On
the real line (see [6]), the value of the Wasserstein p-distance Wp(µ, ν) can be explicitly written in terms
of the generalized inverse of the distribution functions,

Wp(µ, ν)p =

1∫

0

|F−1(η)−G−1(η)|pdη, ∀p ∈ [1, +∞). (12)

Let u1(x, t), u2(x, t) be strong solutions of (1)-(2) corresponding to initial conditions u01(x) and u02(x)
respectively. We denote by u1n(x, t) and u2n(x, t) the strong solutions of (4)-(5) with initial conditions
u01n(x) and u02n(x) respectively, where u0in −→ u0i in L1(R) for i = 1, 2. Analogously, we consider
the solutions u1nk(x, t) and u2nk(x, t) of the problems Pnk converging towards uin(x, t) for i = 1, 2 in
C([0, +∞) : L1(R)) as k →∞.
Let Fink(x, t) be the distribution functions of uink for i = 1, 2. A direct computation shows that Fi

−1
nk (η, t)

solves the following equation

∂Fi
−1
nk

∂t
= − ∂

∂η

((
∂Fi

−1
nk

∂η

)−m)
, i = 1, 2, (13)

for t > 0 and η ∈ [0, 1]. Making use of equation (13), it is easy to prove that the Wasserstein p-distance

Wp(u1nk, u2nk)(t) =





1∫

0

|F1
−1
nk (η, t)− F2

−1
nk (η, t)|pdη





1
p

, ∀p ∈ [1, +∞), (14)

3



is a non-increasing in time function. In fact, for any given p ≥ 1, integrating by parts one obtains

d

dt

1∫

0

|F1
−1
nk (η, t)− F2

−1
nk (η, t)|pdη = p(p− 1)

1∫

0

|F1
−1
nk (η, t)− F2

−1
nk (η, t)|p−2

× (
F1
−1
nk (η, t)η − F2

−1
nk (η, t)η

) [(
F1
−1
nk (η, t)η

)−m − (
F2
−1
nk (η, t)η

)−m
]
dη ≤ 0

since the function x−m, m ≥ 1, is decreasing. Note that the boundary terms vanish due to the compact
support of the solutions, which implies

lim
η→0+

(
Fi
−1
nk (η, t)η

)−1
= lim

η→1−

(
Fi
−1
nk (η, t)η

)−1
= 0 i = 1, 2.

On the other hand, for all p ∈ [1, +∞),

Wp(u1nk, u2nk) → Wp(u1n, u2n), k → +∞, Wp(u1n, u2n) → Wp(u1, u2), n → +∞. (15)

This implies that Wp(u1, u2) ≤ Wp(u01, u02), ∀p ∈ [1,+∞). Since the function Wp(u1, u2) is increasing
with respect to p, we can define the quantity

W∞(u1, u2) := lim
p↑+∞

Wp(u1, u2) = sup
η∈(0,1)

ess|F−1
1 (η, t)− F−1

2 (η, t)|. (16)

Since W∞(u01, u02) is finite, we deduce easily that W∞(u1, u2) is also a non-increasing in time function.
Note that the inverse function F−1(η) of a distribution F (x) =

∫ x

−∞ u(s)ds, where u(s) is a integrable
compactly supported function, is continuous at the point η = 0 and η = 1. Thus we can justify the
inequality

W∞(u1, u2) = sup
η∈(0,1)

ess|F−1
1 (η, t)− F−1

2 (η, t)| ≥

max
{|F−1

1 (0, t)− F−1
2 (0, t)|, |F−1

1 (1, t)− F−1
2 (1, t)|} ≥ max {|ξ1(t)− ξ2(t)|, |Ξ1(t)− Ξ2(t)|} . (17)

We remark that the above arguments only hold in one space dimension due to the fact that only in this
case one can express the p-Wasserstein distance in terms of pseudo-inverse distribution functions, as given
in (12).
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